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Abstract
· The cornea is maintained in an avascular state by
maintaining an environment whereby anti -angiogenic
factors take the upper hand over factors promoting
angiogenesis. Many of the common pathologies affecting
the cornea involve the disruption of such equilibrium and
the shift towards new vessel formation, leading to
corneal opacity and eventually-vision loss. Therefore it is
of paramount importance that the molecular
underpinnings of corneal neovascularization (CNV) be
clearly understood, in order to develop better targeted
treatments. This article is a review of the literature on the
recent discoveries regarding pro -angiogenic factors of
the cornea (such as vascular endothelial growth factors,
fibroblast growth factor and matrix metalloproteinases)
and anti -angiogenic factors of the cornea (such as
endostatins and neostatins). Further, we review the
molecular underpinnings of lymphangiogenesis, a
process now known to be almost separate from (yet
related to) hemangiogenesis.
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INTRODUCTION

C orneal avascularity comprises its main functionality
index as a lens. This article reviews the literature on

corneal neovascularization (CNV) promoted by proteins such
as vascular endothelial growth factors, fibroblast growth
factor, and matrix metalloproteinases, and subsequently
inhibited by endostatins, angiostatins, and related
anti-angiogenic factors. It also reviews the normal versus
pathogenic changes in corneal immunity leading to new
vascular formation.
CNV is induced by various stimuli mainly associated with
inflammation, trauma, transplantation, and infection of the
ocular surface [1-2]. Both corneal hemangiogenesis and
lymphangiogenesis are promoted or inhibited by a balance of
mediators, including the dynamics between pro-angiogenic
and anti-angiogenic substances. In corneas diseased by
inflammation, infection, degeneration, transplantation, or
trauma, the normal balance is shifted towards the
pro-angiogenic status, leading to corneal hemangiogenesis
and/or lymphangiogenesis.
MAJOR ANGIOGENIC PROTEINS OF THE
CORNEA
Vascular Endothelial Growth Factor(VEGF) VEGF-A is
known to be linked to blood vessel formation in a wide range
of events; including embryonic and physiologic growth,
vascular pathologies and malignant tumor neovascularization.
It acts directly on blood vessels by stimulating endothelial
cell mitosis, migration, dissolution of original vessel
membrane, and formation of new capillary tubes [3].
Following the discovery of VEGF, a series of subtypes were
identified and named in alphabetical order: VEGF-A,
VEGF-B, VEGF-C, and VEGF-D. Nevertheless, the chief
VEGF was and still is VEGF-A. A wide range of
heterogeneous cells were proven to secrete VEGF-A,
including macrophages, pericytes, T-cells, astrocytes,
fibroblasts, and retinal pigment epithelial cells [3].
VEGF has multiple isoforms, with its encoding gene
comprised of eight exons. With differential pre-mRNA
splicing, a single VEGF gene gives these different isoforms.
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Examples of these isoforms include VEGF121, VEGF165
and VEGF189. These numbers refer to number of amino
acids composing the protein. These isoforms have different
properties based on the presence of absence of the C-terminal
protein domains encoded by exons 6 and 7. Also, these
isoforms constitute a reservoir of growth factors acting
without gene transcription. Moreover, interaction of
VEGF165 isoform with heparan sulfate proteoglycan-
Glypican-1 had been reported to play a role in extending the
half-lives of the isoform in the process of hypoxia induced
angiogenesis [4].
Alternative splicing of VEGF gene yields five isoforms of
VEGF-A, including (VEGF115, VEGF 121, VEGF 165,
VEGF 189, and VEGF 206) [5]. The shorter isoforms have
more distinctive functions like the mitogenic activity of
VEGF121 and VEGF165, and the more powerful angiogenic
activity of VEGF121 than other longer isoforms [6]. VEGF
proved its importance based on the inhibition of
neovascularization in rat model following stromal
implantation of an anti-VEGF-A blocking antibody [7].
VEGF binds to different surface receptor proteins (VEGFR).
VEGFR-1 is a transmembrane receptor tyrosine kinase while
VEGFR-2 is a major signaling receptor for VEGF.
Additionally, heparan sulfate proteoglycan (HSPG) is
low-affinity class of VEGF receptors that modulate the
activities of wide range of heparin-binding growth factors,
morphogens and chemokines [4].
Basic Fibroblast Growth Factor Among the 23 heparin
binding peptides fibroblast growth factor (FGF) family, basic
fibroblast growth factor (bFGF) is a member that is hugely
expressed in developing and adult tissues during cellular
differentiation, angiogenesis, mitogenesis and wound repair.
Moreover, it is upregulated after tissue injury and in stromal
fibroblast/vascular endothelial cell co-cultures. FGFs mediate
their action through interaction with peptide receptors
(fibroblast growth factor receptors, FGFR), namely FGFR-1,
-2, -3, and -4. Potential FGF- mediated intracellular signaling
events are possibly present, also different FGFR isoforms
show unique biological functions [8].
Besides, the diversity of FGFR biological response is
manifested by its tissue-specific expression, which is
regulated by differences in ligand function and specificity.
The growth factor receptors being regulated are of great
significance in the management of complex physiological
processes [9-11].
FGFs share in a diverse set of actions modulated
FGF-Receptor isoforms. FGF-1 is found in normal corneal
epithelium, and differs from FGF-2 in that it is upregulated in
injured cornea and in co-cultures of keratocytes and vascular
endothelia. On the one hand, bFGF binds to Bowman's
membrane and Descement's membrane in healthy corneas,
yet on the other hand, it binds to vascular basement
membranes of neovascularized corneas [12].

In fact, it is believed that bone marrow acts as a store of
bFGF and VEGF, sequestering them in order to balance
anti-angiogenesis [13]. Besides, the maturation of new blood
vessels and the level of FGF binding are related.
Newly formed corneal vessels show similar binding
capacities in comparison to normal limbal vessels. This has
been linked to heparin sulfate proteoglycans and thus stresses
on the role of extracellular matrix (ECM) components in the
regulation of corneal angiogenesis [14].
The levels of FGF-1, 2, 3, 7, and 22 are found to be increased
in alkali wounding model at 7 and 14d post-wounding [2]. It is
thought that bFGF function in corneal angiogenesis is
mediated through its effect on VEGF-A, -C and -D
production. bFGF promotes angiogenesis greatly through this
action.
Angiogenic Interaction Between Vascular Endothelial
Growth Factor and Basic Fibroblast Growth Factor
From the increased researches in the past decade on
characterization of interaction between multiple
membrane-bound receptors, a new hypothesis emerged. It
stated that, membrane-anchored receptors associate and
coordinate with each other to cooperatively induce an array
of intracellular signaling cascades, instead of transmitting
signals across the membrane individually. Instead of working
individually it was observed that there is an interplay between
FGF and VEGF signaling for the maintenance of endothelial
junctions and vascular integrity during angiogenesis [15-16].
Also, a recent study about mustard intoxicated subjects who
developed CNV found a significantly increased levels of
growth factors, specifically VEGF-A165, bFGF and platelet
derived growth factor-BB (PDGF-BB) [17].
FGF-VEGF signaling balance is assumed to lie at the center
of the regulation of permeability and angiogenesis. They are
both important angiogenic growth factors. As soon as VEGF
activates VEGFR-2 (a.k.a. FLK-1/KDR), the receptor
undergoes auto-phosphorylation on specific tyrosine residues,
followed by the addition of Tyr (P) residues on signaling
proteins and adapter that contain the Src homology domain 2
(SH2)[18].
As a result the receptor complexes and adapter activate
multiple intracellular pathways through some effectors like
focal adhesion kinase (FAK) and mitogen-activated protein
kinases (MAPK) [19-20].
Flk-1/KDR can also trigger other cascades including PI3K-
dependent AKT/PKB and phospholipase C-g (PLC-g) [21-22].
Flk-1/KDR-mediated intracellular signaling seems to be
similar to bFGF signaling pathway; however, various lines of
evidence suggest that bFGF-induced angiogenesis is
independent of Src kinase activity unlike VEGF signaling [23].
In spite of the extensive research on bFGF- and VEGF
induced angiogenesis, the complete intracellular signaling
pathways that respond to each of them to induce angiogenesis
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are not fully understood. Specifically, how these pathways
interact with molecular regulators is not well documented. It
is suggested recently that membrane-type 1 metalloproteinase
(MT1-MMP) may be one of many factors involved in
connecting the two pathways of VEGF and FGF signaling [2].
It has been showed that MT1-MMP increased bFGF- induced
VEGF upregulation and CNV in mice synergistically [24].
Besides, MT1-MMP raises bFGF-induced VEGF
upregulation in enzymatically inactive MT1-MMP corneal
stromal fibroblasts; which suggest that linking the VEGF and
FGF signaling pathways may be in part due to MT1-MMP
enzymatic activity.
MINOR ANGIOGENIC PROTEINS OF THE
CORNEA
Decorins Decorins are members of the small leucine-rich
proteoglycan (SLRP) family, which in turns belongs to a
family of differently functioning molecules that are involved
in the regulation of collagen fibrillogenesis, direct modulation
of cell behavior and binding and inactivation of cytokines.
Decorins consists of a protein core containing leucine repeats
with a glycoseaminoglycan (GAG) chain of either dermatan
sulfate or chondoroitin sulfate [25-27].
It has been demonstrated that decorins may regulate corneal
angiogenesis [2,28]. Their effects on corneal angiogenesis in
mice have been heavily studied, as well as the effects of
biglycan and fibromodulin [29]. Using chemical cauterization,
it was verified that in decorin-deficient mice (unlike biglycan
and fibromodulin-deficient corneas), the growth of corneal
vessels is significantly diminished compared to wild type
(WT).
Recently, it was observed that bFGF induce MT1-MMP
expression but diminish decorins expression [30]. Furthermore,
it was demonstrated that MT1-MMP cleaves decorins

, and that cell lysates from MT1-MMP-deficient
keratocytes do not show decorins processing activity.
Ephrins and Eph Receptors One of the largest known
families of receptor tyrosine kinase (RTK) is the Eph/ephrin
complex. It consists of 14 receptors and 8 ligands, and its
family members are subcategorized to class A and class B
depending on their structure and ligand binding receptor
characteristics [31-32].
In several vascular endothelial cells, EphB1-B4 and ephrinB1
and B2 were found to be expressed [33-34]. In adult mice it was
demonstrated that EphB1 and ephrinB2 induce corneal
angiogenesis [35], and that ephrinB1 induces vascular
endothelial cell migration, assembly, and adhesion [36].
Recently, immunohistochemical studies were used to
demonstrate that ephrinB1 and EphB1 are expressed in
bFGF-induced vascular corneas [2], which proves that Eph and
ephrin receptors play a role in corneal angiogenesis [37].
EphrinB1 is expressed in corneal-resident keratocytes and
neutrophils. In order to test Eph and ephrin receptors' role in

angiogenesis, recombinant ephrinB1-Fc (which induces EphB
receptor activation) was used. It was found to promote
bFGF-induced tube formation in an aortic ring assay;
as well as corneal angiogenesis in a corneal pocket
assay. These results suggest that ephrinB1 plays a synergistic
role in CNV [2]. Ellenberg [2] also compared
ephrinA/EphA expression to ephrinB/EphB expression in
vascularized corneas. bFGF pellets were implanted to induce
CNV. The eyes of WT, ephrinB2tlacZ/+, and EphB4tlacZ/+

heterozygous mice were harvested and sectioned 7d after
pellet implantation. Confocal immunohistochemistry was
performed to compare the expression of the Eph/ephrinA
family and Eph/ephrinB family. EphA1, EphA3, ephrinA1,
ephrinA2, EphB1, EphB4, ephrinB1, and ephrinB2 were
detected in WT mouse corneal epithelial cells and
keratocytes.
Using immunohistochemistry it was found that EphA2 was
only located in the epithelial cells, while EphA3, ephrinA1,
EphB1, EphB4, and ephrinB1 were localized in corneal
epithelium and stroma. However, in neovascularized corneas;
ephrinB1 was mainly localized to keratocytes around the
vessels, and ephrinB2, EphB1, and EphB4 were mainly
located simultaneously with CD31 in the vascular endothelial
cells. These studies strengthen the suggestion that Eph/ephrin
family of receptor tyrosine kinases and their ligands may play
a role in the regulation of corneal angiogenesis [2].
Activin Receptor -like Kinase Activin receptor-like
kinase-1 (ALK-1) is one of the seven type I receptors
recognizing transforming growth factor beta (TGF-茁) family
proteins [38]. It has been suggested that ALK-1 plays a role in
the maturation phase of angiogenesis [39]. The transfection of a
constitutively active form of ALK-1 inhibit not only,
endothelial cell proliferation at the G1 phase of the cell cycle,
but also endothelial cell migration through a modification of
the dynamics of endothelial cell cytoskeleton [40].
Supporting these results is a zebrafish ALK-1 mutant, ,
whose vessel dilation phenotype is reminiscent of ALK-1-/-

mice. Its affected vessels showed an increased number of
endothelial cells, supporting a role for ALK-1 in the
inhibition of endothelial cell proliferation.
It have been demonstrated using the pellet induced CNV
model that over expression of ALK-1 (using naked DNA
injection) in mouse cornea does not induce CNV [2]. Besides,
it can prevent growth of new bFGF-induced stromal vessels.
All of that strengthen the possibility that ALK-1 plays an
important role in angiogenesis.
Recently, Ellenberg [2] have described a proteomic
approach to investigate the differential protein expression
patterns and identify the physiologically relevant angiogenic
and anti-angiogenic factors involved in the hyaloid vascular
system regression. Differentially expressed proteins were
identified using two-dimensional gel electrophoresis from the
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lens and vitreous of P1 and P16 mice followed by nanoflow
chromatography coupled with tandem mass spectrometry [41].
Using this approach, the following factors expressed at P16
may be involved in angiogenesis: tumor necrosis factor-琢
(TNF-琢), hepatoma-derived growth factor (HDGF), FGF-22,
and kininogen.
Integrins A major family of type I transmembrane cell
surface receptors are the integrins. Currently, 18 individual 琢
subunits and 8 茁 subunits have been identified. Integrins are
heterodimers composed of one 琢 and one 茁 subunit [42-43].
It has been noticed that a significant upregulation of 琢v茁3
and 琢5茁1 takes place on activated vascular endothelium
during angiogenesis. It is suggested that 琢5 integrins play a
key role during the development of the vascular system [44-45].
Testing that hypothesis with genetic ablation of integrin 琢5
leads to severe vascular abnormalities. 琢5茁1 integrin as well
as its extracellular ligand fibronectin which is able to provide
proliferative signals to vascular cells both are upregulated in
tumor new blood vessels and plays a role in tumor
angiogenesis and growth. Besides, angiogenesis have been
inhibited and using integrin 琢v茁3 and 琢v茁5
antagonists.
On the other hand, treating animals systemically with an
琢5茁1-inhibiting small molecule showed significant inhibition
of CNV. Combining them to integrin 琢v and 琢5 does not
promote the anti-lymphangiogenic effect [46-47].
Matrix Metalloproteinases Corneal extracellular matrix
(ECM) remodeling by matrix metalloproteinases (MMPs) has
also been implicated in corneal angiogenesis and in the
maintenance of corneal avascularity. MMPs are described as
a group of proteolytic enzymes that are zinc-binders, and
participants in ECM remodeling, neovascularization, and
lymphangiogenesis.
MMPs is a large family that involve 25 enzymes described so
far, not less than 15 of which have been identified in the
cornea; (MMP-1, -8 and -13) represent the collagenases,
MMP-2 and -9 represent the gelatinases A and B, MMP-3,
-10 and -11 represent the stromelysins, MMP-7 is the
matrilysin and MMP-12 is the macrophage metalloelastase
while MMP-14, -15, -17, -24 and -25 all represent the
membrane type of MMPs[48-52].
After several studies it became clear that MMP-mediated
proteolysis induce several important biological functions
including: 1) changing structural matrix proteins into
signaling molecules ( collagen XVIII that is present in the
cornea and having an NC1 domain which is anti-angiogenic);
2) changing the structure of matrix proteins like cleaving
perlecan and decorin-corneal ECM proteoglycans; 3)
changing the architecture of the tissue ( cleaving
E-cadherin); 4) changes in chemotaxis; 5) inducing
proliferation like its action through epidermal growth factor
receptor ligand processing; 6) ensuring the cell survival (

neuronal survival factor); 7) activating some latent signaling
molecules ( TNF-a shedding and IGF binding protein
cleavage); 8) changing the range of signaling molecule action
( changing the range of VEGF diffusion); 9) causing
tissue differentiation ( adipose tissue maturation)[52-55].
Increased expression of MMPs in corneas during
angiogenesis has already been demonstrated [56-57]. However it
is still vague what is their definitive role in regulation of
angiogenesis because they can act as pro- and anti-
angiogenic factors at the same time, which might be
explained by their ability to degrade the ECM, allowing tissue
invasion by endothelial cells bearing MMP, and to generate
anti-angiogenic fragments from their precursors [52,58-59].
In the following sections, additional information on the roles
of MMP-2, MMP-7, and MT1-MMP in corneal angiogenesis
are highlighted.
Matrix Metalloproteinase -2 -Gelatinase A Gelatinase-A
(MMP-2) has always been linked to angiogenesis. It was
demonstrated that it is pro-angiogenic through facilitating
vascular invasion by direct matrix degradation or through
releasing matrix bound cytokines or growth factors [52,60-61].
MMP-2 expression by epithelial cells and stromal keratocytes
has been confirmed by in situ hybridization [49]. Besides, its
physiologic role in angiogenesis has been defined: when
MMP-2 deficient mice were used to determine the role of
MMP-2 in vascular endothelial cell migration and tube
formation using aortic rings, it was demonstrated that
bFGF mediated angiogenic response was diminished in mice
lacking the functional MMP-2 gene compared to WT
animals [50].
On the other hand, endothelial cells from MMP-2 lacking
mice failed to display normal outgrowth after adding 5 ng/mL
bFGF, which lead to the suggestion that the difference in
bFGF-induced angiogenesis between MMP-2 lacking mice
and WT mice may be due to the difference of vascular
endothelial cells; as it could be inconvenient for endothelial
cells lacking functional MMP-2 to traverse the basement
membrane [2].
The MMP-2-null mice developed almost normally, and bFGF
induced corneal angiogenesis even in the MMP-2-mutant
mice, clearly indicating that the angiogenic process is not
totally dependent on MMP-2. In another experiment,
MT1-MMP null mice showed complete absence of corneal
angiogenesis which lead to the suggestion that MT1-MMP by
itself has an essential role in the process of angiogenesis [51].
Based on these data, further research is needed to explain the
discrepancy between MMP-2 and MT1-MMP effect on
angiogenesis.
Studies show that through intramolecular processing, MMPs
can modulate the bioavailability of VEGF; a group of MMPs
can cleave the matrix-bound isoforms of VEGF releasing
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soluble fragments to promote capillary dilatation of existent
vessels [59,62-63].
In recent researches, MMP-2 could cleave connective tissue
growth factor (CTGF) and heparin affin regulatory peptide
(HARP) and inactivate them upon proteolysis. As these two
are angiogenic and mitogenic cytokine inhibitors in complex
with VEGF, cleaving those releases the VEGF. As a result,
MMP-2 possesses potential pro-angiogenic activity by
releasing intact VEGF from HARP or CTGF cytokine
inhibitory complexes [62].
Matrix Metalloproteinase-7 (Matrilysin) Matrilysin also
called MMP-7 is expressed in basal epithelial cells in the
migration and proliferation phases of corneal wound healing
after excimer keratectomy [48-49]. Matrilysin has catalytic
action against a wide range of ECM substrates gelatins
(I, III, IV, and V), fibronectin, elastin, collagen IV, laminin
and entactin-nidogen [64]. At the same time, it can cleave
factors which modulate angiogenesis like CTGF, sVEGFR-1,
plasminogen and collagen XVIII. It has been positively
stained in basal epithelium of pterygium specimen suggesting
its involvement in pathogenesis and angiogenesis in
pterygium [65].
The anti-angiogenic role for MMP-7 in cornea is based on
the fact that MMP-7 cleavage of corneal collagen XVIII
yields a 28-kDa fragment which contains the endostatin
domain of collagen XVIII that shows potent anti-angiogenic
function [58]. Also in MMP-7 knock-out (KO) mice, in the
keratectomy wounding model, a decrease in the levels of
anti-angiogenic factors tilts the balance towards corneal
angiogenesis [2].
Recent researches show that the induction of new vessel
formation in diseased corneas involves not only upregulation
and activation of angiogenic factors such as VEGF and bFGF
but also suppression of anti-angiogenic factors.
Based on the observation that MMP-7 cleaves plasminogen
and collagen XVIII to generate anti-angiogenic
factors angiostatin and endostatin respectively suggest
that the reduction of MMP-7 derived endostatin and/or
angiostatin in the cornea may contribute to CNV after
excimer keratectomy in MMP-7 KO animals [2].
Membrane -type 1 Metalloproteinase MT1-MMP is the
most important MMP in angiogenesis. MT1-MMP expression
in the cornea has been detected in the epithelium and stromal
keratocytes during wound healing [49]. Its importance becomes
evident in that it is the only MMP that its absence is lethal
demonstrated by genetic KO of MT1-MMP in mice lead to
death within three to four weeks, unlike other MMPs who's
genetic KO might affect angiogenesis but is never lethal to
the animal.
MT1-MMP proved to be important for angiogenesis and its
absence causes delayed vascular development and impaired
CNV by bFGF [51]. Further studies have been carried out to

understand its role using genetic KO mice, antibodies against
MT1-MMP, animal models and other methods [2]. It was
noticed that there is an enhanced MT1-MMP expression in
alkali wounded CNV. In addition using reverse
transcription-polymerase chain reaction (RT-PCR) to
evaluate the expression of growth factor receptors in WT,
MT1-MMP KO, and MT1-MMP knockin (KI) mouse cornea
stromal fibroblasts, it was found that no significant difference
existed in the expression patterns of PDGFa, PDGFb, and
VEGFR-1 in either type of cells.
On the other hand, endothelial growth factor receptor
(EGFR) expression was decreased in MT1-MMP KO cells
when compared to the WT and MT1-MMP KI cells,
suggesting that MT1-MMP play a role in EGFR expression
regulation. Since EGFR is also fibroblast proliferation and
migration regulator, it may be responsible for some of
MT1-MMP pro-angiogenic effects [66].
Angiogenic Interaction Between Membrane -type 1
Metalloproteinase and Vascular Endothelial Growth
Factor/ Fibroblast Growth Factor There have been new
studies that elaborated the signal pathways involved in the
interaction between these molecules and their role in CNV[67].
It was suggested that MT1-MMP may link the two signaling
pathways of VEGF and FGF[24], but its specific role in linking
them remains vague. The pro-angiogenic role of MT1-MMP
has been reported to be in part mediated through the
upregulation of both VEGF transcription and translation[68].
Immuno-histochemistry and RT-PCR analysis of human
glioma tissue samples proved a functional link in tumor
angiogenesis between MT1-MMP and VEGF by giving
evidence to the link between their expressions[69].
Further evidence is the correlation between VEGF
stimulation and hypoxia-induced upregulation of MT1-MMP
in the murine bone marrow -derived stromal cells. Putting all
these data together gives a strong evidence of linkage
between signaling pathways of MT1-MMP and VEGF, which
may play a role in regulating corneal angiogenesis [59]. The
FGF and MT1-MMP interaction has been well documented:
FGF-1 induction of MT1-MMP transcription in LNCaP
prostate carcinoma cells has been reported. Besides, FGFR-1
and STAT3 involvement in FGF-1 mediated MT1-MMP
expression has also been reported [70]. bFGF induced CNV
increased when bFGF pellets have been used in combination
with naked MT1-MMP DNA plasmid injection [2]. The
interplay between MT1-MMP, VEGF, and bFGF has been
demonstrated by experiments in which VEGF and
MT1-MMP expression increased after implantation of bFGF-
pellets in murine cornea.
ANGIOGENESIS INHIBITORS
Corneal angiogenesis privilege (CAP) is shown to be secondary
to the interaction of multiple anti-angiogenic factors.
Most notable of which are angiostatin, angiostatin-like
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fragments [71], and endostatin [72]. Other potent anti-angiogenic
factors that modulate CAP include restin, arresten, canstatin,
tumstatin, and pigment epithelial-derived factor (PEDF)[73].
They can be generally classified into, endostatin/endostatin
analogues, and plasminogen/serine protease inhibitors.
Endostatin/Endostatin Analogues
Endostatin Endostatin has been shown to inhibit
VEGF mediated endothelial migration and proliferation[74], as
well as decrease tumor progression in murine
models. Moreover, endostatin has been successfully
administered in corneal assays, with significant reduction in
bFGF mediated angiogenesis[75].
The mechanism of action of endostatin is relatively complex.
It exerts its actions through primarily associating with
tropomyosins, integrins, VEGF receptors, MMPs, and
glypicans. Its action on VEGF is in the form of; blockage of
VEGF cell surface receptor KDR/FLK1, downstream
inactivation of ERK, MAPK, and P125FAK, ultimately,
arrest of cell cycles in G1, with inhibition of mitogenic
responses in vascular endothelial cells[76].
In addition to VEGF antagonism, endostatin enhances
vascular endothelial apoptosis increasing the activity
caspase 3 [77].
Alongside angiogenesis inhibition, endostatin has been
shown to affect lymphogenesis as well. Recombinant
endostatin was shown to inhibit the proliferation and
migration of lymphatic endothelial cells, [78]. One
possible mechanism for this activity is the ability of
endostatin to inhibit distribution of VEGF-C-producing
tumor-associated inflammatory cells and to induce the
apoptosis of VEGFR-3 expressing cells [79].
Neostatin There are two major types of neostatins, both of
which have been proven as potent angiogenesis inhibitors.
Neostatin-7 (formed MMP-7's cleavage of collagen
XVIII), and neostatin-14 (formed MT1-MMP-mediated
cleavage of collagen XVIII) [79].
Both MMP-7 and MT1-MMP are expressed by corneal
epithelial cells [48], where collagen XVIII is actively secreted
as well [59]. Moreover, it was demonstrated that recombinant
neostatin-7 blocks bFGF-induced corneal angiogenesis and
lymphangiogenesis [80]. This strongly shows the important role
of corneal epithelium in maintaining CAP.
Other Miscellaneous Molecules Arresten, canstatin, and
tumstatin are three type IV collagen-derived proteins that
were shown to have potent anti-angiogenic activity[81-84].
Arresten actions are mediated 琢1茁1 integrin receptors. It
successfully inhibits bFGF-induced proliferation, migration,
and tube formation of cultured endothelial cells[82,85-86].
Another molecule, canstatin, acting 琢3茁1, 琢酌茁3, and
琢酌茁5 integrin receptors, has diverse functions. It causes
suppression of tumor growth, inhibition of endothelial cell

proliferation and migration, and induction of endothelial cell
apoptosis [87-89].
Also, tumstatin which is a 28 kDa protein derived from type
IV collagen 琢3 chain, exerts its action 琢酌茁3 and 琢6茁1
integrins receptors. It shares in suppression of tumor growth,
inhibition of endothelial cell proliferation and migration,
induction of endothelial cell apoptosis, and inhibition of
protein synthesis [84,90-91].
Tumstatin can inhibit protein synthesis through the inhibition
of phosphorylation of FAK, induced in endothelial cells
attachment to vitronectin, and by inhibiting the activation of
PI3-kinase through 琢酌茁3 binding [84,92].
Plasminogen-derived and Serine Protease Inhibitors of
Angiogenesis
Angiostatin Angiostatin is a complex molecule that can
inhibit primary and secondary tumor growth. One of the
enzymes responsible for the generation of angiostatin in
Lewis lung carcinoma has been identified as a macrophage
derived metalloelastase (MMP-12) [93]. However, human
matrilysin (MMP-7) and neutrophil gelatinase B (MMP-9)
can also convert plasminogen to angiostatin fragments [94].
The suppressive action of recombinant angiostatin on
tumor growth and metastasis in animal models has also been
demonstrated [95]. Moreover, angiostatin was proven to be a
non-toxic inhibitor of neovascularization when injected to
tumor-bearing mice[96].
One mechanism that explains these actions is down-
regulation of endothelial cells migration and proliferation,
through binding to ATP synthase and decreasing endothelial
cell ATP production [97]. Another way is induction of
endothelial cell apoptosis and arrest at the G2 to M transition
phase [98].
Another possible mechanism for angiostatin is its binding to
integrin 琢v茁3; thereby inhibiting its actions. Typically
plasmin binds to 琢v茁3 through its kringle domains,
promoting endothelial cell migration. This process can be
disrupted through anti-integrin 琢v茁3 agents ( angiostatin)
and a serine protease inhibitor [99].
Angiostatin and angiostatin-like molecules play an important
role in maintaining corneal avascualrity after injury, and it
was shown that their expression in corneal epithelium
increases remarkably at these events [100]. Moreover, corneal
segmental neovascularization was demonstrated after
excimer laser keratectomy followed by treatment with
anti-angiostatin (anti-LBS or anti- K1e3) antibody injection,
further affirming the role of angiostatin [2].
Pigment Epithelium Derived Factor A member of the
serine protease family, PEDF is a potent anti-angiogenic
factor, expressed within endothelial and corneal epithelial
cells [101]. It typically works through binding to surface
receptors, such as glycosaminoglycans and collagen I[102].
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Furthermore, the recombinant PEDF inhibited CNV as well[103].
These findings point towards an essential function of PEDF
in maintaining avascular environment of the cornea. Other
works established similar roles for PEDF in the vitreous,
aqueous humor, and retina[2].
Given its effectiveness against multiple inducers of
angiogenesis, as VEGF and interleukin-8 (IL-8), and its
multiple sites of action, PEDF derivatives can prove highly
effective in reversing pathological ocular angiogenesis
processes.
MOLECULAR UNDERPINNINGS OF
LYMPHANGIOGENESIS
The process of lymphangiogenesis was thought to have the
same molecular underpinnings as hemangiogenesis for a long
time. It is only relatively recently that lymphangiogenesis
started to have a separate entity, especially after the discovery
of the key lyphatic endothelial cells (LEC) marker, lymphatic
vessel endothelial hyaluronan receptor (LYVE-1) [101]. The
formation of lymphatics can be summarized in the following
steps [104]:

1) Endothelial cells differentiate from angioblasts into venous
endothelial cells and arterial endothelial cells.
2) Venous endothelial cells highly express VEGFR-3 and a
subset of them begins to express LYVE-1 as well. This
subset represents the precursors of LEC's [105]. Bone
marrow-derived cells, including macrophages, may also
transdifferentiate into endothelial cells [106].
3) LEC precursors begin to express the transcription factor
SOX18, which is present upstream of another transcription
factor, Prox-1 [107]. SOX 18 induces the expression of Prox-琢
and triggers a set of incompletely-understood events that
eventually determine the differentiated fate of LEC's [108]. In
fact, Prox-1 is known to be expressed in a polarized manner
in differentiating LEC's and is believed to be a "master
switch" in LEC differentiation.
4) LEC precursors express Neuropilin-2 (NP-2) [109]. NP-2,
while not triggering downstream signaling itself, sensitizes
the LEC to VEGF-C stimulation and acts synergistically with
VEGFR-3[109].
5) At this stage, the proliferating lymphatics begin to form

Molecular underpinnings of corneal angiogenesis

Table 1 Differences between hemangiogenesis and lymphangiogenesis 
Parameters Hemangiogenesis Lymphangiogenesis 

Corneal privilege mechanism 

Upregulation of anti-angiogenic factors and downregulation of 
angiogenic factors 
Soluble VEGFR-1 and ectopic VEGFR-3 act as "VEGF traps" to 
prevent hemangiogenesis[117] 

Soluble VEGFR-2 and VEGFR-3 act as "VEGF trap" and 
selectively suppresses physiologic growth of lymphatics[117,121] 

Formation Sprouting or budding from post-capillary veinules 

LEC's arise from either: 
Bone marrow-derived cells, such as transdifferentiated 
macrophages[106] 
Primitive veinules and local lymphangioblasts (described in detail 
in the text) 

Role of macrophages 
Providing a temporary scaffold for the new vessels[122] 
Provide paracrine support for vascular networks[123] 
Interact physically with the blood vessels[124] 

Transdifferentiate into endothelial cells,  thus participate -
structurally- in lymphatic vessels[122] 
Secrete paracrine factors, most importantly VEGF-A[128] 
Act as "guide cells" that guide tip cells into finding and 
anastomosing with tip cells from other sprouting lymphatics[125] 

Expression of VEGFR-3 
Expressed during early stages of endothelial development. Fully 
developed blood vessels seldom contain VEGFR-3, with the 
exception of fenestrated blood vessel of endocrine glands[116] 

Highly expressed by LEC's 

Role of VEGF-C and VEGF-
D Hemangiogenic properties through binding to VEGFR-2[126] 

Both copies of the VEGF-C gene are needed 
(haploinsufficiency)[130] 
Bind to VEGFR-3 and promote venous endothelial differentiation 
into lymphangioblasts[110,130] 
VEGFR-3 blockade results in a hemangiogenesis-dominant 
cornea[131] 
VEGF-C plays a key role in development of the lymphatic 
vascular tree, but is not needed to maintain lymphatics after that 
have already been developed[132] 
Deletion of VEGF-D, in contrast, does not affect lymphatic 
vascular development[130] 

Role VEGF-A[124-125] Binds to VEGFR-1 and -2 to promote hemangiogenesis Binds to VEGFR-1 and -2 to promote lymphangiogenesis 
Also acts indirectly through recruitment of macrophages 

Response to VEGF-A[118]. Early appearance of vessels in response to low VEGF-A levels Delayed appearance of vessels and higher VEGF-A 
concentrations required1 

Role of FGF-2 Stimulates angiogenesis only at high doses (80-100 ng)[133] Low dose (12.5 ng) selectively stimulates lymphangiogenesis[134] 

Regression after pathologic 
invasion of cornea[131] Late Early 

Corneal transplant 
rejection[115] Less important role Important role 

1The delayed appearance of lymphatics is attributed to the fact that sprouting blood vessels upregulate VEGFR-2, which traps VEGF-C and 
prevents it from forming new lymphatics at the early phases. This is hypothesized to allow more time for the immune cells to reach the 
inflammatory site before being cleared by lymphatics. 
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lateral extensions from the veinules, known as "lymphatic
sacs" [107].
6) LEC's start expressing the transmembrane protein,
podoplanin [110-112]. In turn, podoplanin binds to CLEC-2
receptors on platelets and activates SLP76 and Syk, leading
to platelet aggregation [112].
7) The aggregated platelets block the connection between the
developing lymphatic and the veinule from which it budded,
eventually leading to physical separation of the two entities.
8) FoxC2 and NFACT-1 (nuclear factor of activated T cells),
both of which are transcription factors downstream of
VEGFR-3, cooperate in controlling genes that are important
in further differentiation of the lymphatic tree, including
lymphatic valves [113].
TGF-茁 and TNF-琢 both act to inhibit lymphangiogenesis [114-115].
On the other hand, VEGF-A, VEGF-C, FGF-2, IGF-1, IL-1B,
HGF and PDGF have all been shown to simulate both
hemangiogenesis and lymphangiogenesis (as has been
discussed in detail earlier). It is noteworthy that the growth
factors and cytokines that stimulate hemangiogenesis and
lymphangiogenesis greatly overlap. Nonetheless, VEGF-C/
VEGFR-3 signalling seems to be more specific to
lymphangiogenesis and VEGF-3 ceases being expressed in
adult blood vessels, with the exception of fenestrated vessels
of endocrine glands [116-117]. Another factor that differentiates
lymphangiogenesis from hemangiogenesis is the role of 琢5茁1
integrins in lymphangiogenesis. An 琢5茁1 antagonist results
in a hemangiogenesis-dominant response to CNV induction [118].
Table 1 highlights some of the differences between
hemangiogenesis and lymphangiogenesis [106,116-134].
CONCLUSION
The cornea is maintained in an avascular state through a
balance between naturally present pro-angiogenic and
anti-angiogenic chemical mediators. CNV continues to be an
incompletely understood process that requires further
research and funding to reveal its molecular pathways.
While hemangiogenesis and lymphangiogenesis were seldom
distinguished in the past decades, recent attention has been
geared towards understanding the differences between these
two different, yet interdependent processes.
We think that more attention is needed in the upcoming
decade to address and enhance our understanding of the
molecular and genetic processes hidden under the mere
manifest blood vessel.
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