The role of clinical diagnosis criteria on the frequency of accommodative insufficiency

María García-Montero¹, Beatriz Antona¹, Ana Rosa Barrio¹, Carmen Nieto-Zayas², Irene Martínez-Alberquilla¹, José Luis Hernández-Verdejo¹

¹Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid 28037, Spain
²Department of Statistics and Operations Research III, Faculty of Statistical Studies, Complutense University of Madrid, Madrid 28040, Spain

Correspondence to: María García-Montero. Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, Arcos de Jalón 118, Madrid 28037, Spain. mgarc01@ucm.es

Received: 2018-04-04 Accepted: 2018-10-11

Abstract

● AIM: To estimate and compare the frequency of accommodative insufficiency (AI) within the same clinical population sample depending on the type of clinical criteria used for diagnosis. Comparing the frequency within the same population would help to minimize bias due to sampling or methodological variability.
● METHODS: Retrospective study of 205 medical records of symptomatic subjects free of any organic cause and symptoms persisting despite optical compensation evaluated. Based on the most commonly clinical diagnostics criteria found in the literature, four diagnostics criteria were established for AI (I, II, III and IV) based on subjective accommodative tests: monocular accommodative amplitude two or more diopters below Hofstetter’s minimum value [15-(0.25×age)] (I, II, III, IV); failing monocular accommodative facility with minus lens, establishing the cut-off in 0 cycles per minute (cpm) (I) and in 6 cpm (II, III); failing binocular accommodative facility with minus lens, establishing the cut-off in 0 cpm (I) and in 3 cpm (II).
● RESULTS: The proportion of AI (95%CI) for criteria I, II, III and IV were 1.95% (0.04%-3.86%), 2.93% (0.31%-4.57%), 6.34% (1.90%-7.85%) and 41.95% (35.14%-48.76%) respectively, with a statistically significant difference shown between these values (χ²=226.7, P<0.001). A pairwise multiple comparison revealed that the proportion of AI detected for criterion IV was significantly greater than the proportion for the rest of the criteria (P-adjusted<0.05 in all cases).
● CONCLUSION: The prevalence of cases of AI within the same clinical population varies with the clinical diagnostic criteria selected. The variation is statistically significant when considering the monocular accommodative amplitude as the only clinical diagnostic sign.
● KEYWORDS: epidemiology; amplitude of accommodation; accommodative facility

DOI:10.18240/ijo.2019.04.20

INTRODUCTION

Accommodation is a variation of clear vision with modification in lens power that is affected by age-related changes. Several studies have focused on the loss of amplitude of accommodation (AA) with age[1-4]. The normal values for the AA as a function of age were determined by Moore and Donders[4] towards the end of the 19th century and by Duane[5] in the early 20th century. In 1950, Hofstetter[6] created mathematical formulas to calculate the minimal, average and maximal AA (AA=15-0.25×age; AA=18.5-0.3×age; AA=25-0.4×age) based on the Donder’s age-expected norms and Duane’s studies.

Accommodative insufficiency (AI) is a condition in which the AA is chronically below the lower limits of the expected AA for the patient’s age[3]. Generally has a non pathological or functional aetiology, but it may occur in association with primary ocular disease, generalized systemic and neurologic disorders, as well as with lesions that produce focal interruption of the parasympathetic innervations of the ciliary body[7]. Many medications can also cause accommodative dysfunction[8]. Patients with AI usually present asthenopia associated with sustained near work. Symptoms begin almost simultaneously with an increase in near work demand and is characterized by an inability to focus or sustain focus at near[9]. Clinically and experimentally, AA is often measured with the subjective push-up method, where accommodation is stimulated by moving the test chart towards the patient’s
Frequency of accommodative insufficiency

There is no common clinical diagnostic criterion for the detection of AI. All diagnostic criteria incorporate the push-up monocular accommodative amplitude at least 2 D below Hofstetter’s calculation for minimum amplitude: 15-(0.25×age). The additional tests evaluating clinical accommodative skills are considered by some diagnostic criteria but there is no homogeneity in the selected tests and diagnostic cut-off points.

Literature-reported prevalence of AI greatly varies, from 2%\(^{17}\) to 61.7%\(^{18}\) due to the lack of standardization in the type of subjects enrolled and clinical diagnostic tests employed\(^{19}\).

Besides, it is important to compare the prevalence of AI within the same clinical sample to minimize bias caused by the sampling and methodological variability.

The main objective of this study was to estimate the frequency of AI within the same population sample using different diagnostic criteria based on subjective minus-lens method and to reveal the existence of diagnostic discrepancies according to the criteria used.

SUBJECTS AND METHODS

Ethical Approval The research followed the tenets of the Declaration of Helsinki and was approved by the Ethics Committee.

Population Sample Data from the medical records of patients of the Visual Training Department in a Private Ophthalmologic Hospital of Madrid were retrospectively reviewed between September, 2010 and February, 2012. Symptomatic subjects with no evidence of any organic cause and symptoms persisting despite optical compensation were referred to the Visual Training Department after ophthalmic examination.

The inclusion criteria were: patients under 46y, previous ophthalmologic examination, no signs or symptoms of amblyopia, and registered accommodative tests (monocular AA, MAF and BAF). Sample size calculation was based on the assumption of 5% prevalence, an accuracy of ±3% and a 95% confidence interval (CI).

Visual Examination Sequence All subjects had a previous comprehensive ophthalmic examination including: patient history, uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), subjective and cycloplegic refraction, slit-lamp examination of the anterior segment and funduscopy. Subjects were always evaluated by the same optometrist and only one measure was made of each test. The evaluation protocol followed at the Visual Training Department is summarized in Table 1.

Table 1 Evaluation protocol performed at the Visual Training Department

<table>
<thead>
<tr>
<th>Clinical test</th>
<th>Material and method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near visual acuity</td>
<td>Radner-Vissum test(^{20})</td>
</tr>
<tr>
<td>Monocular UNV A and CNV A</td>
<td></td>
</tr>
<tr>
<td>Binocular UNV A and CNV A</td>
<td></td>
</tr>
<tr>
<td>Ocular motor function</td>
<td>Fixation stimulus in the different positions of gaze</td>
</tr>
<tr>
<td>Near and distance cover testing</td>
<td>Prism bar in free space using an accommodative target(^{a})</td>
</tr>
<tr>
<td>Near point of convergence</td>
<td>Accommodative target(^{a})</td>
</tr>
<tr>
<td>Near and distance FV</td>
<td>Prism bar in free space using an accommodative target(^{a})</td>
</tr>
<tr>
<td>Stereopsis</td>
<td>Randot or Titmus Stereo test</td>
</tr>
<tr>
<td>Monocular AA</td>
<td>Minus lens method in phoropter using an accommodative target at 33 cm</td>
</tr>
<tr>
<td>MAF</td>
<td>Flipper ±2.00 D lens (starting with lenses +2.00 D) using an accommodative target(^{a}) at 40 cm</td>
</tr>
<tr>
<td>BAF</td>
<td>Flipper ±2.00 D lens (starting with lenses +2.00 D) using an accommodative target(^{a}) at 40 cm and polaroid bar readers to checking suppression. Register cpm and the position where are more difficult. In case of suppression, annotated eye and position.</td>
</tr>
</tbody>
</table>

UNVA: Uncorrected near visual acuity; CNV A: Corrected near visual acuity; FV: Fusional vergence; AA: Amplitude of accommodation; MAF: Monocular facility accommodation; cpm: Cycles per minute; BAF: Binocular facility accommodation. \(^{a}\)Accommodative target: Accommodative stimulus with a visual acuity two lines above the baseline visual acuity of the patient.
Based on these criteria, prevalence estimates were calculated. The mean and standard deviation for quantitative variables. Table 3 Descriptive statistics of age for total sample and the four diagnostic criteria (I, II, III, and IV) are summarized in Table 3. AA: Amplitude of accommodation; AA\textsubscript{norm} min: Hofstetter’s minimum age formula (AA=15-0.25×age); D: Diopters; MAF: Monocular accommodative facility; BAF: Binocular accommodative facility; cpm: Cycles per minute.

Table 2 Clinical diagnosis criteria to classify AI in our study

<table>
<thead>
<tr>
<th>Criteria</th>
<th>AA</th>
<th>Diagnostic signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterion I</td>
<td>AA<AA\textsubscript{norm} -2 D</td>
<td>MAF=0 cpm, failing minus lens</td>
</tr>
<tr>
<td>Criterion II</td>
<td>AA<AA\textsubscript{norm} -2 D</td>
<td>MAF<6 cpm, failing minus lens</td>
</tr>
<tr>
<td>Criterion III</td>
<td>AA<AA\textsubscript{norm} -2 D</td>
<td>MAF<6 cpm, failing minus lens</td>
</tr>
<tr>
<td>Criterion IV</td>
<td>AA<AA\textsubscript{norm} -2 D</td>
<td>BAF=0 cpm, failing minus lens</td>
</tr>
</tbody>
</table>

AA: Amplitude of accommodation; AA\textsubscript{norm} min: Hofstetter’s minimum age formula (AA=15-0.25×age); D: Diopters; MAF: Monocular accommodative facility; BAF: Binocular accommodative facility; cpm: Cycles per minute.

Table 3 Descriptive statistics of age for total sample and the four group diagnostics criteria

<table>
<thead>
<tr>
<th>Age</th>
<th>Total sample (n=205)</th>
<th>Criterion IV (n=86)</th>
<th>Criterion III (n=13)</th>
<th>Criterion II (n=6)</th>
<th>Criterion I (n=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UQ</td>
<td>44.00</td>
<td>43.00</td>
<td>43.00</td>
<td>43.00</td>
<td>36.00</td>
</tr>
<tr>
<td>Median</td>
<td>24.50</td>
<td>24.00</td>
<td>7.00</td>
<td>25.00</td>
<td>25.00</td>
</tr>
<tr>
<td>LQ</td>
<td>5.00</td>
<td>5.00</td>
<td>6.00</td>
<td>7.00</td>
<td>10.00</td>
</tr>
<tr>
<td>Mean</td>
<td>15.59</td>
<td>14.66</td>
<td>16.06</td>
<td>19.48</td>
<td>20.64</td>
</tr>
<tr>
<td>SD</td>
<td>11.01</td>
<td>9.22</td>
<td>13.59</td>
<td>15.71</td>
<td>12.08</td>
</tr>
</tbody>
</table>

UQ: Upper quartile; LQ: Lower quartile; SD: Standard deviation.

Accommodative tests were performed with the patient’s best correction. The AA was measured by the subjective minus lens method in a phoropter using an accommodative target at 33 cm. The patient was instructed to look at a row of letters two lines larger than his best near visual acuity. Minus lenses of -0.25 D steps were added until the patient could no longer discriminate the target. To arrive at the AA, 2.50 D is added to the minus lens power necessary to blur the letters.

Clinical Diagnostic Criteria Diagnostic criteria were based on some of the criteria normally used to establish the prevalence of AI in the published literature. Articles meeting the following inclusion criteria were selected: showing data on the prevalence of AI, defined diagnostic criteria and reproducible clinical tests, defined clinical samples and subjects tested having an AA that fell more than 2 D below Hofstetter’s minimum value. Four diagnostic criteria for AI (I, II, III and IV) were established based on subjective accommodative tests: monocular accommodative amplitude (AA) two or more diopters below Hofstetter’s minimum value [15-(0.25×age)] (I, II, III, IV); failing MAF with minus lens, cut-off at 0 cycles per minute (cpm) (I) and 6 cpm (II, III); failing BAF with minus lens, cut-off at 0 cpm (I) and 3 cpm (II). Detailed requirements for each criterion are shown in Table 2.

Statistical Analysis Sample size calculation for the estimation of a proportion was determined considering an infinite population, a confidence level (1-α) of 95% and a precision (d) of 5%. The frequency rate of the studied alterations was considered of 15%. The formula applied was: \(n = \frac{Z_{0.05}^2 \cdot p \cdot q}{d^2} \) (α=0.05, Zα=1.96, p=0.15, q=1, d=0.05). Variables were described using absolute (n) and relative (%) frequency for qualitative variables, and the mean and standard deviation for quantitative variables. Based on these criteria, prevalence estimates were calculated and compared using the Cochran’s \(Q \) test and the continuity-corrected Mc-Nemar tests with Bonferroni correction. \(P<0.05 \) were considered statistically significant. All the statistics and epidemiology analysis were performed using the statistical software IBM SPSS Statistics 22.

RESULTS

Demographic and Clinical Data Participants were 205 urban residents ranging from 5 to 44 years of age (15.59±11.01), 49.75% women (17±12) and 50.25% men (14±10). Descriptive statistics of age for the total sample and the four criteria (I, II, III, and IV) are summarized in Table 3.

The symptomatology distribution for the total sample revealed symptoms of asthenopia, headache and variable blurred near vision (90, 43.90%), (70, 34.14%) and (43, 20.97%) respectively. In addition, symptoms related to school environment were observed, such as poor school performance level and low reading speed, with values of (78, 38.04%) and (66, 32.19%) respectively. Occasional near diplopia and covering one eye when reading were reported symptoms in (29, 14.14%) and (16, 7.80%) respectively, this could reflect an association with some binocular dysfunction.

Subjects were referred to the Visual Training Department by different medical departments: General Ophthalmology Services (113, 55.12%), Paediatric Ophthalmology Services (29, 14.15%) and Anterior Chamber/Segment Services (8, 3.90%). The rest were referred by Psychology and Counselling Departments of Educational Centres in the area (55, 26.83%).

Descriptive data of AA, FAM and FAB for the total sample and diagnostic groups (I, II, III, and IV) are summarized in Table 4. AA values for the total population decreased with age. MAF and BAF values as shown in Table 4 did not differentiate in which position (positive lens, negative lens or both) the
subject had more difficult to do the test. The 27.31% (56/205) of the total population presented sensorial suppression in the BAF test. For groups IV, III, II and I, there were a sensorial suppression rate of 34.88% (30/86), 19.69% (2/13), 0 (0/6) and 0 (0/4) respectively.

Accommodative Insufficiency Frequency

Comparison between clinical diagnostic criteria

Frequency of AI (95% CI) by clinical diagnosis for I, II, III and IV criteria were 1.95% (0.04%-3.86%), 2.93% (0.31%-4.57%), 6.34% (1.90%-8.85%) and 41.95% (35.14%-48.76%) respectively. The results of the algorithm to classify the subjects are represented in Figure 1. The figure represents the distribution of subjects according to the value acquired by each of the clinical signs considered: AA, MAF and BAF. First, the variable AA classified 86 subjects as IA according to criterion IV. Of these 86 subjects, 58 showed MAF≤6 cpm, but only 13 failed in negative lens, with these 13 subjects classified as IA according to criterion III. Of these 13 subjects, 8 showed BAF≤3 cpm, although only 6 failed in negative lens (criterion II).

Cochran’s Q test showed a significant difference among these four frequency ($\chi^2=226.7$, $P<0.001$). A pairwise revealed differences (P-adjusted<0.05) between criterion I and IV, II and IV and, III and IV. However, we did not find any significant difference when comparing the rates of frequency of AI according to criteria I, II and III (Figure 2A). Because the frequency obtained for criterion IV was increased over the rest, we repeated the same analysis excluding this criterion. With Cochran’s Q test, we found a significant difference among the three frequency of criteria I, II and III ($\chi^2=10.333$, $P=0.006$). A pairwise comparison revealed differences (P-adjusted<0.05) between criterion I and III, II and III. We did not find significant differences when comparing the rates of frequency of AI according to criteria I and II (Figure 2B).

Table 4 Descriptive statistics for AA, MAF and BAF for the total sample and diagnostic groups (I, II, II, and IV)

<table>
<thead>
<tr>
<th>Age range (y)</th>
<th>TS</th>
<th>IV n=205</th>
<th>n=86</th>
<th>n=6</th>
<th>n=4</th>
<th>MAF (cpm) IV n=205</th>
<th>n=86</th>
<th>n=13</th>
<th>n=6</th>
<th>n=4</th>
<th>BAF (cpm) I n=149</th>
<th>n=56</th>
<th>n=11</th>
<th>n=6</th>
<th>n=4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-10</td>
<td></td>
<td>102</td>
<td>50</td>
<td>8</td>
<td>2</td>
<td>102</td>
<td>50</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>102</td>
<td>50</td>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>UQ</td>
<td></td>
<td>15.50</td>
<td>11.25</td>
<td>11.00</td>
<td>5.00</td>
<td>17.00</td>
<td>16.00</td>
<td>4.00</td>
<td>4.00</td>
<td>0</td>
<td>16.00</td>
<td>15.00</td>
<td>7.00</td>
<td>2.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td>10.75</td>
<td>8.50</td>
<td>5.50</td>
<td>3.50</td>
<td>7.25</td>
<td>6.00</td>
<td>3.00</td>
<td>2</td>
<td>0</td>
<td>8.75</td>
<td>8.00</td>
<td>3.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LQ</td>
<td></td>
<td>2</td>
<td>8.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>0</td>
<td>0</td>
<td>8.00</td>
<td>8.00</td>
<td>4.58</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>10.60</td>
<td>8.49</td>
<td>4.24</td>
<td>2.16</td>
<td>7.42</td>
<td>5.66</td>
<td>1.41</td>
<td>2.83</td>
<td>a</td>
<td>7.82</td>
<td>7.00</td>
<td>4.58</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>2.48</td>
<td>0.71</td>
<td>4.95</td>
<td>2.12</td>
<td>7.42</td>
<td>5.66</td>
<td>1.41</td>
<td>2.83</td>
<td>a</td>
<td>7.82</td>
<td>7.00</td>
<td>4.58</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>11-28</td>
<td></td>
<td>16</td>
<td>9.50</td>
<td>6.25</td>
<td>6.25</td>
<td>6.25</td>
<td>6.25</td>
<td>6.25</td>
<td>6.25</td>
<td>0</td>
<td>14.00</td>
<td>14.00</td>
<td>8.00</td>
<td>4.00</td>
<td>2.00</td>
</tr>
<tr>
<td>UQ</td>
<td></td>
<td>9.38</td>
<td>6.25</td>
<td>6.25</td>
<td>6.25</td>
<td>6.25</td>
<td>6.25</td>
<td>6.25</td>
<td>6.25</td>
<td>0</td>
<td>14.00</td>
<td>14.00</td>
<td>8.00</td>
<td>4.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td>3.25</td>
<td>3.25</td>
<td>6.25</td>
<td>6.25</td>
<td>6.25</td>
<td>6.25</td>
<td>6.25</td>
<td>6.25</td>
<td>0</td>
<td>14.00</td>
<td>14.00</td>
<td>8.00</td>
<td>4.00</td>
<td>2.00</td>
</tr>
<tr>
<td>LQ</td>
<td></td>
<td>8.20</td>
<td>6.22</td>
<td>6.25</td>
<td>6.25</td>
<td>6.25</td>
<td>6.25</td>
<td>6.25</td>
<td>6.25</td>
<td>0</td>
<td>14.00</td>
<td>14.00</td>
<td>8.00</td>
<td>4.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>3.20</td>
<td>1.70</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>5.05</td>
<td>4.48</td>
<td>a</td>
<td>a</td>
<td>4.34</td>
<td>3.76</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>4.77</td>
<td>3.08</td>
<td>2.62</td>
<td>2.62</td>
<td>2.45</td>
<td>2.91</td>
<td>2.25</td>
<td>0.33</td>
<td>0.33</td>
<td>5.33</td>
<td>1.75</td>
<td>0.50</td>
<td>0.50</td>
<td>0.00</td>
</tr>
<tr>
<td>29-45</td>
<td></td>
<td>3.80</td>
<td>1.05</td>
<td>0.58</td>
<td>0.58</td>
<td>0.70</td>
<td>3.35</td>
<td>2.54</td>
<td>0.58</td>
<td>0.58</td>
<td>4.85</td>
<td>4.14</td>
<td>0.71</td>
<td>0.71</td>
<td>a</td>
</tr>
</tbody>
</table>

AA: Amplitude of accommodation; MAF: Monocular accommodative facility; BAF: Binocular accommodative facility; SD: Standard deviation; TS: Total sample; UQ: Upper quartile; LQ: Lower quartile; D: Diopter; cpm: Cycles per minute; a: Only one value.

AA: Amplitude of accommodation; MAF: Monocular accommodative facility; BAF: Binocular accommodative facility; SD: Standard deviation; TS: Total sample; UQ: Upper quartile; LQ: Lower quartile; D: Diopter; cpm: Cycles per minute; a: Only one value.
Regarding the methodology used to evaluate AA, all revised studies used push-up methods for AA measurement. It is well known that this method reports higher AA values than the minus-lens method\[11-12,15-16\] and particularly in young children the push-up test overestimates accommodation\[10\]. So, when the measurement used for AA gives an overestimated value, the prevalence of AI will be underestimated. However, the minus lens method has showed the best repeatability\[11\], so the intra-measure errors were minimized.

Prevalence rates published in the studies using AA as the only clinical sign for AI diagnostic were 33.3\%\[24\], 17.3\%\[25\], 89\%\[26\] and 4.7\%\[9\] while the current study showed rates of 41.95\%.

There are studies that selected clinical and symptomatic population as well as the current study and obtained rates of 61.7\%\[18\], 38\%\[27\] and 12.5\%\[28\].

Adding plus clinical signs to the AA limits the distribution of the studied condition. The great majority of the studies added the MAF test as in the present study, except Rouse et al\[29\] used MEM test. The MAF test evaluate a monocular function of the eye, instead BAF test assesses accommodation capacity in binocular conditions. In fact, BAF test was used in several studies too\[17,30-33\]. From a theoretical point of view, the BAF variable (criteria I and II) assesses accommodation capacity in binocular vision, thus, its value is influenced by the vergence system capacity to activate the fusion reserves.

As we can observe in the current study results showed in Table 4, the 27.31\% (56/205) of the total population presents sensorial suppression in the BAF test. We believe that using indirect measurements of accommodation in the diagnosis of a monocular condition can distort results, so we recommended using clinical signs measuring the accommodative function in a direct manner and dismiss other measurements distorted by the vergence system. These aspects suggest to use criterion III (AA<AA_norm_min-2 D and MAF=6 cpm) for a correct diagnostic of AI. That is in concordance with results of Cacho et al\[28\] where failing MAF with -2 D lenses seems to be the sign most associated with the AI. Using criterion III we have found an AI prevalence of (6.34\%; 13/205) what it quite similar to the prevalence of Cacho et al\[28\] using AA and MAF (4.26\%; 14/328).

Another important aspect is that an apparent accommodative problem could result from latent hyperopia, so a cycloplegic refraction is usually required. Patients with uncorrected hyperopia, especially latent hyperopia, often have accommodative dysfunction, because accommodation continuously compensate for the hyperopia\[34\]. We recommend the use of cycloplegic refraction to make a correct differential diagnosis between a real accommodative problem and a problem linked to a latent hyperopia.
One study limitation is that data came from the clinical setting, so the results should not be considered representative of the general population. The diagnostic methods used were subjective. Objective methods are more precise and reliable to measure the accommodation function, but the clinical reality make it difficult to incorporate these type of diagnostic methods to the day-to-day setting. Diagnostic criteria may change as diagnostic techniques improve. Further investigation to define actual normal values of amplitude accommodation is needed. Overlapping symptoms in subjects with accommodative deficiencies emphasize the importance of defining a diagnostic criteria based on tests with the best repeatability.

In conclusion, we propose the use of criterion III (AA<AA_{norm min} -2 D and MAF≤6 cpm) as clinical diagnosis criteria of AI with a protocol that include the use of the minus-lens method to measure AA and cycloplegic refraction.

ACKNOWLEDGEMENTS

Conflicts of Interest: García-Montero M, None; Antona B, None; Barrio AR, None; Nieto-Zayas C, None; Martínez-Alberquilla I, None; Hernández-Verdejo JL, None.

REFERENCES

1 Duane A. Normal values of the accommodation at all ages. *JAMA* 1912;LIX(12):1010-1013.
5 Duane A. An attempt to determine the normal range of accommodation at various ages, being a revision of Donder’s experiments. *Trans Am Ophthalmol Soc* 1908;11(Pt 3):634-641.

