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Abstract
● AIM: To compare the effectiveness of two well described 
machine learning modalities, ocular coherence tomography 
(OCT) and fundal photography, in terms of diagnostic 
accuracy in the screening and diagnosis of glaucoma. 
● METHODS: A systematic search of Embase and PubMed 
databases was undertaken up to 1st of February 2019. 
Articles were identified alongside their reference lists 
and relevant studies were aggregated. A Meta-analysis of 
diagnostic accuracy in terms of area under the receiver 
operating curve (AUROC) was performed. For the studies 
which did not report an AUROC, reported sensitivity and 
specificity values were combined to create a summary ROC 
curve which was included in the Meta-analysis.
● RESULTS: A total of 23 studies were deemed suitable 
for inclusion in the Meta-analysis. This included 10 papers 
from the OCT cohort and 13 from the fundal photos cohort. 
Random effects Meta-analysis gave a pooled AUROC of 
0.957 (95%CI=0.917 to 0.997) for fundal photos and 
0.923 (95%CI=0.889 to 0.957) for the OCT cohort. The 
slightly higher accuracy of fundal photos methods is likely 
attributable to the much larger database of images used to 
train the models (59 788 vs 1743). 
● CONCLUSION: No demonstrable difference is shown 
between the diagnostic accuracy of the two modalities. The 
ease of access and lower cost associated with fundal photo 
acquisition make that the more appealing option in terms of 
screening on a global scale, however further studies need 
to be undertaken, owing largely to the poor study quality 
associated with the fundal photography cohort. 
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INTRODUCTION

G laucoma is a term used to describe a group of optic 
neuropathies which cause damage to retinal ganglion 

cells, and is the second leading cause of permanent blindness 
in developed countries[1]. The damage caused by glaucoma is 
irreversible and therefore early detection and treatment is vital 
to halt visual damage[2]. From a global perspective, the number 
of people diagnosed with the disease is expected to almost 
double from 76 million in 2020 to 112 million in 2040[3]. 
Glaucoma is usually related to an increase in intraocular 
pressure which leads to stress induced damage on the retinal 
ganglion cells resulting in a characteristic appearance of the 
optic nerve head and associated visual field defects[4]. Pressure 
lowering medications and/or surgery can be used to halt 
its progression, especially if it is detected at an early stage. 
However, the disease has an insidious onset and so therefore 
patients can remain asymptomatic for many years before 
they attend for investigation and/or treatment. Early detection 
is essential to ensure patients continue to have an adequate 
quality of life and allow them to retain their independence 
and the ability to drive[5]. The economic and social impact 
that glaucomatous optic neuropathy can have on society has 
been well described[6]. The pathogenesis and progression of 
glaucoma is still poorly understood[7].
Currently there are numerous methods used to diagnose and 
screen for glaucoma, however these techniques are expensive, 
time consuming, require skilled operators and are manual[8]. 
Four modalities are routinely used; perimetry to detect a visual 
field defect, pachymetry to detect corneal thickness, tonometry 
to measure intraocular pressure and fundoscopy to examine the 
optic nerve head. Glaucoma is a disease that is seen to increase 
significantly with advancing age[9] and the projected increase 
in the population over the age of 50 is expected to double 
over the next 20y[10]. It is therefore imperative that an efficient 
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screening and/or diagnosing system is established to halt both 
the disease burden and the burden on ophthalmic departments. 
Glaucomatous optic neuropathy can result in a thinning of the 
retinal nerve fibre layer (RNFL) and an associated enlargement 
of the cup-to-disc ratio (CDR). Peripapillary atrophy is also 
a well-known sign associated with glaucoma[11], however this 
can be seen in other ocular pathologies such as high myopia[12]. 
Confusingly, individuals with myopia have an increased risk of 
developing glaucoma[13].
The Anderson Patella criteria is the gold standard criteria for 
manifest glaucoma diagnosis. It is stated for a diagnosis to be 
made, the following must be seen on a 30-2 Humphrey visual 
field test (Humphrey Field Analyser, Carl Zeiss Meditec, 
Dublin, California): 1) abnormal glaucoma hemi-field test, 2) 
three or more non-edge points, which are contiguous, must 
be depressed with a P<5% with at least one of these having a 
P<1%, 3) this must be demonstrated on two or more field tests[14].
Ocular coherence tomography (OCT) is a non-invasive 
imaging technique which provides micrometre resolution cross 
sectional views of the retina[15]. It can be utilised to assess 
RNFL thinning around the optic nerve head and macular area. 
Fundal photography is another imaging technique which takes 
photographs of the inner retina mainly using a widefield fundus 
camera. Parameters including the size of the optic nerve head 
and the CDR, alongside peripapillary atrophy, vessel branching 
and tortuosity can be examined using fundal photos[16]. OCT 
scanners can interpret these parameters alongside RNFL 
thickness. OCT scans are accurate, reproducible and are 
not patient dependant. They can supply us with information 
about change in thickness of the RNFL and can be used in 
differentiate glaucomatous from non-glaucomatous eyes[17]. 
RNFL thickness as determined by OCT scans has shown a 
high correlation with the functional status of the optic nerve[18]. 
Fundal photos[19] and OCT scanning techniques[20] have 
proven to be useful screening and diagnosing modalities 
for glaucoma. A contrast between the two modalities exist 
relating to the ease of access and speed of acquisition of 
fundal photos in comparison to cost and user expertise 
associated with OCT scanning. The use of a fundal camera 
negates the price associated with more expensive diagnostic 
equipment or in setting where one is just not available (e.g., 
lower income countries). The average cost of an OCT scanner 
is approximately $40 000 whereas one can augment their 
smartphone with a lens to aid in the acquisition of basic 
fundal photos[21]. Fundal photos can be used concomitantly to 
diagnose other ocular pathologies such as age related macular 
degeneration (ARMD) or diabetic retinopathy (DR)[22]. 
Artificial intelligence (AI), in particular “Machine learning”, 
has seen a recent upsurge, particularly its use in medicine, 
namely ophthalmology, and is currently being developed as a 

screening and diagnostic tool in many ophthalmic conditions. 
Machine learning refers to any process in which an algorithm 
is iteratively improved or “trained” in performing a task, 
usually a classification or identification task, by repeated 
exposure to many examples, known as the training data or 
training set. The trained algorithm can then be tested by 
measuring its performance in classifying novel unseen data (the 
test set). 
In particular, “supervised” learning algorithms have proven 
highly successful in automating binary classification tasks, 
such as determining the presence or absence of a pathology. 
“Supervised learning” refers to training regimes in which 
the algorithm is given both the input (e.g., an OCT or fundus 
image) and the correct output (e.g., the correct diagnosis) for 
each element in the training set. In this way, the algorithm 
implicitly learns a mathematical function which maps each 
input to the correct output. If new data is applied to this 
function, the machine learning algorithm should be able to 
classify it correctly. Machine learning can be utilised when we 
can’t directly express how a problem should be solved using 
an algorithm but we can illustrate to the machine examples 
that are both positive and negative and allow it to identify 
a function for itself. As a result, the validity of a machine 
learning algorithm depends heavily on the size and quality 
of the training data, and so validation of algorithms is highly 
important to ensure that the results will generalise. Steps for 
constructing an AI model include pre-processing the raw data, 
training the model, validating it and then testing it[23]. 
Machine Learning Algorithms
Artificial neural networks  Artificial neural network (ANN) 
models are inspired by the structure of the brain, in particular 
the human visual system, making them highly useful in 
automated image analysis. ANNs consists of many simple 
simulated processing units (“neurons”) connected in one or 
more layers. Neurons receive input from preceding layers, 
combine the inputs according to simple summation rules, 
and generate an output which is fed forward to the next 
layer. The lowest layer of the network represents the input 
(e.g., image pixel values), while the final layer represents the 
output or classification. Inputs from one neuron to another 
are “weighted”, with values analogous to synaptic weights in 
neural connections. As the algorithm is trained, these weights 
are updated according to simple feedback rules to improve the 
accuracy of the classification. 
Support vector machine  Support vector machines (SVMs) 
apply a multi-dimensional transform to the input data (image 
pixels). The algorithm then attempts to identify the hyperplane 
in this higher-dimensional space which best separates the 
training data into the desired categories (e.g., glaucomatous 
and non-glaucomatous). The further away the data points 
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lie form the plane, the more confident the model is that it 
identified them correctly[24]. The algorithm’s objective is to find 
the plane with the greatest margin, i.e., the greatest distance 
away from points and the plane so that it can achieve the 
greatest accuracy. 
Random forest  Random forest (RAN) uses multiple non-
correlated decision trees. Each decision tree predicts an output 
and the output with the highest prediction rate is the one 
which has the greatest likelihood to be correct. In essence, 
the outcome which gets the greatest number of “votes” from 
multiple non-correlated prediction models is the answer which 
is presumed to be the most accurate[25].
K-nearest neighbour  This is an algorithm that works on the 
principal that data with similar characteristics will lie in close 
proximity to each other. For a new piece of data, the algorithm 
determines how close it lies in relation to another piece of 
predesignated data and will then make an assumption on 
whether the new data has a positive or negative value[26]. 
Validation  Validation is a process in which the trained model 
is evaluated with a testing data set. It is used to determine how 
well the algorithm can classify images that it has never seen 
before. Cross validation is a commonly utilised method of 
testing the validity of machine learning algorithms to reduce 
the risk of overfitting. Overfitting is when a machine learning 
algorithm learns the details and noise in a testing set too well 
and subsequently impacts negatively on the classification of 
future data[27]. The most commonly applied cross-validation 
method is “K-fold cross-validation”. In this method, the 
dataset is randomly split into k subsets of equal size. Common 
choices of k are 5 or 10 (5-fold or 10-fold cross validation). 
The training is then performed using k-1 of the subsets as the 
training set, and the remaining 1 subset as the test set. This 
process is repeated k times, leaving a different subset out of the 
training each time. The final estimate of the model’s accuracy 
is given by pooling the results of the validation in each of 
the k subsets. Although k-fold cross-validation uses the same 
data for both training and testing, an individual data point is 
never included in both the training and test sets for a particular 
iteration, reducing the likelihood of overfitting. This model has 
proven to be effective to avoid the overfitting or under fitting 
of data[28]. It has been stated that cross validation is a better 
method for testing and training than random allocation[29]. 
Random allocation is when the training and validation set are 
randomly split, with one section used for training and another 
used for validation. 
Ophthalmology and machine learning  Machine learning is 
a technology that is still in its embryonic stage. Deep learning 
(a subset of machine learning focusing on ANN), which only 
found its feet in the 2000s, is a technology with widespread 
use in modern society including speech recognition, real time 

language translation and, most notably, image recognition[30]. 
Its transition to medical imaging analysis was an obvious step. 
Ophthalmology is an ideal specialty for the implantation of 
machine learning due to the ability to obtain high resolution 
images of the posterior of the eye in the form of fundal photos 
or OCT scans. These are non-invasive techniques with no 
radiation or potential for harm. A recent study[31] examining the 
ability of a machine learning algorithm to identify referable 
retinal diseases from OCT scans revealed that its success was 
comparable with clinical retinal specialists. It demonstrated 
that it could work in a real-world setting, with the benefit of 
being able to diagnose multiple pathologies. 
Multiple machine learning parameters are currently being 
assessed by numerous authors to aid in glaucoma diagnosis. 
There is debate over which screening frame work is the most 
sensitive and/or specific. On review of the literature, the most 
utilised screening modalities include either fundal photographs 
(which incorporates optic nerve head assessment and retinal 
vascular geometry) or OCT imaging. As previously stated, 
techniques offer the advantage of quick assessment time, 
however the OCT scanner is a significantly more expensive 
than the fundal camera and requires a skilled operator. 
The literature has indicated that there are many studies 
examining the efficacy of these modalities in the screening/
diagnosing of glaucoma, but none have compared the 
sensitivity and specificity of these tests in comparison to one 
another. To facilitate the mass screening of glaucoma, it would 
be beneficial to identify the most appropriate diagnostic test 
and to date the literature has failed to examine this. 
Study aims and objectives  To determine the diagnostic 
accuracy, in terms of sensitivity and specificity and/or area 
under the receiver operating curve (AUROC), of machine learning 
(including, but not restricted to, SVM, ANN, convolutional 
neural network (CNN), K-nearest neighbour, least square SVM 
(LS-SVM), naïve Bayes and sequential minimal optimisation 
in diagnosing glaucoma and identifying those at risk. The two 
imaging modalities to be examined are fundal photographs of 
the optic disc, retinal vessels and OCT imaging.
These will be compared to the current reference test which 
is defined by the Anderson Patella criteria[14] for glaucoma 
diagnosis. Referable glaucomatous optic neuropathy is a 
term used when there is an increased CDR and therefore an 
associated suspicion of glaucoma. Not all suspicious discs 
are glaucomatous and a proportion of the normal population 
will have an increased CDR of greater than 0.7[32]. Functional 
damage, as represented by specific loss of peripheral visual 
field, has been demonstrated to be the most crucial component 
in the diagnosis of glaucoma[33]. 
In essence, we hope to elucidate from the general population 
(Population) which method of machine learning screening 
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for glaucoma (Experimental test) is most accurate when we 
compare it to the gold standard test which is perimetry as defined 
by the Anderson Patella criteria (Reference test). This will allow 
us to determine the most appropriate imaging modality to utilise 
in terms of the automation of the mass screening of glaucoma.
MATERIALS AND METHODS
Search Strategy  A search of Pubmed and Embase was 
undertaken up to the first of February 2019. The search terms 
used in PubMed included (“glaucoma”[MeSH Terms] OR 
“glaucoma”[All Fields] OR “glaucomatous”[All Fields] OR 
“glaucomatous”[All Fields]) AND (“machine learning”[All 
Fields] OR “deep learning”[All Fields] OR “Computer 
Aided”[All]) AND (“diagnosis”[All Fields] OR “detection”[All 
Fields] OR “Screening”[All fields]). The search terms in 
Embase included (‘glaucoma’/exp OR glaucoma) AND 
(‘machine learning’ OR ‘deep learning’ OR ‘computer aided 
diagnosis’) AND (‘diagnosis’ OR ‘detection’ OR ‘screening’).
The retrieved studies were imported into RevMan 5 (version 
5.3. Copenhagen: The Nordic Cochrane Center, the Cochrane 
Collaboration, 2014). All duplicates were deleted. The titles 
and abstracts of the remaining articles were reviewed by two 
authors (Murtagh P and Greene G) and those that did not 
meet the inclusion criteria were removed. For completion, the 
reference lists from the selected studies were also examined. 
Inclusion and Exclusion Criteria  Machine learning in 
diagnostic imaging is a field which is still in its infancy and 
so therefore there were a limited number of robust papers on 
the subject. Inclusion criteria consisted of all observational 
studies examining machine learning in the diagnosis and/
or screening of glaucoma involving fundal photographs and 
OCT imaging. Exclusion criteria included studies which used 
human interpretation of fundal images, those whose machine 
learning was based on perimetry, those only associated with 
diabetic macular oedema or ARMD, participants under 18 
years old and those with neurological or other disorders which 
may confound visual field results. Some of these studies did 
not define their diagnostic criteria but stated that the diagnosis 
was of glaucoma was made by an ophthalmologist. 
Data Extraction  For each study we recorded the name of 
the principal author, year of publication, the number of eyes 
involved in the study (both glaucomatous and healthy), the 
machine learning classifier used (if multiple were utilised, the 
classifier with the most favourable result was taken), how the 
classifier was trained and tested, their definition of glaucoma 
diagnosis, make of OCT scanner in the cohort that used OCT 
and their results. 
Measurements of Diagnostic Accuracy  Results were 
recorded in the papers as either the AUROC or in terms of 
sensitivity and specificity. A receiver operating characteristic 
(ROC) curve is a statistical representation which demonstrates 

the diagnostic ability of a binary classifier at varying 
discrimination thresholds[34]. A ROC curve is generated by 
plotting true positive rates against false positive rates or by 
(1-specificty) on the x-axis and sensitivity on the y-axis. 
The AUROC informs us about the ability of the model 
to distinguish between different classes. It is the outcome 
measure most used to assess the reliability of a machine 
learning diagnosis. The results range from 0.5-1, the closer 
the result is to one, the better the performance of the machine 
leaning model[35]. Sensitivity is the proportion of true positives 
that are correctly identified by the test. Specificity is the 
proportion of true negatives that are correctly identified by the 
test[36]. Although these two outcome parameters are not directly 
comparable, we used an algorithm to calculate an average 
of the sensitivity and specificity values in terms of AUROC 
in the papers that failed to define one. ROC curves illustrate 
sensitivity and specificity at different cut-off values. If only 
sensitivity and specificity are stated in the studies, then there 
must be a single cut-off value being used, but this is not always 
stated (and may not be known, since it is sometimes a hidden 
parameter of the machine learning model). 
Assessment of Study Quality  All studies available were 
observational studies and therefore there was no defined 
standard evaluation of bias. We consequently established an 
adapted scoring system based on the Newcastle-Ottawa Scale 
(NOS)[37]. Each study was assessed on the following criteria: 1) 
sample size (greater than 100, 1 point; less than 100, 0 points); 2) 
validation technique (cross validation, 1 point; other, 0 points); 
3) unique database (unique database, 1 point; previously 
utilised database, 0 points); 4) their definition of glaucoma and 
diagnostic criteria (Anderson Patella criteria, 1 point; other, 
0 points); 5) inclusion of a confidence intervals (CIs) around 
reported outcomes (yes, 1 point; no, 0 points), and 6) their 
interpretation and reporting of results (AUROC, 1 point; other, 
0 points). Studies which scored four points or greater were 
deemed to be of a higher methodological standard. 
Statistical Analysis  Results of studies employing fundal 
images and OCT were extracted using Cochrane RevMan 
software (version 5.3. Copenhagen: The Nordic Cochrane 
Center, the Cochrane Collaboration, 2014) and Meta-analysis 
was performed to compare the accuracy of diagnosis. In the 
majority of studies, diagnostic accuracy was summarised by 
the AUROC. Summary estimates of the combined AUROC for 
each imaging methodology were estimated by inverse-variance 
weighted Meta-analysis following the method of Zhou et al[38]. 
However, several studies employing fundal images reported 
only a single sensitivity and specificity point. A single summary 
AUROC value for these studies was derived by estimating 
a Heirarchical Summary ROC curve (HSROC)[39]. The 
HSROC was estimated by hierarchical logistic regression 
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using the Metandi and Midas[40] packages in Stata version 
15.0 (StataCorp, College Station, TX, USA). This summary 
AUROC value and associated standard error (SE) were 
included in the Meta-analysis of fundal image studies.
Comparison of accuracy of fundal image and OCT studies was 
performed by comparing pooled estimates and SE obtained 
through Meta-analysis of each cohort. Significant difference 
was defined by a P value less than 0.05.
Potential Confounders  Potential Confounders include 
the same data set being used by different studies, training 
and testing on the same data set, discrepancy in glaucoma 
diagnosis, concomitant neurological disorders which may 
confound results, use of crowdsourcing platforms and focus on 
computer methods as opposed to clinical outcomes. 
RESULTS 
Selection Process and Search Results  Our search parameters 
returned a total of 131 papers from PubMed and 154 from 
Embase giving us a total of 285 studies. The titles and 
abstracts of these studies were reviewed, duplicates were 
removed, alongside the papers that did not fulfil the inclusion 
or exclusion criteria, and 36 papers were deemed suitable for 
revision in full text. Following comprehensive appraisal, a total 
of 23 papers were deemed suitable for inclusion in this Meta-
analysis. This consisted of 13 papers which examined machine 
learning in the diagnosis of glaucoma using fundal photos and 
10 using OCT technology. All studies were population based 
observational studies. Figure 1 outlines the selection process.
Table 1 tabulates the data with regards machine learning 
and fundal images. Ten of the thirteen studies were from 
Asia, nine of which were from India[41-49] and one from 
South Korea[50]. Of the remaining three studies, one utilised 
a dataset from Germany[51], one used fundal photos from 
two previous American studies[52] (the African Descent and 
Glaucoma Evaluation Study and the Diagnostic Innovations 
in Glaucoma Study) and the comprehensive study by Li et 
al[53] used the large online dataset Labelme (a crowdsourcing 
platform for labelling fundal photographs). Of the studies 
undertaken in India, six utilised the Kasturba Medical College 
dataset[42-44,46,48-49] and two used the Venu Eye Research Centre 
dataset[45,47] but using different machine learning algorithms. 
The studies were published between 2009 and 2018. A total of 
59 788 eyes were included in the studies, 39 745 coming from 
a single study[53]. 
Table 2 illustrates the data with regards machine learning 
and OCT imaging techniques. There is a total of ten studies 
published between 2005 and 2019. Five of the studies are from 
the USA[54-58], two are from Japan[50,59], two are from Brazil[60-61] 
and the remaining study is from Sweden[62]. There was no 
overlap between the between the studies as regards data sets. 
Three studies used the Stratus OCT[54-55,62], three studies used 

the Cirrus OCT (one standard definition[60] and two high 
definition[56,61]), Topcon OCT was used in two[50,57] and the 
RS 3000[50] and Spectralis[58] was used in one study each. The 
studies were published between 2005 and 2019. A total of 1743 
eyes were included in the OCT studies. 
Assessment of Study Quality  An assessment of study quality 
can be seen in Tables 3 and 4 with regards to the fundal 
photo and OCT groups respectively. We defined a superior 
methodology as a score of four or greater. It can be observed 
that the OCT group have a superior methodological standard 
than the fundal photo group. All of the OCT group have a 
score of four point of greater, while only 5 of the 13 (38.46%) 
studies in the fundal photo group achieved this score. 
Definition of Glaucoma  Definition of glaucoma diagnosis 
varied between the studies. In the fundal photo study cohort, 
the majority[42-49] were ill defined but stated that they were 
diagnosed by an ophthalmologist, three[41,51,63] stated that the 
diagnosis was gold standard and was likely the Anderson 
Patella Criteria and the remaining 2 studies[52-53] were 
diagnosed using trained independent masked graders. In the 
OCT studies group, nine of the ten studies[50,54-57,59-62] had their 
glaucoma diagnosis defined by the Anderson Patella criteria. In 
the remaining paper[58], the diagnosis was ill-defined but stated 
to be by two independent masked graders. 
Machine Learning Classifier  As regards the machine 
learning classifier, SVM[43-47,49-51] was used in seven of the 
fundal photo group. Neural networks were used in five[41-42,52-53,63] 
and LS-SVM[48] was used in one each. In the OCT cohort, 
the classifier used was more varied. Three studies utilised 
SVM[54,59,62]. RAN[60-61] and CNN[50,57] was utilised by two 

Figure 1 Flow diagram depicting the selection process for 
inclusion in the Meta-analysis.
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studies each. Principal Component Analysis[58] and Relevance 
Vector Machine[55] were used in one study and the final study[56] 
employed boosted logistic regression. 
Validation  Training and testing protocols are outlined in 
Tables 1 and 2. Cross validation was the most common method 
with tenfold, fivefold, threefold and leave one out cross 
validation accounting for the practices in nine[46,48,50,52,55-56,60-62], 
two[43,51], one[44] and five[45,47,54,57-58] of the studies respectively. A 
random partitioning of training and testing occurred in four of 
the studies[49,53,59,63]. 
Meta-Analysis  Since AUROC was the most widely reported 
and informative measure of diagnostic precision employed in 
the included studies, Meta-analysis was performed based on 
pooling AUROC estimates for each cohort. 

Nine of the fundal image studies did not report an AUROC, 
but gave only a single value of sensitivity and specificity[42-49,51]. 
In order to include these studies in the larger Meta-analysis, 
we obtained a single pooled AUROC value by estimating 
a HSROC. This is shown in Figure 2. AUROC curve was 
calculated to be 0.979; 95%CI: 0.887-0.996. Studies which 
only reported an AUROC but did not include an estimate of 
variance or uncertainty (i.e., SE or CI) could not be included in 
the Meta-analysis. 
Tables 5 and 6 outline the results of the Meta-analysis in terms 
of the fundal photo cohort (with the HSROC addition) and the 
OCT cohort respectively.
It can be seen that there is no statistically significant difference 
with respect to machine learning between fundal photos and 

Table 1 A summary of studies depicting automated diagnosis of glaucoma using fundal images

Paper Classifier Number, age Training and testing Results Glaucoma diagnosis Database

Nayak et al
2009[42]

ANN 61, 37 G, 24 H, 
25 to 60

46 images used for 
training, 15 images used 

for testing

AUROC 0.984 (sensitivity 100%, 
specificity 80%), no CI

Ill-defined but by an 
ophthalmologist

Kasturba Medical 
College, Manipal, India

Bock et al
2010[51]

SVM 575, 239 G, 336 N, 
56.1±11.4

5 fold cross validation AUROC 0.88 P<0.07, sensitivity 
73%, specificity 85%

Ill defined, stated 
gold standard

Erlangen Glaucoma 
Registry, Germany

Acharya et al 
2011[43]

SVM 60, 30 G, 30 N, 
20-70

5 fold cross validation 91% accuracy, no CI, stated 
P significant is <0.05

Ill defined Kasturba Medical 
College, Manipal, India

Mookiah et al
2012[44]

SVM 60, 30 G, 30 N, 
20-70

3 fold stratified cross 
validation

Accuracy 93.33%, sensitivity 
86.67%, specificity 93.33%, 
AUROC 0.984, no CI, stated 

P significant is <0.05

Ill-defined but by an 
ophthalmologist

Kasturba Medical 
College, Manipal, India

Chakrabarty
et al 2016[41]

CNN 314, 169 G, 145 N 1926 to train, 314 to test AUROC 0.792 Gold standard. 
Diagnosed by 4 

glaucoma specialist

Aravind Eye Hospital,
Madurai and 

Coimbatore, India

Issac et al
2015[45]

SVM 67, 32 G, 35 N, 
18-75

Leave one out cross 
validation

Accuracy 94.11%, sensitivity 
100%, specificity 90%, no CI, 
P significant if less than 0.05

Ill-defined but by an 
ophthalmologist

Venu Eye Research 
Centre, New Delhi, 

India

Maheshwari
et al 2017[46]

SVM Two databases, 
60, 30 G, 30 N, 

505, 250 G, 255 N, 
no age range

Three fold and tenfold 
cross validation

Accuracy 98.33%, sensitivity 
100%, specificity 96.67%, no CI, 

P significant if less than 0.05

Ill-defined but by an 
ophthalmologist

Medical Images analysis 
Group

Kasturba Medical 
College, Manipal, India

Singh et al
2016[47]

SVM 63, 33 G, 30 N, 
18-75

Leave one out cross 
validation, 44 to train 19 

to check

Accuracy 95.24%, sensitivity 
96.97%, specificity 93.33%, no CI, 

P significant if less than 0.05

Ill-defined but by an 
ophthalmologist

Venu Eye Research 
Centre, New Delhi, 

India

Maheshwari
et al 2017[48]

LS-SVM 488, 244 G, 244 N, 
no age range

Three fold and tenfold, 
cross validation

Accuracy 94.79%, sensitivity 
93.62%, specificity 95.88%

Ill-defined but by an 
ophthalmologist

Kasturba Medical 
College, Manipal, India

Raghavendra
et al 2018[49]

SVM 1426, 837 G, 
589 N

70% raining, 30% testing, 
repeated 50 times, 

random training and 
testing partitions

Accuracy 98.13%, sensitivity 98%, 
specificity 98.3%, no CI, 

P significant if less than 0.05

Ill-defined but by an 
ophthalmologist

Kasturba Medical 
College, Manipal, India

Ahn et al
2018[63]

CNN 1542, 756 G, 786 
N, no age range

Randomly partitioned 
into 754 training, 324 
validation and 464 test 

datasets

AUROC 0.94, accuracy 87.9%, 
no CI

Ill-defined but likely 
Anderson Patella 

Criteria

Kim’s Eye Hospital, 
Seoul, South Korea

Christopher
et al 2018[52]

CNN 14822, 5633 G, 
9189 N

10 fold cross validation AUROC 0.91 (0.9-0.91 CI) Independent masked 
graders

The ADAGES study, 
New and Alabama

DIGS Study, California

Li et al
2018[53]

CNN 39745, 9279 G, 
30466 N

8000 images as the 
validation set, and 31745 

images as training set

AUROC 0.986 
(95%CI, 0.984-0.988)

Grading by trained 
ophthalmologists

Label me Data Set

G: Glaucoma; N: Normal; AUROC: Area under the receiver operating characteristics curve; CI: Confidence interval; CNN: Convolutional neural 
networks; ANN: Artificial neural network; SVM: Support vector machine; LS-SVM: Least squares support vectors machine; ADAGES: African 
descent and glaucoma evaluation study; DIGS: Diagnostic innovations in glaucoma study.
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OCT images in diagnosing or screening for glaucoma. The 
total AUROC, in terms of random effects, for the fundal photo 
cohort was calculated to be 0.957 (CI: 0.917 to 0.997, P<0.001) 
and 0.923 (CI: 0.889 to 0.957, P<0.001) for the OCT cohort.

Figures 3 and 4 are Forest plots depicting a graphical 
representation of weight and AUROC of both the fundal image 
cohort and the OCT cohort respectively. 
Funnel Plots for risk of bias were also performed for the two 

Table 2 A summary of studies depicting automated diagnosis of glaucoma using OCT

Paper Classifier Number Training and testing Results OCT Glaucoma 
diagnosis Database

Burgansky-Eliash 
et al 2005[54]

Multiple-take 
SVM

89, 47 G, 
42 N

Six fold validation, 
leave one out

AUROC 0.981, 
no CI

Stratus 
OCT

Anderson 
Patella Criteria

Recruitment of Subjects, 
Pennsylvania

Bowd et al 
2008[55]

RVM 225, 156 G, 
69 N

Tenfold cross 
validation

AUROC 0.809, 
no CI

Stratus 
OCT

Anderson 
Patella Criteria

Observational Cross Sectional 
Study, California

Bizios et al 
2010[62]

SVM 152, 62 G, 
90 N

Tenfold cross 
validation

AUROC 0.977, 
CI 0.959-0.999

Stratus 
OCT

Anderson 
Patella Criteria

Observational Cross Sectional 
Study, Citizens of Malmo 

Sweden

Barella et al 
2013[60]

RAN 103, 57 G, 
46 N

Tenfold cross 
validation
resampling

AUROC 0.877, 
CI 0.810-0.944

Cirrus SD 
OCT

Anderson 
Patella Criteria

Glaucoma Service UNICAMP, 
Brazil, prospective, 

observational cross sectional

Silva et al 2013[61] RAN 110, 62 G, 
48 N

Tenfold cross 
validation

AUROC 0.807, 
CI 0.721-0.876

Cirrus HD 
OCT

Anderson 
Patella Criteria

Glaucoma Service UNICAMP, 
Brazil, observational cross 

sectional

Xu et al 2013[56] Boosted logistic 
regression

192, 148 G, 
44N

Normative database, 
Tenfold cross 

validation

AUROC 0.903, 
no CI

Cirrus HD 
OCT

Anderson 
Patella Criteria

PITT trial, Pennsylvania

Muhammad et al 
2017[57]

CNN 102, 57 G, 
45 N

Pretrained, leave one 
out cross validation

AUROC 0.945, 
CI 0.955-0.947

Topcon 
OCT

Anderson 
Patella Criteria

From previous study for OCT 
and early glaucoma diagnosis, 

New York

Asaoka et al 
2019[59]

SVM 178, 94 G, 
84 N

Pre training, glaucoma 
OCT database

AUROC 0.937, 
CI 0.906-0.968

RS 3000 Anderson 
Patella Criteria

Japanese Archives of 
Multicentral Images of 

Glaucomatous OCT database, 
Japan

Christopher et al 
2018[58]

PCA 235, 179 G, 
56 N

Leave one out 
approach

AUROC 0.95, 
CI 0.92-0.98

Spectralis 
OCT

Ill defined DIGS dataset, California

An et al 2019[50] CNN 357, 208 G, 
149 N

Tenfold cross 
validation

AUROC 0.963, 
Mean±SD 

0.029

Topcon 
OCT

Anderson 
Patella Criteria

Observational Cross Sectional 
Study, Japan

G: Glaucoma; N: Normal; AUROC: Area under the receiver operating characteristics curve; CI: Confidence interval; CNN: Convolutional neural 
networks; ANN: Artificial neural network; SVM: Support vector machine; LS-SVM: Least squares support vectors machine; ADAGES: African 
descent and glaucoma evaluation study; DIGS: Diagnostic innovations in glaucoma study; PCA: Principal component analysis; RVM: Relevance 
vector machine.

Table 3 Assessment of study quality using modified NOS with respect to fundal images 

Paper Sample size Validation 
technique Unique database Definition of 

glaucoma CI AUROC Total

Nayak et al 2009[42] X 1
Bock et al 2010[51] X X X X X 5
Acharya et al 2011[43] X 1
Mookiah et al 2012[44] X X 2
Chakrabarty et al 2016[41] X X X X 4
Issac et al 2015[45] X 1
Maheshwari et al 2017[46] X X 2
Singh et al 2016[47] X 1
Maheshwari et al 2017[48] X X 2
Raghavendra et al 2018[49] X 1
Ahn et al 2018[63] X X X X 4
Christopher et al 2018[52] X X X X X 5
Li et al 2018[53] X X X X 4

CI: Confidence interval; AUROC: Area under the receiver operating characteristics curve; NOS: Newcastle-Ottawa Scale; OCT: Ocular 
coherence tomography.



156

cohorts and are outlined in Figures 5 and 6. The fundal image 
group only has three points and therefore it has an ill-fitting 
funnel plot.
The OCT funnel has every study include and is a greater 
assessment of study bias in comparison to the fundal image 
plot. Due to the fact that, unlike with standard diagnostic 
tests, diagnostic accuracy is expected to increase with sample 
size in machine learning studies, one would expect funnel 
plots in machine learning Meta-analysis to be asymmetric, 
with the majority of studies falling in the lower left quadrant. 
A large number of studies falling to the bottom-right would 
be suggestive of publication bias or perhaps overfitting of 
machine learning models.
Tests for heterogeneity were also performed and these are 
outlined in Table 7. The I2 value for the fundal image cohort 

and the OCT cohort is 99.83% and 81.66% respectively which 
is indicative of a high level of heterogeneity. 
A comparison of sample size in terms of numbers used for 
validation versus diagnostic accuracy (given as AUROC) was 
performed to examine if any correlation existed. 
Table 8 outlines the result of a Meta-analysis of the fundal 
image group without the Li et al's[53] study. The study was 
excluded due to the very high numbers, and therefore effect it 

Table 4 Assessment of study quality using modified NOS with respect to OCT scans

Paper Sample size Validation 
technique Unique database Definition of 

glaucoma CI AUROC Total

Burgansky-Eliash et al 2005[54] X X X X 4
Bowd et al 2008[55] X X X X X 5
Bizios et al 2010[62] X X X X X X 6
Barella et al 2013[60] X X X X X 4
Silva et al 2013[61] X X X X X 5
Xu et al 2013[56] X X X X X 5
Muhammad et al 2017[57] X X X X X X 6
Asaoka et al 2019[59] X X X X X 5
Christopher et al 2018[58] X X X X 4
An et al 2019[50] X X X X X X 6

CI: Confidence interval, AUROC: Area under the receiver operating characteristics curve; NOS: Newcastle-Ottawa Scale; OCT: ocular 
coherence tomography.

Figure 2 An HSROC estimated by pooling results of nine fundal 
photo studies who did not report a AUROC value (sensitivity 
and specificity only)  Area under the summary ROC curve: 0.979; 
95%CI: 0.887-0.996.

Figure 3 Forest plot of the AUROC of the fundal images cohort. 

Figure 4 Forest plot of the AUROC of the OCT cohort.

Machine learning in glaucoma
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may have on the outcome of the analysis. It can be seen that 
the total AUROC in terms of random effects has decreased 
from 0.957 to 0.942, a difference of 0.015.
DISCUSSION
Meta-Analysis  The findings of this Meta-analysis have 
indicated that there is no statistically significant difference with 
respect to machine learning between fundal photos and OCT 
images in diagnosing or screening for glaucoma. 
The total AUROC, in terms of random effects, for the fundal 
photo cohort was calculated to be 0.957 (95%CI: 0.917 to 
0.997, P<0.001) and 0.923 (95%CI: 0.889 to 0.957, P<0.001) 
for the OCT cohort. Although there is a difference of 0.034 
between the two results, the CIs of both groups overlap 
and there is no significant difference in diagnostic accuracy 
between the two cohorts (P=0.34; t-test based on pooled 
AUROC values and SE).
Sample Size  There is a notable discrepancy between the 
sample sizes of the OCT group (n=1743) and the fundal 
images group (n=59 788). Although the number of studies is 
approximately on par (10 studies for OCT and 13 for fundal 
photos), there is over a 30-fold increase in the numbers of 
eyes participating in the fundal photo group in comparison to 
the OCT group. However, the majority (39 745) of these eyes 
come from a single study[53]. If we remove this study from 
our Meta-analysis, as in seen in Table 8, the AUROC in terms 

Table 5 Meta-analysis, AUROC and estimated HSROC of studies relating to fundal photos 

Study AUROC SE 95%CI z P
Weight (%)

Fixed Random
Christopher et al 2018[52] 0.910 0.00200 0.906 to 0.914 19.92 34.92
Li et al 2018[53] 0.986 0.00100 0.984 to 0.988 79.67 35.01
Others (HSROC estimate) 0.979 0.0140 0.952 to 1.000 0.41 30.08
Total (random effects) 0.957 0.0204 0.917 to 0.997 46.9 <0.001 100.00 100.00

AUROC: Area under the receiver operating characteristic curve; CI: Confidence interval; HSROC: Hierarchical summary receiver operating 
characteristic curve; SE: Standard error.

Table 6 Meta-analysis and AUROC of studies relating to OCT studies

Study AUROC SE 95%CI z P
Weight (%)

Fixed Random
Burgansky-Eliash et al 2005[54] 0.981 0.0330 0.916 to 1.000 2.12 8.69
Bowd at al 2008[55] 0.817 0.0300 0.758 to 0.876 2.56 9.19
Bizios et al 2010[62] 0.977 0.0102 0.957 to 0.997 22.16 12.12
Barella et al 2013[60] 0.877 0.0342 0.810 to 0.944 1.97 8.49
Silva et al 2013[61] 0.807 0.0395 0.730 to 0.884 1.48 7.64
Xu et al 2013[56] 0.903 0.0472 0.810 to 0.996 1.04 6.54
Muhammad et al 2017[57] 0.945 0.0102 0.925 to 0.965 22.16 12.12
Asaoka et al 2019[59] 0.937 0.0158 0.906 to 0.968 9.22 11.45
Christopher et al 2018[58] 0.950 0.0153 0.920 to 0.980 9.85 11.52
An et al 2019[50] 0.963 0.00917 0.945 to 0.981 27.44 12.22
Total (random effects) 0.923 0.0174 0.889 to 0.957 53.1 <0.001 100.00 100.00

OCT: Ocular coherence tomography; AUROC: Area under the receiver operating characteristic curve; CI: Confidence interval; SE: Standard error.

Figure 5 Funnel plot for fundal image studies.

Figure 6 Funnel plot for OCT studies. 
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of random effects is 0.942, leaving a difference of just 0.019 
between the two groups. It is known that machine learning 
and deep learning are techniques that benefit from large 
databases for training hence the bigger the training database, 
the more accurate the model[64]. This can be illustrated with 
our data. Figure 7 depicts a scatter plot of validation numbers 
versus AUROC. A linear trend line shows that for increasing 
validation numbers there is an associated rise in diagnostic 
accuracy. A similar trend can be seen in the funnel plot with 
regards to the OCT cohort. There are multiple study sizes with 
low sample size and low accuracy. Accuracy improves as the 
sample size gets bigger (smaller SE and hence higher accuracy).
One reason for the variance in numbers is the ease of acquisition 
of fundal photos in comparison to OCT scans. Large data sets 
such as the “Labelme” dataset (http://www.labelme.org/
assessed on 21/04/2019) is a crowdsourcing platform for fundal 
images which contains thousands of retinal fundal images 
from diverse populations and is available online. There is no 
comparable online database of OCT scans. Crowdsourcing 
is a method of obtaining information about data from a large 
number of people, usually through the internet[65]. 
Data Sets  There is substantial overlap between the datasets 
used in the fundal imaging cohort. Six studies in this group 
used the Kasturba Medical College dataset[42-44,46,48-49] and 
two used the Venu Eye Research Centre dataset[45,47]. They 
used different machine learning models, however, three of 
the studies[43-44,48] had the same number of participants, both 
glaucomatous and healthy, and it is possible that they used 
exactly the same fundal photos as it does not state how many 
images the dataset contains. This does not skew the findings 
but potentially hampers the power of these studies. It is also 
seen that there is a heavy Asian majority with regards number 
of papers in the fundal photo cohort. Ten of the thirteen papers 
came from Asia, nine of them from India. There is an obvious 
population based bias in this group and the same machine 
learning technique may not be comparable to glaucoma 
diagnosis in a different ethnic cohort[66]. There is a greater 

ethnic diversity observed in the OCT study groups. These are 
mainly population based studies and by their design should 
limit the effect of selection bias. 
Validation  As stated in the results section above, cross 
validation was the most utilised method of training and testing 
with some form of it being used in seventeen out of the 
twenty-three studies. It has been stated that cross validation is 
a better method for testing and training than random allocation 
which occurred in four of the studies[29]. This is due to the 
fact that when random sampling is used, there is a chance 
that the sampling set does not contain the disease or features 
associated with the disease process. Four of our studies[49,53,59,63] 
used random sampling and although initially may appear as 
the better teaching process, the more robust technique of cross 
validation may make their models more accurate. 
Machine Classifier  The studies used a range of different 
classifiers or machine learning algorithms. The most 
commonly used algorithm was SVM being utilised in 10 of 
the studies. This is useful in classifying linear features and as 
such is the option of choice in classifying fundal images[67]. 
Problems arise with this classifier when non-linear features are 
extracted such as are employed in OCT scanning techniques. 
Hence more convoluted classifiers may be more appropriate 
when interpreting these scans, e.g., CNN and ANN, and this is 
reflected in the data. 
The algorithms used in these studies were solely constructed 
to aid in the diagnosis of glaucoma. This is usually a binary 

Table 7 Test for heterogeneity for fundal image studies and OCT studies

Parameters Q Significance level I2 (inconsistency) 95%CI for I2

Fundal image studies 1155.5417 P<0.0001 99.83% 99.77 to 99.87
OCT studies 49.0860 P<0.0001 81.66% 67.42 to 89.68

Table 8 Meta-analysis, AUROC and estimated HSROC of studies relating to fundal photos with the exclusion of the Li study

Study ROC area SE 95%CI z P
Weight (%)

Fixed Random
Christopher et al 2018[52] 0.910 0.00200 0.906 to 0.914 98.00 54.06
Others (SROC estimate) 0.979 0.0140 0.952 to 1.000 2.00 45.94
Total (random effects) 0.942 0.0242 0.894 to 0.989 38.858 <0.001 100.0 100.00

AUROC: Area under the receiver operating characteristic curve; CI: Confidence interval; HSROC: Hierarchical summary receiver operating 
characteristic curve; SE: Standard error.

Figure 7 Graph of number used for validation versus AUROC.
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classification as outlined with the abundant use of the SVM 
classifier. However, in the clinical setting many patients can 
suffer from a multitude of eye pathologies. Cataract, for 
instance, is an extremely common finding especially in the 
elderly. Significant cataract can hamper the acquisition of 
fundal photos and OCT images. It can also increase the amount 
of “noise” in the attained scans making it more difficult for the 
algorithm to interpret it[64]. Patients may also have features of 
DR and/or ARMD, pathologies which are very common in the 
aging population. A deep learning algorithm was previously 
developed[68] and tested on a small cohort (n=60) which 
aimed to detect a range of retinal disease from fundal images. 
Accuracy dropped from 87.4% in the cohort which had DR 
alone to 30.5% when multiple aetiologies were included. 
However, the small dataset used for 10 identifiable diseases is 
likely to inflict bias on the results. 
Glaucoma Diagnosis  Glaucoma diagnosis is a multifactorial 
process. It is a significant proportion of the workload of general 
ophthalmologists. In order to make a definitive diagnosis 
perimetry, fundoscopy, gonioscopy and tonometry must all 
be undertaken. There is significant variance in the agreed 
diagnosis of glaucoma in the above studies. Many have the 
diagnostic criteria ill-defined but state that is was established 
by an ophthalmologist or multiple masked graders. The reason 
for this inconsistency is that a significant proportion of the 
reviewed papers were published in journals with an interest in 
computer methods as opposed to clinical and ophthalmological 
findings. Their definitions are vaguer than those published in 
the clinical journals. The variation in robust diagnoses can 
also be observed between the fundal images and OCT cohort 
with all but one[58] of the OCT group having their glaucoma 
diagnosis defined by the Anderson Patella criteria. 
Incorporation of other patient parameters into the model 
process, e.g., age, smoking status, intraocular pressure, visual 
field testing has been shown to increase diagnostic accuracy[67], 
although the incorporation of perimetry is likely to prove to be 
a time and resource heavy inclusion parameter. 
Methodological Quality  The methodological quality of 
the studies was assessed using a modified NOS. It can be 
witnessed that the OCT studies group have a greater standard 
of quality as opposed to the fundal image group. Only 5 of 
the 13 (38.46%) studies in the fundal image group received 
a methodological score of 4 or greater on our modified scale. 
This could be a potential confounder with respect to the results 
of the analysis but due to the fact the studies with a low score 
amount to 3.82% (2285 of 59 788) of the total number of 
eyes in the fundal photos group, its effect is unlikely to be 
statistically significant in the pooled analysis.
Publication Bias  The funnel plots, outlined in Figures 5 and 
6, indicate that there is low risk of publication bias especially 

in OCT group. A total of three points are on the fundal 
image funnel plot and so therefore it is difficult to make an 
assumption about the bias of these studies. It can be seen that a 
larger sample size (and as such a smaller SE) will give a large 
degree of accuracy. Due to the fact that, unlike with standard 
diagnostic tests, diagnostic accuracy is expected to increase 
with sample size in machine learning studies, one would 
expect funnel plots in machine learning Meta-analysis to be 
asymmetric, with the majority of studies falling in the lower 
left quadrant. A large number of studies falling to the bottom-
right would be suggestive of publication bias or perhaps 
overfitting of machine learning models.
Heterogeneity  There is a large degree of heterogeneity as 
outlined in Table 7. The I2 value for the fundal image cohort 
and the OCT cohort is 99.83% and 81.66% respectively. This 
is not surprising given the different methods, sample sizes and 
algorithms used in each.
Glaucoma Prevalence  The prevalence of primary open angle 
glaucoma in the general population is approximately 2% over 
the age of 40 and increases with age to affect 4% of those 
over 80[69]. On review of our data sets, it is seen that that the 
proportional of glaucomatous eyes in our cohorts ranged from 
23.35%[53] to 77.08%[56], with an average of 53.05%±11.66% 
SD. This indicates that, during the training and testing process, 
the algorithm is more likely to observe glaucomatous eye on 
average thirteen times more frequently than it would in the 
general population. Validation on such datasets may lead to an 
increase in false positives either by the algorithm “expecting” 
to have more positive results than it has or secondary to 
overfitting of potential disease characteristics. 
Unsupervised Machine Learning  Although our studies 
solely examined supervised machine learning, unsupervised 
machine learning in the form of deep learning will generate 
decisions based on high dimensional interpretation and neural 
networks that humans cannot interpret and is likely to be 
the next step in evolution of computer aided diagnosis. We 
fundamentally do not know how they make their judgments[70]. 
Areas of the image can be highlighted, but often they are not 
associated with the pathological process from our understanding. 
This can aid us to look for new aetiologies for retinal disease 
process. However, this is termed a “black box” as we don’t 
fully understand how the algorithms are coming to their 
conclusions. 
Challenges  In a recent review by Ting et al[71], a number 
of potential challenges for AI implementation into clinical 
practice were identified. The algorithm requires a large number 
of pathological images to train. The sharing of images between 
centres is currently an ethical grey area but to ensure adequate 
classification by the algorithm, data must be shared between 
centres. This includes a range of date from diverse populations. 
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Rare ocular disease may also prove an issue, as there may not 
be enough images to adequately train an algorithm to recognise 
these diseases. 
Limitations  Limitations of our studies include the high 
prevalence of articles in computer method journals as opposed 
to clinical journals especially in the fundal photo group. They 
were more preoccupied with how the algorithm and classifier 
functioned from a computer science point of view and their 
definitions of glaucoma were not as robust as they were in 
the clinical journals. Although our studies scored low on our 
assessment of quality, these studies had to be included due to 
the paucity of papers on the subject. 
The use of the same database and crowdsourcing material has 
the potential to bias the results of the Meta-analysis. Ideally 
all studies would have the same definition of glaucoma, use 
a separate training, validation and testing set and use cross 
validation.
In conclusion, OCT scanning provides micrometre resolution 
of the RNFL and one would assume that it should be related 
to a more accurate screening and diagnostic tool. However, 
we have demonstrated that the literature to date has failed to 
corroborate this with respect to machine learning. The ease of 
access and lower cost associated with fundal photo acquisition 
make that the more appealing option in terms of screening on a 
global scale, however further studies need to be undertaken on 
both groups owing largely to the poor study quality associated 
with the fundal photography cohort. 
The prospect of machine learning in the screening and 
diagnosing of ocular disease is a very appealing prospect. 
It can take pressure off ophthalmology departments and 
allow a greater throughput of the population to enjoy a 
better vision related quality of life. However, care should 
be taken in interpreting these findings. During an ocular 
assessment, ophthalmologists take in a holistic view of the 
patient, including past medical history and medications, and 
may undertake multimodal imaging e.g. angiograms and/
or perimetry to come to a complete diagnosis. We know that 
patients greatly value their interaction with their doctor[72] 
and the “human-touch” associated with it, something which 
could be become extinct with the advent of AI. Another cause 
of concern is the “black box” nature of decision making in 
unsupervised machine learning. With so much emphasis 
nowadays on evidence-based medicine, it may not yet be time 
to place all blind trust in machines. 
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