Surgical treatment for primary angle closure – glaucoma: a Meta analysis

Bo-Lin Deng¹,², Cheng Jiang¹,³, Bin Ma ¹, Wen-Fang Zhang¹,², Peng Lu ², Yuan-Yuan Du², Xu-Dong Jiu², Le-Xin Yang², Jing Tian ²

Abstract

- **AIM:** To evaluate the efficacy and safety of trabeculectomy, phacotrabeculectomy plus intraocular lens implantation (phacotrab+IOL group) and phacoemulsification with IOL (phaco+IOL) in primary angle-closure glaucoma (PACG).

- **METHODS:** It was a systematic review and meta-analysis, randomized controlled trials (RCT) and clinical controlled trials (CCT) were collected through electronic searches of the Cochrane Library, PubMed, EMBase, Wanfang Database online, Chinese journal Full-text Database, Chinese Scientific Journals Full-text Database (from the date of building the database to October 2010) We also checked the bibliographies of retrieved articles. All the related data that matched our standards were abstracted. The quality of included trials was evaluated according to the Dutch Cochrane Centre. RevMan 5.0 software was used for Meta-analysis.

- **RESULTS:** A total of 5 RCT and 11 CCT involving 1495 eyes were included. The results of meta-analysis showed that phacotrabe+IOL group was superior than trabeculectomy(trab group) (MD -3.93,95% CI [-7.31,-0.54]) which was also superior than phaco+IOL group(MD 0.52,95%CI [0.10, 0.95]) in decreasing Intraocular Pressure (IOP). Phacotrabe group(MD -1.45,95% CI [-1.68,-1.22])and phaco group (MD -1.12,95% CI [-1.87,-0.37])are both deeper than trab group in the anterior chamber depth. In increasing the coefficient of outflow facility of aqueous humor (C values) there was no statistical difference in the three groups. And there was no statistical difference between phacotrabe groups and phaco groups in visual acuity but phacotrabe group was superior than phaco group (MD 1.07, 95%CI [0.73, 1.40]) in the use of IOP-lowering drugs. There was no statistical difference among three groups.

- **CONCLUSION:** Current evidence suggests that phacotrabe+ IOL group was superior than trab group which was also superior than phaco+IOL group in decreasing IOP. Phacotrabe group and phaco group are both deeper than trab group in the anterior chamber depth. Phacotrabe group was superior than phaco group in the use of IOP-lowering drugs.

- **KEYWORDS:** trabeculectomy; phacoemulsification; phacotrabe; primary angle-closure glaucoma; meta-analysis

INTRODUCTION

Glaucoma is the second important cause of blindness. There are 67 million patients all over the world [1]. Specific structural abnormalities of optic nerve head and patterns of visual field loss are irreversible. It causes heavy burden on patients and society.

The primary glaucomas can be classified as open angle glaucoma (POAG) or angle-closure glaucoma (PACG). Angle-closure glaucoma is prevalent in Eastern Asian and China where the patients is more common than western country [2]. In China, PACG is mainly in the old which have 3.5 million patients. More than 25% patients can be caused blindness [3]. The main therapy of PACG is surgery. Three surgeries involving trabeculectomy, phacotrabecelectomy plus intraocular lens implantation (phacotrabe+IOL group) and phacoemulsification with IOL(phaco+IOL) are common used in treating PACG. But there are still some controversies in efficacy, safety and complications [49]. We use Meta-analysis to collect articles which include...
randomized controlled trials and clinical controlled trials to evaluate the efficacy and safety of the three surgeries.

MATERIALS AND METHODS

Inclusion and Exclusion Criteria

Types of studies All randomized and clinic controlled trials were eligible for inclusion.

Types of participants Participants in the trials were people with a diagnosis of acute and chronic angle closure glaucoma. The trials with patients who were cyclopia, got uveitis, ocular operation, laser therapy and combined other ocular and systemic disease were not included. There were no restrictions with respect to age, gender, ethnicity, co-morbidities, use of adjunctive medications or the number of participants.

Types of interventions All trials include trabeculectomy tr, phacotrab+IOL group or trabeculectomy tr, phaco+IOL or phaco+IOL group ph, phaco+IOL(Table 1).

Types of outcome measures Main outcomes: intraocular pressure (IOP) reduction, coefficient of outflow facility (C-values), anterior chamber depth(ACD), visual acuity. Other outcomes: surgery success rate, adjunctive therapy (AT), trabecular iris angle (TIA), angle opening distance (AOD500), trabecular ciliary processes distance(TCPD).

Search Methods for Identification of Studies We combined uncontrolled terms and mesh terms with "primary angle closure glaucoma, trabeculectomy, phacoemulsification, cataract extraction, lens extraction" to search PUMED (1966-2010.11), EMBASE(1974-2010.11), Cochrane library (2010; issue 12), CNKI, (1994-2010.11), VIP(1989-2010.11), Wanfang (1997-2010.11), Google and we also searched conference paper and abstract of American Association of Ophthalmology and Association for Research in Vision and Ophthalmology.

Data Collection and Assessment of Methodological Quality Two authors independently assessed the methodological quality of each included study according to the guidelines developed by the Netherlands 24 Dutch Cochrane Collaboration [9], the quality involved methods of baseline, allocation, masking, intend to treat, collection of data, losses to follow up, adjunctive therapy when data were difficult to determine from the paper the authors were contacted for more information. The three authors compared the extracted data and the discrepancies were resolved by discussion.

Data Analysis We will calculate a summary risk ratio for dichotomous outcomes. The mean difference will be calculated for continuous outcomes. Standardized mean difference will be reported if outcomes are measured using different scales. We will attempt to quantify the proportion of variability within included studies that is explained by heterogeneity using the I2 statistic (Higgins 2002). If the I2 statistic is greater than 50% we will consider it as statistical heterogeneity, if there is no substantial heterogeneity, we combine the study results in a meta-analysis using a random-effects model. We will examine funnel plot symmery for evidence of other sources of heterogeneity. If there is no substantial heterogeneity and statistical heterogeneity as per the I2 statistic we will combine the results of the included studies in a meta-analysis using a fix-effects model. If there is substantial heterogeneity and statistical heterogeneity, instead we will take subgroup analysis or present the studies in a tabulated or narrative summary. The software we used is RevMan5.0 [10].

RESULTS

Results of the Search Sixteen eligible trials were included in our final meta-analysis (Table 2). It involved 5 randomized controlled trials [19-22,23] and 11 nonrandomized controlled trials [11-18, 23, 24, 26]. The total sample capacity is 1495 eyes. 3 trials [11-13] involved trabeculectomy (trab), phacotrab+IOL group and phaco+IOL. Two trials [10-20] compared trab with phacotrab, 5 trials [14, 15, 23-25] compared trab with phaco, 6 trials [17-22] compared phacotrab with phaco.
Study Quality Assessment
Five trials\(^{19-22, 25}\) which did not mention location and masking were randomized controlled trials, in which 4 trials\(^{19-22}\) used table of random number, 1 trial\(^{25}\) did not account for the particular method. The other 11 trials\(^{10-25}\) were nonrandomized controlled trials.

Intraocular Pressure
Ten trials\(^{11-15, 17, 19, 20, 23, 24}\) reported the intraocular pressure.

Trab vs Phacotrab
Three CCTs\(^{11-13}\) reported the intraocular pressure. The results of meta-analysis was \[\text{MD}=-3.93, 95\% \text{CI}(-7.31,-0.54), P=0.02\]. There was statistical difference between the two surgeries (Table 3).

Phacotrab vs Phaco
Two RCTs\(^{19, 20}\) and 4 CCTs\(^{11-13, 17}\) reported the intraocular pressure. The results of Meta-analysis was \[\text{SMD}=0.34, 95\% \text{CI (-0.02,0.70)}, P=0.06\] (RCT), there was no statistical difference between the two surgeries; \[\text{SMD} 1.37, 95\% \text{CI [0.69, 2.05]}, P=0.003\] (CCT), there is statistic difference between the two surgeries (Table 3).

Trab vs Phaco
Seven CCTs\(^{11-15, 21, 24}\) reported the intraocular pressure. The results of meta-analysis was \[\text{SMD}=0.52, 95\% \text{CI (0.10, 0.95),} P=0.02\]. There is statistical difference between the two surgeries (Table 3).

Anterior Chamber Depth (ACD)
Eight trials\(^{11-13, 20}\) reported the change of anterior chamber depth (ACD).

Trab vs Phacotrab
Three CCTs\(^{11-13, 18}\) reported the anterior chamber depth. The result of meta-analysis was \[\text{MD}=-1.45, 95\% \text{CI}(-1.68,-1.22), P<0.00001\]. There is statistic difference between the two surgeries (Table 3).

Phacotrab vs Phaco
Four CCTs\(^{11-13, 17}\) reported the anterior chamber depth. The result of meta-analysis was \[\text{MD}=-0.07, 95\% \text{CI}(-0.19,-0.06), P=0.29\]. There is statistical difference between the two surgeries (Table 3).

Coefficient of Outflow Facility (C-values)
Three trials\(^{11, 13, 23}\) reported the change of coefficient of outflow facility (C-values).

Trab vs Phacotrab
Two CCTs\(^{11-13}\) reported coefficient of outflow facility. The result of meta-analysis was \[\text{MD}=-0.03, 95\% \text{CI}(-0.06,0.00), P=0.03\]. There is statistic difference between the two surgeries (Table 3).

Phacotrab vs Phaco
Two CCTs\(^{11-13}\) reported coefficient of outflow facility. The result of meta-analysis was\[\text{MD}=-0.03, 95\% \text{CI}(-0.00,0.06), P=0.06\]. There is no statistic difference between the two surgeries (Table 3).

Visual Acuity
Two RCTs\(^{19, 20}\) reported visual acuity. The result of meta-analysis was \[\text{MD}=-0.10, 95\% \text{CI}(-0.23,0.03), P=0.13\]. There is no statistic difference between Phacotrab and Phaco (Table 3).

Table 2 Study characteristic and quality assessment

<table>
<thead>
<tr>
<th>Study type</th>
<th>Eyes</th>
<th>Intervention</th>
<th>Baseline allocation</th>
<th>Allocation concealment</th>
<th>Intent to treat</th>
<th>Masking</th>
<th>Follow-up (months)</th>
<th>Completeness of follow-up</th>
<th>Operative therapy</th>
<th>Outcome measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tham, C.C.Y. 2008</td>
<td>RCT</td>
<td>72</td>
<td>Phacotrab, Phaco</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>24</td>
<td>100%</td>
<td>YES</td>
<td>IOP, VA, AT</td>
</tr>
<tr>
<td>Tham, C.C.Y. 2009</td>
<td>RCT</td>
<td>51</td>
<td>Phacotrab, Phaco</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>24</td>
<td>100%</td>
<td>YES</td>
<td>IOP, VA, AT</td>
</tr>
<tr>
<td>Tham, C.C.Y. 2010</td>
<td>RCT</td>
<td>72</td>
<td>Phacotrab, Phaco</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>12</td>
<td>100%</td>
<td>YES</td>
<td>IOP, VA, AT</td>
</tr>
<tr>
<td>Tham, C.C.Y. 2010</td>
<td>RCT</td>
<td>123</td>
<td>Phacotrab, Phaco</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>24</td>
<td>100%</td>
<td>YES</td>
<td>IOP, VA, AT</td>
</tr>
<tr>
<td>Peng 2009</td>
<td>RCT</td>
<td>70</td>
<td>Trab, Phaco</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>6</td>
<td>100%</td>
<td>YES</td>
</tr>
<tr>
<td>Zhang 2006</td>
<td>NONRCT</td>
<td>72</td>
<td>Trab, Phacotrab, Phaco</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>20</td>
<td>100%</td>
<td>YES</td>
<td>IOP, AOD500, ACD, VA, C-values, AT, complication</td>
</tr>
<tr>
<td>Zhang 2007</td>
<td>NONRCT</td>
<td>97</td>
<td>Trab, Phacotrab, Phaco</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>16</td>
<td>100%</td>
<td>YES</td>
<td>IOP, AOD500, ACD, VA, C-values, AT, complication</td>
</tr>
<tr>
<td>Wang 2007</td>
<td>NONRCT</td>
<td>48</td>
<td>Trab, Phacotrab, Phaco</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>24</td>
<td>100%</td>
<td>YES</td>
<td>IOP, surgery success rate, AOD500, AOD, AT, complication</td>
</tr>
<tr>
<td>Lv 2010</td>
<td>NONRCT</td>
<td>138</td>
<td>Trab, Phacotrab</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>1</td>
<td>100%</td>
<td>YES</td>
<td>IOP, ACD, VA, complication</td>
</tr>
<tr>
<td>Du 2007</td>
<td>NONRCT</td>
<td>160</td>
<td>Trab, Phacotrab</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>6</td>
<td>100%</td>
<td>YES</td>
<td>IOP, ACD, VA, complication</td>
</tr>
<tr>
<td>Zhang 2004</td>
<td>NONRCT</td>
<td>100</td>
<td>Trab, Phaco</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>20</td>
<td>100%</td>
<td>YES</td>
<td>IOP, AOD500, ACD, VA, C-values, AT, complication</td>
</tr>
<tr>
<td>Tang 2008</td>
<td>NONRCT</td>
<td>145</td>
<td>Trab, Phaco</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>1</td>
<td>100%</td>
<td>YES</td>
<td>IOP, AOD500, ACD, VA, C-values, AT, complication</td>
</tr>
<tr>
<td>Hu 2010</td>
<td>NONRCT</td>
<td>65</td>
<td>Trab, Phaco</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>1</td>
<td>100%</td>
<td>YES</td>
<td>IOP, AOD500, ACD, VA, C-values, AT, complication</td>
</tr>
<tr>
<td>Song 2010</td>
<td>NONRCT</td>
<td>129</td>
<td>Trab, Phaco</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>6</td>
<td>100%</td>
<td>YES</td>
<td>IOP, surgery success rate, AOD500, ACD, VA, AT, complication</td>
</tr>
<tr>
<td>Sheng 2004</td>
<td>NONRCT</td>
<td>37</td>
<td>Phacotrab, Phaco</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>6</td>
<td>100%</td>
<td>YES</td>
<td>IOP, ACD, AOD500, ACD, VA, AT, complication</td>
</tr>
<tr>
<td>Chu 2008</td>
<td>NONRCT</td>
<td>116</td>
<td>Phacotrab, Phaco</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
<td>3</td>
<td>100%</td>
<td>YES</td>
<td>IOP, AOD500, ACD, complication</td>
</tr>
</tbody>
</table>

Notes
1. Phacotrab vs Phaco: Four CCTs\(^{11-13, 17}\) reported the anterior chamber depth. The result of meta-analysis was \[\text{MD}=-0.07, 95\% \text{CI}(-0.19,-0.06), P=0.29\]. There is statistical difference between the two surgeries (Table 3).

2. Trab vs Phacotrab: Five CCTs\(^{11, 13, 15, 23}\) reported the anterior chamber depth. The result of meta-analysis was \[\text{MD}=-1.12, 95\% \text{CI}(-1.87,-0.37), P=0.003\]. There was statistical difference between the two surgeries (Table 3).

3. Coefficient of Outflow Facility (C-values): Three trials\(^{11, 13, 23}\) reported the change of coefficient of outflow facility (C-values).

4. Trab vs Phacotrab: Two CCTs\(^{11-13}\) reported coefficient of outflow facility. The result of meta-analysis was \[\text{MD}=-0.03, 95\% \text{CI}(-0.06,0.00), P=0.03\]. There is statistic difference between the two surgeries (Table 3).

5. Phacotrab vs Phaco: Two CCTs\(^{11-13}\) reported coefficient of outflow facility. The result of meta-analysis was \[\text{MD}=-0.03, 95\% \text{CI}(-0.00,0.06), P=0.06\]. There is no statistic difference between the two surgeries (Table 3).

6. Visual Acuity: Two RCTs\(^{19, 20}\) reported visual acuity. The result of meta-analysis was \[\text{MD}=-0.10, 95\% \text{CI}(-0.23,0.03), P=0.13\]. There is no statistic difference between Phacotrab and Phaco (Table 3).
Adjuvant Therapy

Two RCTs [16,20] reported adjuvant therapy. The result of meta-analysis was [MD = 1.07, 95% CI (0.73, 1.40), \(P = 0.00001 \)]. There is no statistic difference between phacotrab and phaco (Table 3).

Surgery Success Rate

Three CCTs [12,13,24] reported the success rate of surgery (involve conditional success). There were 274 eyes. 105 eyes were successful in Trab group which involved 109 eyes; 48 eyes were successful in Phacotrab group which involved 50 eyes; 109 eyes were successful in Phaco group which involved 115 eyes. There is no statistic difference between Phacotrab and Phaco (Table 3).

Trab vs Phacotrab
The result of meta-analysis was [RR = 0.95 [0.86, 1.05], \(P = 0.34 \)]. There is no statistic difference between Trab and Phacotrab (Table 3).

Phacotrab vs Phaco
The result of meta-analysis was [RR1.11 [0.97, 1.28], \(P = 0.12 \)]. There is no statistic difference between Phacotrab and Phaco (Table 3).

Trab vs Phaco
The result of meta-analysis was [RR1.03 [0.97, 1.09], \(P = 0.37 \)]. There is no statistic difference between Trab and Phaco (Table 3).

Trabecular Iris Angle

One nonRCT [16] reported trabecular iris angle of Trab surgery, which showed there was no significant improvement after surgery (\(P > 0.05 \)); 1 nonRCT [16] and 1 RCT [22] reported trabecular iris angle of Phacotrab surgery, which showed there was significant improvement after surgery (\(P < 0.05 \)); 1 RCT [22] reported trabecular iris angle of Phaco surgery, which showed there was significant improvement after surgery (\(P < 0.001 \)).

Angle Opening Distance (AOD500)

One nonRCT [16] reported angle opening distance of Trab surgery, which showed there was no significant improvement after surgery (\(P > 0.05 \)); 1 nonRCT [16] and 1 RCT [22] reported angle opening distance of Phacotrab surgery, which showed there was significant improvement after surgery (\(P < 0.05 \)); 1 RCT [22] reported angle opening distance of Phaco surgery, which showed there was significant improvement after surgery (\(P < 0.001 \)).

Trabecular Ciliary Processes Distance

One nonRCT [16] reported trabecular ciliary processes distance of Trab surgery, which showed there was no significant improvement after surgery (\(P > 0.05 \)); 1 nonRCT [16] and 1 RCT [22] reported trabecular ciliary processes distance of Phacotrab surgery, which showed there was significant improvement after surgery (\(P < 0.05 \)); 1 RCT [22] reported trabecular ciliary processes distance of Phaco surgery, which showed there was significant improvement after surgery (\(P < 0.001 \)).

DISCUSSION

The meta-analysis showed that: (1) the three surgeries can decrease intraocular pressure, in which Phacorab is superior than Trab which is superior than Phaco; (2) the three surgeries can deep anterior chamber depth, in which Phacorab is superior than Trab which is superior than Phaco. Phaco trab group and phaco group are both deeper.
than trab group in the anterior chamber depth; (3) coefficient of outflow facility: the three surgeries can increase coefficient of outflow facility, but there was no statistic difference in the three surgeries; (4) the three surgeries can improve visual acuity. 2 RCT showed that there was no statistic difference between Phacotrabe and Phaco. (5) adjunctive therapy: Phacotrabe was superior than Phaco, there lacked trab trials in current evidences. (6) the three surgeries had no statistic difference in surgery success rate. Phaco trab and Phaco were superior than trab in angle opening, trabecular iris angle (TIA), angle opening distance (AOD500), trabecular ciliary processes distance; (7) complications: the primary complications in trab were low intraocular pressure, shallow of anterior chamber, choroidal detachment, hyphema; the primary complications in Phacotrabe were shallow of anterior chamber, corneal bedewing, descemets membrane wrinkle, hyphema; the primary complications in Phaco were corneal bedewing, descemets membrane wrinkle, chamber fibrin exudation. Phaco was superior to trab and Phacotrabe in complications. There still existed some disadvantages and limitations in our meta-analysis: we only involved 5RCTs which did not reported the location and masking, so there existed performance and measurement bias. According to current evidence, most of trials did not used randomized controlled methods strictly. We should adopt appropriate randomized controlled methods, location, masking to decrease bias; we should make accurate standard of follow-up time to improve quality and applicability. Current evidence showed that Phacotrabe was superior than the other two surgeries in intraocular, chamber depth, visual acuity, adjunctive therapy, trab is superior than Phaco in intraocular pressure, it is not superior than the other two surgeries in chamber depth, trab and Phacotrabe were not superior than Phaco.

REFERENCES