Scanning-slit topography in patients with keratoconus

László Módis Jr.1, Gábor Németh2, Eszter Szalai1, Zsuzsa Flaskó1, Berthold Seitz3

1Department of Ophthalmology, University of Debrecen, Medical and Health Science Center, Debrecen 4032, Hungary
2Borsod-Abáuj-Zemplén County Hospital and University Teaching Hospital, Miskolc 3526, Hungary
3Department of Ophthalmology, Homburg Keratoconus Center, University of Saarland, Homburg/Saar 66424, Germany

Correspondence to: Gabor Nemeth. Borsod-Abáuj-Zemplén County Hospital and University Teaching Hospital, Miskolc 3526, Hungary. nemeth222@yahoo.com

Received: 2016-08-08 Accepted: 2016-12-06

Abstract

- AIM: To evaluate the anterior and posterior corneal surfaces using scanning-slit topography and to determine the diagnostic ability of the measured corneal parameters in keratoconus.
- METHODS: Orbscan II measurements were taken in 39 keratoconic corneas previously diagnosed by corneal topography and in 39 healthy eyes. The central minimum, maximum, and astigmatic simulated keratometry (K) and anterior axial power values were determined. Spherical and cylindrical mean power diopters were obtained at the central and at the steepest point of the cornea both on anterior and on posterior mean power maps. Pachymetry evaluations were taken at the center and paracentrally in the 3 mm zone from the center at a location of every 45 degrees. Receiver operating characteristic (ROC) analysis was used to determine the best cut-off values and to evaluate the utility of the measured parameters in identifying patients with keratoconus.
- RESULTS: The minimum, maximum and astigmatic simulated K readings were 44.80±3.06 D, 47.17±3.67 D and 2.42±1.84 D respectively in keratoconus patients and these values differed significantly (P<0.0001 for all comparisons) from healthy subjects. For all pachymetry measurements and for anterior and posterior mean power values significant differences were found between the two groups. Moreover, anterior central cylindrical power had the best discrimination ability (area under the ROC curve=0.948).
- CONCLUSION: The results suggest that scanning-slit topography and pachymetry are accurate methods both for keratoconus screening and for confirmation of the diagnosis.
- KEYWORDS: keratoconus; Orbscan; topography; pachymetry

DOI:10.18240/ijo.2017.11.08

INTRODUCTION

Keratoconus is a bilateral corneal ectasia characterized by progressive stromal thinning, protrusion of the corneal surface and topographic alterations[1]. Keratoconus has been traditionally classified as a non-inflammatory disease[2], however recently non-inflammatory theory has been raised[3]. The prevalence varies substantially by ethnic groups, age, and gender from 0.007% (6.8 patients per 100 000 population) to 2.34%[4-8]. Besides the well-described clinical signs corneal topography and pachymetry-tomography-evaluations are essential in diagnosing and in the follow-up in patients of keratoconus.

The Orbscan slit-scanning topography system was one of the first instruments on the market with the ability to yield corneal thickness, curvature and elevation data simultaneously since its introduction in 1995[9-10]. Orbscan has been applied in several conditions, including in management of ophthalmic[11-13] and systematic disorders[14], as well as in preoperative surgical planning and postoperative monitoring the effect of refractive[15-19] and cataract procedures[20-21] on the anterior segment of the eye.

The aim of the present study was to evaluate the anterior and posterior corneal surfaces using the Orbscan II topography instrument in keratoconic subjects. We determined topographic features and shape of the diseased corneas, central and paracentral corneal thicknesses and compared the results to healthy eyes. The ability of the corneal parameters to differentiate between keratoconic and healthy eyes was also studied.

SUBJECTS AND METHODS

The study followed the Declaration of Helsinki and all subjects signed informed consent regarding the examinations.

A total of seventy-eight subjects were enrolled in this study. Orbscan II corneal topography (Bausch & Lomb Surgical, Orbtek Inc., Salt Lake City, Utah, USA) examinations were conducted in thirty-nine eyes of 39 patients (with a mean age of 26.26±5.43y). Patients were previously diagnosed with keratoconus according to video keratoscopic characteristics and stromal thinning. Thirty-nine control subject (with a mean
positive and negative predictive values for each cut-off were applied to determine the optimal cut-off values and to evaluate screening and confirmation for keratoconus. ROC analysis was displaying the accuracy of the different corneal parameters in distinguishing keratoconic eyes from normals. Sensitivity, specificity, the performance of the measured parameters to distinguish the mean values. Comparisons between groups or variables also calculated. For screening keratoconus, we selected cut-off values with the highest possible specificity and negative predictive value, and with optimal sensitivity. To confirm diagnosis of the disease, threshold values with maximal specificity and positive predictive value were also yielded. A P value less than 0.05 was considered statistically significant.

RESULTS
For keratoconus patients, the minimum, maximum and astigmatic simulated K value were 44.80±3.06 D, 47.17±3.67 D and 2.42±1.84 D, and differed significantly (P<0.0001 for all comparisons) from those values of control subjects (42.25±1.77 D, 43.84±2.39 D and 1.04±0.80 D, respectively). The corneal power measurements obtained in the normal and keratoconic eyes are summarized in Table 1. Statistically significant differences were disclosed in the anterior axial power results between the two patients groups (P<0.0001). Both for the anterior and posterior surfaces, significant differences were found in the spherical and cylindrical power readings at the center and the steepest point between normal and diseased corneas. In keratoconus patients, Spearman’s rank test detected significant negative correlation between the anterior and posterior spherical mean power values at the steepest location (r=-0.768, P<0.0001), at the central point (r=-0.545, P<0.0001), as well as between the anterior and posterior cylindrical mean power at the steepest location (r=-0.335, P=0.037) and at the central point (r=-0.545, P<0.0001). In the control group, the anterior mean spherical power correlated significantly with the posterior mean spherical power both at the steepest and central location (r=-0.442, P=0.001; r=-0.269, P=0.047, respectively). We detected statistical significant differences in the elevation values both on the anterior and posterior surfaces between the healthy and diseased groups (P<0.0001) (Table 2).
Regarding corneal thickness measurements, in healthy and keratoconic eyes, the thinnest part of the cornea was found temporally. In keratoconus eyes pachymetry results were the highest in the superior corneal region. In healthy and keratoconic eyes the corneal thicknesses were significantly different from the superior nasal (3.46 µm, \(P = 0.032\)), inferior (22.18 µm, \(P = 0.009\)), superior temporal (23.16 µm, \(P < 0.0001\)) and temporal (56.08 µm, \(P < 0.0001\)) quadrants (Table 3).

On the basis of ROC curve analysis (Table 4 and Figure 2), anterior central cylindrical power had the best screening ability [area under the ROC curve (AUROC)=0.948] followed by: anterior steepest spherical power (0.936), anterior elevation at the steepest location (0.925), posterior steepest spherical power (0.911) and thinnest pachymetry (0.906). Threshold values with maximal specificity and positive predictive value for corneal parameters with the best diagnostic accuracy are shown in Table 5.

DISCUSSION

Elevation-based corneal topography instruments are capable of imaging the true shape of the cornea. The PAR Technology Corneal Topography System was the first development based on elevation topography that provided 3D surface data only.

OrbScan in keratoconus

![Figure 1 Scanning-slit pachymetry measurements at the center (C), at the thinnest point (T) and paracentrally](image)

Table 2 Elevation of the anterior and posterior corneal surfaces reflected by the best-fit sphere measurements

<table>
<thead>
<tr>
<th>Orbscan data</th>
<th>Normal (n=39)</th>
<th>Keratoconus (n=39)</th>
<th>(P^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior best-fit sphere, center(^1)</td>
<td>0.0098±0.0074 (0.0074-0.0122)</td>
<td>0.0371±0.0222 (0.0299-0.0443)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Anterior best-fit sphere, steepest(^1)</td>
<td>0.0153±0.0128 (0.0111-0.0194)</td>
<td>0.057±0.0311 (0.0469-0.0671)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Posterior best-fit sphere, center(^1)</td>
<td>0.0225±0.0144 (0.0179-0.0272)</td>
<td>0.0646±0.0437 (0.0504-0.0787)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Posterior best-fit sphere, steepest(^1)</td>
<td>0.0349±0.0227 (0.0275-0.0423)</td>
<td>0.105±0.0588 (0.0863-0.124)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

\(^1\)Mean±standard deviation (95% confidence interval) (mm); \(^2\)Results of Mann-Whitney test between normal and keratoconus groups.

Table 3 Corneal thickness measurements obtained at the center and the paracentral zone

<table>
<thead>
<tr>
<th>Corneal thickness</th>
<th>Normal (n=39)</th>
<th>Keratoconus (n=39)</th>
<th>(P^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thinnest(^1)</td>
<td>582.59±48.61 (566.83-598.35)</td>
<td>470.10±76.66 (445.25-494.95)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Central(^1)</td>
<td>597.87±52.81 (580.75-614.99)</td>
<td>511.82±56.27 (493.58-530.06)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Temporal(^1,2)</td>
<td>564.26±55.60 (636.23-672.28)</td>
<td>589.64±35.51 (578.13-601.15)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Superotemporal(^1,2)</td>
<td>664.49±52.92 (647.33-681.64)</td>
<td>622.56±34.38 (611.42-633.71)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Superior(^1,2)</td>
<td>670.21±50.78 (653.75-686.67)</td>
<td>645.72±39.19 (633.02-658.42)</td>
<td>0.013</td>
</tr>
<tr>
<td>Superonasal(^1,2)</td>
<td>662.36±50.48 (645.99-678.72)</td>
<td>642.26±38.40 (629.81-654.71)</td>
<td>0.027</td>
</tr>
<tr>
<td>Nasal(^1,2)</td>
<td>667.62±51.17 (651.03-684.20)</td>
<td>632.00±47.66 (616.55-647.45)</td>
<td>0.002</td>
</tr>
<tr>
<td>Inferonasal(^1,2)</td>
<td>674.41±42.16 (660.74-688.08)</td>
<td>634.36±64.76 (613.37-655.35)</td>
<td>0.001</td>
</tr>
<tr>
<td>Inferior(^1,2)</td>
<td>666.33±43.34 (652.29-680.38)</td>
<td>623.54±48.31 (607.88-639.20)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Inferotemporal(^1,2)</td>
<td>658.26±46.28 (643.25-673.26)</td>
<td>593.26±45.02 (578.66-607.85)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

\(^1\)Mean±standard deviation (95% confidence interval) (µm); \(^2\)3 mm from the center; \(^3\)Results of Mann-Whitney test between normal and keratoconus groups. For all pachymetry measurements, significant differences were found between normal and keratoconus subjects.
readings, then translate these parameters into anterior and posterior elevation maps\[^1\,10\]. Orbscan not always perform well in corneas that are not normal, which can be mentioned as a limitation in our study. However, this is true for other topographic devices\[^{23}\]. The rotating Scheimpflug imaging techniques such as Pentacam and Galilei perform corneal topographic analysis based on true elevation assessments from limbus to limbus. Elevation maps allow the clinicians to observe corneal abnormalities caused by either ectatic disorders (keratoconus, keratoglobus, pellucid marginal degeneration, posterior keratoconus) or acquired keratectasia after refractive procedures\[^{17,24-30}\]. Today, the modern diagnostic methods for keratoconus includes Scheimpflug imaging, swept-source anterior segment optical coherence tomography (OCT), as well as biomechanical measurements, aimed to differentiate subclinical cases from normal corneas\[^{31-33}\].

There are available literature data about comparison between Orbscan, Pentacam and swept-source OCT regarding normal and keratoconus corneas. One of these concluded that Scheimpflug camera and swept-source OCT showed statistically different output, but they have a good agreement in most measured corneal parameters\[^{34}\]. Another paper showed significant differences in posterior corneal surface and corneal thickness measurements between swept-source OCT and a Scheimpflug camera in eyes with keratoconus, with better repeatability of measurements in case of the swept-source OCT\[^{35}\]. Regarding corneal thickness measurements, swept source OCT, Pentacam and Orbscan II showed different data, with high correlation to each other\[^{36}\].

Table 4 ROC curve analysis for screening keratoconus

<table>
<thead>
<tr>
<th>ROC curve data</th>
<th>AUROC (95% CI)</th>
<th>SE</th>
<th>Cut-off</th>
<th>Sensitivity(^1)</th>
<th>Specificity(^1)</th>
<th>PPV(^1)</th>
<th>NPV(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior mean corneal power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central spherical</td>
<td>0.893(^a) (0.803-0.952)</td>
<td>0.037</td>
<td>≥52.12 D</td>
<td>76.92 (60.7-88.8)</td>
<td>89.74 (75.8-97.1)</td>
<td>88.2 (72.5-96.6)</td>
<td>79.5 (64.7-90.2)</td>
</tr>
<tr>
<td>Central cylindrical</td>
<td>0.948(^b) (0.872-0.985)</td>
<td>0.026</td>
<td>>3.52 D</td>
<td>82.05 (66.5-92.4)</td>
<td>94.87 (82.6-99.2)</td>
<td>94.1 (80.3-99.1)</td>
<td>84.1 (69.9-93.3)</td>
</tr>
<tr>
<td>Steepest spherical</td>
<td>0.936(^c) (0.857-0.979)</td>
<td>0.029</td>
<td>>53.08 D</td>
<td>87.18 (72.6-95.7)</td>
<td>89.74 (75.8-97.1)</td>
<td>89.5 (75.2-97.0)</td>
<td>87.5 (73.2-95.8)</td>
</tr>
<tr>
<td>Steepest cylindrical</td>
<td>0.881(^d) (0.787-0.943)</td>
<td>0.039</td>
<td>>2.61 D</td>
<td>82.05 (66.5-92.4)</td>
<td>84.62 (69.5-94.1)</td>
<td>84.2 (68.7-93.9)</td>
<td>82.5 (67.2-92.6)</td>
</tr>
</tbody>
</table>

Posterior mean corneal power

Central spherical	0.861\(^e\) (0.764-0.929)	0.042	≤7.46 D	64.10 (47.2-78.8)	97.44 (86.5-99.6)	96.2 (80.3-99.4)	73.1 (59.0-84.4)
Central cylindrical	0.877\(^f\) (0.783-0.941)	0.040	≤0.88 D	92.31 (79.1-98.3)	74.36 (57.9-86.9)	78.3 (63.6-89.0)	90.6 (75.0-97.9)
Steepest spherical	0.911\(^g\) (0.824-0.963)	0.034	≤7.83 D	76.92 (60.7-88.8)	92.31 (79.1-98.3)	90.9 (75.6-98.0)	80.0 (65.4-90.4)
Steepest cylindrical	0.727\(^h\) (0.614-0.822)	0.057	≤0.66 D	87.18 (72.6-95.7)	56.41 (39.6-72.2)	66.7 (52.1-79.2)	81.5 (61.9-93.6)

Figure 2 ROC curves for corneal parameters with the best diagnostic ability

Antccyl: Anterior central cylindrical power; Antstaph: Anterior steepest spherical power; Elest: Anterior elevation at the steepest location; poststph: Posterior steepest spherical power; Thinnest: Thinnest pachymetry.

Elevation

Anterior central	0.884\(^a\) (0.792-0.946)	0.039	>0.01 mm	79.49 (63.5-90.7)	79.49 (63.5-90.7)	79.5 (63.5-90.7)	79.5 (63.5-90.7)
Anterior steepest	0.925\(^a\) (0.843-0.972)	0.031	>0.02 mm	87.18 (72.6-95.7)	94.87 (82.6-99.2)	94.4 (81.3-99.2)	88.1 (74.4-96.0)
Posterior central	0.843\(^a\) (0.742-0.915)	0.043	>0.03 mm	76.92 (60.7-88.8)	82.05 (66.5-92.4)	81.1 (64.8-92.0)	78.0 (62.4-89.4)
Posterior steepest	0.883\(^a\) (0.790-0.945)	0.039	>0.05 mm	79.49 (63.5-90.7)	89.74 (75.8-97.1)	88.6 (73.2-96.7)	81.4 (66.4-91.6)

Corneal thickness

Center	0.870\(^a\) (0.775-0.935)	0.041	≤548 µm	74.36 (57.9-86.9)	82.05 (66.5-92.4)	80.06 (64.0-91.8)	76.2 (60.5-87.9)
Thinnest	0.906\(^a\) (0.818-0.960)	0.035	≤522 µm	76.92 (60.7-88.8)	87.18 (72.6-95.7)	85.7 (69.7-95.1)	79.1 (64.0-89.9)
Temporal	0.827\(^a\) (0.725-0.904)	0.047	≤640 µm	92.31 (79.1-98.3)	61.54 (44.6-76.6)	70.6 (56.2-82.5)	88.9 (70.8-97.5)
Superior	0.664\(^a\) (0.548-0.767)	0.061	≤646 µm	58.97 (42.1-74.4)	74.36 (57.9-86.9)	69.7 (51.3-84.8)	64.4 (48.8-78.1)
Nasal	0.708\(^a\) (0.595-0.806)	0.058	≤675 µm	89.74 (75.8-97.1)	48.72 (32.4-65.2)	63.6 (49.6-76.2)	82.6 (61.2-94.9)
Inferior	0.755\(^a\) (0.645-0.846)	0.054	≤669 µm	87.18 (72.6-95.7)	56.41 (39.6-72.2)	66.7 (52.1-79.2)	81.5 (61.9-93.6)

Optimal cut-offs for screening keratoconus based on different parameters. AUROC: Area under the ROC curve; SE: Standard error; PPV: Positive predictive value; NPV: Negative predictive value; 95% CI: 95% confidence interval. \(^1\)Values in % with 95% CI; \(^a\)Results of significance test below 0.05.
In the present study, Orbscan II evaluations were conducted on keratoconic eyes in comparison with normal healthy corneas. Both the axial and mean corneal power values on the anterior and posterior surfaces disclosed statistically significant difference between the two patients groups. Huang et al. emphasized that mean curvature map is superior to axial one in detecting and characterizing corneal ectasia since it is created by averaging two principal curvatures of the cornea point-by-point (i.e. locally), and astigmatic error is eliminated from these maps. For the anterior astigmatism, 4.11 D and 2.46 D difference was obtained at the center and the steepest location between the two groups; the posterior cylindrical power was also higher in the diseased group, the difference was 1.03 D in the center and 0.32 D at the steepest point. Moreover, anterior astigmatism at the corneal center yielded the highest AUROC (0.948) indicating the best ability to identify patients with keratoconus. Orbscan determines the surface elevation relative to a reference shape (best-fit sphere). In the present study, radius of curvature of this reference body differed significantly in diseased and healthy eyes. A posterior elevation above 50 µm is suggested to identify as abnormal. A previous study reported a sensitivity of 57.7% and specificity of 100% (with a sensitivity of 87.18%, specificity of 94.87%) to be able to differentiate clinical keratoconus from normal subjects with a specificity of 89.74% and an anterior elevation higher than 20 µm (with a sensitivity of 53.85%, specificity of 100%). A cut-off value with the highest sensitivity and negative predictive value given maximal sensitivity) was higher than those reported previously. ROC curve analysis showed the cut-off of the thinnest pachymetry value to be ≤480 µm ensuring maximal sensitivity (with a sensitivity of 53.85%, specificity of 100%). A cut-off value with the highest specificity and positive predictive value is useful for confirmation but not for screening purposes. In conclusion, based on the ROC analysis anterior central cylindrical power had the best screening ability for keratoconus, followed by anterior steepest spherical power, anterior elevation at the steepest location, posterior steepest spherical power and thinnest pachymetry value. In addition, anterior central cylindrical power, anterior and posterior spherical power at the steepest location, anterior corneal elevation and thinnest pachymetry values seem to have the highest differentiation ability between patients with keratoconus and normal subjects. These results suggest that Orbscan II topography system is an applicable instrument both for keratoconus screening and for confirmation of the diagnosis.

ACKNOWLEDGEMENTS

Conflicts of Interest: Modis L Jr., None; Nemeth G, None; Szalai E, None; Flasko Z, None; Seitz B, None.

REFERENCES

OrbScan in keratoconus

