Complete mitochondrial DNA sequence analysis in two southern Chinese pedigrees with Leber hereditary optic neuropathy revealed secondary mutations along with the primary mutation

Lei Shu1,2*, Yong-Ming Zhang3**, Xiao-Xiao Huang4**, Chun-Yue Chen1,2, Xian-Ning Zhang2

Foundation item: Supported by the National Natural Science Foundation of China (No. 30710043)
1Hangzhou Red Cross Hospital, Hangzhou 310003, Zhejiang Province, China
2Department of Biochemistry and Genetics, National Education Base for Basic Medical Sciences, Institute of Cell Biology, School of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
3Department of Ophthalmology, Xiangshan First People's Hospital, Xiangshan County 315700, Zhejiang Province, China
4Hangzhou No. 6 Hospital, Hangzhou 310014, Zhejiang Province, China
*These authors contributed equally to this work.
Correspondence to: Xian-Ning Zhang, Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang Province, China. zhangxianning@zju.edu.cn
Received: 2011-11-10 Accepted: 2012-01-10

Abstract

• AIM: To investigate mitochondrial factors associated with Leber hereditary optic neuropathy (LHON) through complete sequencing and analysis of the mitochondrial genome of Chinese patients with this disease.
• METHODS: Two unrelated southern Chinese families with LHON and 10 matched healthy controls were recruited, and their entire mitochondrial DNA (mtDNA) was amplified and sequenced with the universal M13 primer. Then DNA sequence analysis and variation identification were performed by DNAssist and Chromas 2 software and compared with authoritative databases such as Mitomap.
• RESULTS: Mutational analysis of mtDNA in these two Chinese pedigrees revealed one common LHON-associated mutation, G11778A (Arg→His), in the MT-ND4 gene. In addition, there were two secondary mutations in Pedigree 1: C3497T (Ala→Val), and C3571T (Leu→Phe) in the MT-ND1 gene, which have not been reported; and two secondary mutations occurred in Pedigree 2: A10398G (Thr→Ala) in the MT-ND4 gene, and T14502C (Ile→Val) in the MT-ND6 gene. Three polymorphisms, A73G, G94A and A263G in the mtDNA control region, were also found.
• CONCLUSION: Our study confirmed that the known MT-ND4* G11778A mutation is the most significant cause of LHON. The C3497T and C3571T mutations in Pedigree 1 were also both at hot-spots of MT-ND1, they may affect the respiratory chain in coordination with the primary mutation G11778A. In Pedigree 2, the two secondary mutations A10398G of MT-ND4 and T14502C of MT-ND6 may influence mitochondrial respiratory complex I, leading to the mitochondrial respiratory chain dysfunction which results in optic atrophy together with G11778A. Therefore, not only the common primary LHON mutation is responsible for the visual atrophy, but other secondary mtDNA mutations should also be considered when giving genetic counseling.
• KEYWORDS: Leber hereditary optic neuropathy; mitochondrial DNA; mutation; mitochondrial respiratory complex I
DOI: 10.3980/j.issn.2222-3959.2012.01.06

INTRODUCTION

Leber hereditary optic neuropathy (LHON. OMIM: 535000) is generally regarded as a maternally-transmitted disorder and is the most common cause of sudden bilateral blindness. The mean age at onset has been variously reported from 27 to 34 years. This disease is associated with point mutations in the mitochondrial DNA (mtDNA) that acts autonomously or in association with each other to cause the symptoms [1]. Over 30 mutations have been reported to be responsible for LHON (http://www.mitomap.org/MITOMAP/MutationsLHON). It is known that over 95% of LHON pedigrees are caused by three common
primary mutations: G11778A in the MT-ND4 gene, G3460A in the MT-ND1 gene, and T14484C in the MT-ND6 gene. The proportions of the three point mutations in Caucasian LHON families are reported to be 56.6% for G11778A/MT-ND4, 22.6% for G3460A/MT-ND1, and 20.8% for T14484C/MT-ND6 [2]. However, these proportions were reported as 90.2%, 8.7%, and 1.1% respectively on a Chinese genetic background [3]. Although the primary etiological factor in LHON is the mtDNA mutation, the presence of such a mutation does not necessarily lead to visual loss. Families carrying the same LHON-associated mutation include patients who present a wide range of phenotypes. The pathogenesis of LHON remains obscure. The marked incomplete penetrance and gender bias indicate that additional genetic (nuclear or mitochondrial) and epigenetic factors (e.g., smoking and drinking) may also be involved [4,5].

To further explain the mitochondrial basis of LHON, we investigated the factors associated with LHON by sequencing and analyzing the complete mitochondrial genome of two southern Chinese LHON pedigrees.

MATERIALS AND METHODS

Patients Two unrelated southern Han Chinese families with LHON and 10 ethnically-matched healthy controls were recruited from the Department of Ophthalmology, Xiangshan First People’s Hospital, Xiangshan County, Ningbo, Zhejiang Province, China. Diagnosis was made according to Kanski’s *Clinical Ophthalmology: A Systematic Approach* (7th edition, 2011, W.B. Saunders Co.). The eye examinations of family members of both pedigrees and controls were performed by two independent ophthalmologists. The tests included visual acuity, color vision, and a funduscopic examination (data not shown). Pedigree 1 (P1) was a four-generation family with 8 affected members. Pedigree 2 (P2) was a four-generation family with 7 affected individuals.

Table 1 Summary of clinical data and mtDNA variants in two Chinese pedigrees with Leber hereditary optic neuropathy (LHON)

<table>
<thead>
<tr>
<th>Patient</th>
<th>Gender</th>
<th>Onset age (Years)</th>
<th>Visual acuity</th>
<th>Primary mtDNA mutation</th>
<th>Secondary mtDNA mutation</th>
<th>Reported (disease context)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedigree 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III-2</td>
<td>Female</td>
<td>24</td>
<td>0.12</td>
<td>0.8</td>
<td>G11778A/MT-ND4</td>
<td>C3497T/MT-ND1</td>
</tr>
<tr>
<td>III-4</td>
<td>Female</td>
<td>43</td>
<td>0.6</td>
<td>0.4</td>
<td>G11778A/MT-ND4</td>
<td>C3497T/MT-ND1</td>
</tr>
<tr>
<td>III-5</td>
<td>Male</td>
<td>15</td>
<td>0.01</td>
<td>0.02</td>
<td>G11778A/MT-ND4</td>
<td>C3497T/MT-ND1</td>
</tr>
<tr>
<td>III-8</td>
<td>Female</td>
<td>30</td>
<td>0.05</td>
<td>0.09</td>
<td>G11778A/MT-ND4</td>
<td>C3497T/MT-ND1</td>
</tr>
<tr>
<td>III-10</td>
<td>Female</td>
<td>19</td>
<td>0.03</td>
<td>0.05</td>
<td>G11778A/MT-ND4</td>
<td>C3497T/MT-ND1</td>
</tr>
<tr>
<td>IV-13 (Proband)</td>
<td>Male</td>
<td>18</td>
<td>0.06</td>
<td>0.01</td>
<td>G11778A/MT-ND4</td>
<td>C3497T/MT-ND1</td>
</tr>
<tr>
<td>Pedigree 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III-1 (Proband)</td>
<td>Male</td>
<td>20</td>
<td>0.08</td>
<td>0.2</td>
<td>G11778A/MT-ND4</td>
<td>A10398G/MT-ND3</td>
</tr>
<tr>
<td>III-9</td>
<td>Male</td>
<td>16</td>
<td>0.07</td>
<td>0.09</td>
<td>G11778A/MT-ND4</td>
<td>T14502C/MT-ND6</td>
</tr>
<tr>
<td>III-13</td>
<td>Male</td>
<td>18</td>
<td>0.1</td>
<td>0.25</td>
<td>G11778A/MT-ND4</td>
<td>A10398G/MT-ND3</td>
</tr>
<tr>
<td>III-21</td>
<td>Male</td>
<td>20</td>
<td>0.02</td>
<td>0.06</td>
<td>G11778A/MT-ND4</td>
<td>T14502C/MT-ND6</td>
</tr>
<tr>
<td>III-23</td>
<td>Male</td>
<td>48</td>
<td>0.06</td>
<td>0.07</td>
<td>G11778A/MT-ND4</td>
<td>A10398G/MT-ND3</td>
</tr>
<tr>
<td>III-26</td>
<td>Female</td>
<td>33</td>
<td>0.07</td>
<td>0.25</td>
<td>G11778A/MT-ND4</td>
<td>T14502C/MT-ND6</td>
</tr>
<tr>
<td>IV-12</td>
<td>Male</td>
<td>11</td>
<td>0.6</td>
<td>0.4</td>
<td>G11778A/MT-ND4</td>
<td>A10398G/MT-ND3</td>
</tr>
</tbody>
</table>

* See online mitochondrial genome database: http://www.mitomap.org/MITOMAP/MutationsLHON.
from P1 and 13 members (III-1, III-6, III-9, III-10, III-13, III-17, III-20, III-21, III-22, III-23, III-26, IV-11 and IV-12) from P2 were available. The entire mitochondrial genome was amplified by polymerase chain reaction in 24 overlapping fragments using sets of heavy-strand and light-strand oligonucleotide primers as described previously [6]. Amplified fragments were bidirectionally sequenced with the universal M13 primer. Then DNA sequence analysis and variation identification were performed by DNAAssist and Chromas 2 software, and compared with the authoritative databases Mitomap (www.mitomap.org) and secondary Cambridge sequence (GenBank accession number: NC_012920) [7].

RESULTS

One common primary LHON-associated point mutation, G11778A (Arg→His) in the MT-ND4 gene, was revealed in both Chinese LHON pedigrees (Figure 2A). In addition, there were two secondary mutations in patients from P1, C3497T (Ala→Val) (Figure 2B), and C3571T (Leu→Phe) in the MT-ND2 gene, which have not been reported (Figure 2C), while in patients from P2, A10398G (Thr→Ala) in the MT-ND6 gene (Figure 2D) and T14502C (Ile→Val) in the MT-ND6 gene were found (Figure 2E) (Table 1). All the pathogenic mtDNA mutations were homoplasic. Three polymorphisms, A73G, G94A and A263G in the mtDNA control region were also found in P2. None of the above mutations were present in 10 normal controls.

DISCUSSION

LHON most often occurs in young men in their second or third decade of life. Usually both eyes are involved. But the onset in each eye is not synchronous, with an interval of either some months or even longer than a decade [8]. LHON patients present acute or sub-acute, painless, central vision loss leading to a central scotoma with little probability of partial visual recovery. Neuro-ophthalmologic examination commonly reveals peripapillary telangiectasia, microangiopathy, disc pseudoedema, and vascular tortuosity. The disease finally leads to optic disc atrophy [9]. In a few families, mtDNA complex I mutations cause optic atrophy in association with severe neurologic deficits such as ataxia, dystonia, and encephalopathy [9]. Some patients, usually women, may develop a progressive multiple sclerosis-like illness. These individuals manifest not only severe bilateral optic neuropathy, but also disseminated central nervous system demyelination, with characteristic periventricular white matter lesions and unmatched cerebrospinal fluid oligoclonal bands [10]. The variable phenotypes of LHON suggest that other modifying factors play an important role in this disease.

In the present study, we clinically and genetically characterized two southern Chinese families with LHON. Visual impairment was only present in the maternal lineage of these pedigrees carrying the G11778A/MT-ND4 mutation. They all exhibited a rapid, painless, bilateral loss of central vision, but with different ages at onset and variable severity. LHON exhibits incomplete penetrance with a male predominance. Here, the ratios between the affected males and females in the two families were 3/5.
(P1) and 6/1 (P2). Qu et al. reported an average ratio of 3.4/1 after studying 15 Chinese families carrying the G11778A mutation \[11]. The ratio in our P1 was much lower than the average. This unusual male/female ratio suggests other modifying factors at work. The penetrance in the two pedigrees was 34.8% (P1) and 28% (P2). The penetrance of optic neuropathy in other Chinese pedigrees carrying the primary G11778A/\textit{MT-ND4} mutation range from 5% to 83%, with an average of 34% \[11-13\]. There was no significant discrepancy of penetrance between the LHON pedigrees. mtDNA variants may influence the penetrance and expressivity of visual impairment associated with the primary mtDNA mutation. In P1, there were two secondary mutations, C3497T and C3571T, in the \textit{MT-ND1} gene. Phasukkijwatana et al. \[14\] studied 30 Thai LHON pedigrees with G11778A/\textit{MT-ND4} and found that the secondary mutation C3497T/\textit{MT-ND1} had a synergistic deleterious effect with G11778A/\textit{MT-ND4}, accelerating the onset of the disease in their patients. Yusnita et al. \[15\] proposed that this point mutation, which lies in a highly-conserved region, is likely to alter the structure and function of the ND1 protein. This mutation combined with other mtDNA variants, might cause slight changes that generate higher levels of toxic reactive oxygen species. The mutation C3571T/\textit{MT-ND1} is first reported here, and we speculate that it may modulate the phenotypic expression of the major G11778A/\textit{MT-ND4} mutation with C3497T/\textit{MT-ND1}.

There were also two secondary mutations in P2, A10398G/\textit{MT-ND3} and T14502C/\textit{MT-ND6} Sudoyo et al. \[16\] found a significant association between A10398G/\textit{MT-ND3} and the primary G11778A/\textit{MT-ND4} mutation in LHON. This might act synergistically to increase the penetrance of the LHON mutation. The T14502C/\textit{MT-ND6} mutation causes the substitution of a highly-conserved isoleucine for valine at position 58 in the ND6 molecule, which has been associated with LOHN in some Chinese pedigrees \[17\]. In summary, LHON is a complicated disease. Not only are the common primary LHON mutations responsible for the visual atrophy, but other secondary mtDNA mutations such as those reported here should also be considered when giving genetic counselling \[18\].

Acknowledgments: We thank all the patients and their families who agreed to participate in this study.

REFERENCES

14 Phasukkijwatana N, Chuenkongkaew WL, Suphavilai B, Sukitisapit B, Pingsuthiwong S, Ruangsawatane O, Atchaneeyasakul L, Warrasak S, Poonyathalang A, Sura T, Lertrit P. The unique characteristics of Thai LHON pedigrees were studied 30 Thai LHON pedigrees and found as a significant association between A10398G/MT-ND3 and the primary G11778A/MT-ND4 mutation in LHON. This might act synergistically to increase the penetrance of the LHON mutation. The T14502C/MT-ND6 mutation causes the substitution of a highly-conserved isoleucine for valine at position 58 in the ND6 molecule, which has been associated with LOHN in some Chinese pedigrees. In summary, LHON is a complicated disease. Not only are the common primary LHON mutations responsible for the visual atrophy, but other secondary mtDNA mutations such as those reported here should also be considered when giving genetic counselling.

Acknowledgments: We thank all the patients and their families who agreed to participate in this study.

REFERENCES