Informatics Research

Comparison of bevacizumab and ranibizumab in agerelated macular degeneration: a systematic review and meta-analysis

Xiao-Yu Zhang¹, Xiao-Fan Guo², Shao-Dan Zhang¹, Jing-Na He¹, Cao-Yu Sun¹, Yin Zou¹, Han-Si Bi¹, Yang Qu¹

¹Department of Ophthalmology, the Fourth People's Hospital of Shenyang, Shenyang 110031, Liaoning Province, China ²Department of Cardiology, the First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China

Correspondence to: Yang Qu. Department of Ophthalmology, the Fourth People's Hospital of Shenyang, 20 Huanghe North Street, Huanggu District, Shenyang 110031, Liaoning Province, China. zxy_sy@hotmail.com

Received: 2013-10-04 Accepted: 2013-11-25

Abstract

• AIM: To compare the effectiveness and safety between bevacizumab and ranibizumab in the treatment of age – related macular degeneration (AMD) through a systematic review and meta-analysis.

• METHODS: We performed a comprehensive search of randomized controlled trials (RCTs), non-RCTs, case-control and cohort studies that compared bevacizumab and ranibizumab using PubMed and the Cochrane Library. After the related data were extracted by two investigators independently, pooled weighted mean differences (WMDs) and risk ratios (RRs) with 95% confidence intervals (CIs) were estimated using a random-effects or a fixed-effects model.

• RESULTS: A total of four RCTs involving 1927 patients and eleven retrospective case series involving 2296 patients were included. For the primary outcomes, no significant differences were found between ranibizumab group and bevacizumab group in visual acuity (WMD: -0.04; 95% CI: -0.08 to 0.00; P=0.06), best corrected visual acuity (WMD: -0.05; 95%CI: -0.10 to 0.00; P=0.05), retina thickness (WMD: -4.69; 95%CI: -13.15 to 3.76; P= 0.86) and foveal thickness (WMD: 10.91; 95%CI: -14.73 to 36.56; P=0.40). The pooled analyses in the evaluation of safety showed that compared to bevacizumab, ranibizumab was associated with decreased risks of ocular inflammation (RR: 0.45; 95% CI: 0.23 to 0.89; P= 0.02) and venous thrombotic events (RR: 0.27; 95% CI: 0.08 to 0.89; P=0.03). However, there were no significant differences observed in deaths (P=0.69) and arterial thromboembolic events (P = 0.71) between the two groups.

• CONCLUSION: With equal clinical efficacy, ranibizumab was found to be associated with less adverse events compared to bevacizumab, indicating that ranibizumab might be a safer management.

• **KEYWORDS:** age-related macular degeneration; bevacizumab; ranibizumab

DOI:10.3980/j.issn.2222-3959.2014.02.30

Zhang XY, Guo XF, Zhang SD, He JN, Sun CY, Zou Y, Bi HS, Qu Y. Comparison of bevacizumab and ranibizumab in age–related macular degeneration: a systematic review and meta–analysis. *Int J Ophthalmol* 2014;7(2):355–364

INTRODUCTION

A ge-related macular degeneration (AMD) is one of the major causes of blindness in developed countries ^[1-3]. It is the third leading cause of blindness, coming after cataract and glaucoma, accounting for 8.7% of all legal blindness across the world ^[4]. The number of individuals affected is estimated to be doubled by the year 2030 owing to the longevity of the aged population ^[5]. Hence, AMD becomes a major public health problem with significant economic and social impact. Population studies indicate that neovascular AMD accounts for two thirds of late AMD cases and 90% of blindness from AMD^[6].

Vascular endothelial growth factor (VEGF), which is regulated by hypoxia, promotes angiogenesis, and its role in the pathogenesis of neovascular AMD is well recognized^[7,8]. The advent of intravitreous VEGF inhibitors has renovated the management of neovascular AMD. There are various anti-VEGF drugs commonly used nowadays, such as pegaptanib, ranibizumab and bevacizumab ^[9,10]. The effectiveness of pegaptanib was not as ideal as ranibizumab and bevacizumab, visual decline was still seen in the AMD patients after treatment^[11].

Bevacizumab is a humanized anti-VEGF monoclonal IgG_1 antibody ^[12,13]. In combination with chemotherapy, it was originally approved by the Food and Drug Administration for

Bevacizumab and ranibizumab for age-related macular degeneration

the treatment of various cancers, such as colorectal cancer, non-small cell lung cancer and renal cell cancer. The effectiveness of bevacizumab on wet AMD was first shown by Rosenfeld et al [14]. Ranibizumab, a recombinant monoclonal antibody fragment that inhibits VEGF, has been approved for the treatment of all angiographic subtypes of subfoveal neovascular AMD by the Food and Drug Administration since 2006 and by the European Medicines Agency since 2007 ^[15]. The approval was based on two randomized clinical trials (RCTs), in which approximately 95% of the patients treated with monthly ranibizumab injections lost fewer than 15 letters in 12mo, compared to 64% of patients receiving photodynamic therapy (PDT) and 62% receiving sham treatment ^[16]. The costs of ranibizumab, however, are immense. With monthly injections at a dose of 0.5 mg, the annual costs count up to more than US \$23 000 per patient, about 10 times more than that of bevacizumab^[17,18]. Although many studies, including large RCTs, tried to compare the efficacy of ranibizumab and bevacizumab for the treatment of AMD, the results were controversial ^[19]. Therefore, a systematic review and meta-analysis of pooled data from RCTs and non-RCTs were performed in this study, aiming to evaluate the clinical effectiveness of bevacizumab and ranibizumab in the treatment of AMD.

SUBJECTS AND METHODS

Systematic Literature Search The systematic review and meta-analysis considered RCTs and non-RCTs comparing bevacizumab versus ranibizumab for the treatment of patients with AMD. We searched PubMed (1966-October 2012) and the Cochrane Library (1988-October 2012) without language restrictions. Search terms including MeSH words and text words. The terms we used were 'Lucentis' or 'ranibizumab' or 'Avastin' or 'bevacizumab' or 'age-related macular degeneration' or AMD'. Furthermore, we perused the bibliographies of retrieved articles and relevant reviews. If the studies did not contain all of the necessary information, we contacted the authors directly to obtain the missing data.

Inclusion and Exclusion Criteria For inclusion, studies had to meet the following criteria: 1) RCTs or non-RCTs studies, which compared the efficacy or safety between bevacizumab and ranibizumab in patients with AMD. Studies with full data information needed were included in the meta-analysis; 2) at least one of the primary outcomes [\dot{ze} visual acuity (VA), best-corrected visual acuity (BCVA), foveal thickness (FT), retina thickness (RT) and central macular thickness (CMT)] or secondary outcomes (serious adverse effects, such as ocular inflammation, deaths and thromboembolic events) were evaluated; 3) enrolled a minimum of 10 eyes. If multiple papers from the same study were identified, only the one with the most detailed information and longest follow-up was selected for inclusion. Studies were excluded if they: 1) included patients with

other diseases but not AMD, including choroidal neovascularization, choroid melanoma, drusen, subretinal hemorrhage and diabetic macular retinopathy; 2) evaluated bevacizumab or ranibizumab as monotherapy; 3) had no original data (reviews, comments or letters), and 4) not conducted in humans.

Data Extraction and Quality Assessment To avoid bias in the data extraction process, two investigators (Zhang XY and Guo XF) independently extracted and collected data following the selection criteria described above. Any discrepancy was resolved by discussion and consensus. The following information was extracted from each trial: first author's name, publication year, type of study, the number of treated patients, duration of follow-up, dosage, injections per patient and main findings. An electronic abstraction database was established in Microsoft Excel. We evaluated the quality of the studies included in this research with the Jadad score for RCTs and Newcasle-Ottawa Scale (NOS) for non-RCTs. The range of Jadad score is from 1 to 5 and the range of NOS is from 1 to 9^[20,21].

Statistical Analysis To evaluate the efficacy and safety between bevacizumab and ranibizumab for the treatment of AMD, we assessed the overall effect of bevacizumab and ranibizumab from the data of the included studies and used the weighted mean differences (WMDs) and risk ratios (RRs) with 95% confidence intervals (CIs) as the metric of choice for all the outcomes. We implemented meta-analysis of the direct evidence for each outcome, combining pairwise comparisons between bevacizumab and ranibizumab using Review Manager 5.0. Between-study heterogeneity was evaluated by Q-statistic and quantified by the I^2 statistic. If statistically significant heterogeneity was considered present $(P < 0.1 \text{ and } I^2 > 50\%)$, we chose a random-effects model, otherwise, a fixed-effects model was used. The value of Pless than 0.05 was regarded as statistically significant for all included studies.

RESULTS

Literature Search and Study Characteristics We identified 1545 potentially relevant studies from the initial search, and 1514 trials were excluded after a preliminary review. The remaining 31 studies were identified for detailed assessment. Finally, 4 RCTs and 10 retrospective chart series met the inclusion criteria. The selection process and reasons for exclusion are summarized in Figure 1^[22-35].

The baseline characteristics of the participants and the design of the studies are summarized in Tables 1 and 2. Of the 4 RCT studies, two were conducted in the United States, and two in the United Kingdom and India each. The follow-up durations in all the included studies ranged from 2 to 24mo. Of the 15 studies, with age ranging from 63 to 90y, fourteen included both genders. For the study of Subramanian, there was only male patient in group B. Two RCTs had a Jadad Int J Ophthalmol, Vol. 7, No. 2, Apr.18, 2014 www. IJO. cn Tel:8629-82245172 8629-82210956 Email:jjopress@163.com

Table 1 Characteristics of inc	luded studies in	the review of ranibizuma	b and bevaci	zumab for	treatment o	of AMD		
Study	Type of study	Data sources	No. of includ	ed patients	Male	(%)	Age (\overline{x} :	$\pm s$, a)
Study	Type of study	Data sources	Group R	Group B	Group R	Group B	Group R	Group B
Chang <i>et al</i> ^[23] , 2009	Retrospectively	Retina Institute of California Patina Contar of the New	107	69	43.5	33.3	78.3±8.8	79.6±9.8
Landa et al ^[25] , 2009	Retrospectively	York Eye and Ear Infirmary	31	37	58.1	56.8	74.9±8.9	77.7±8.3
Gamulescu et al ^[26] , 2010	Retrospectively	NS	30	30	30.0	36.7	77.2±7	77.5±6
Subramanian <i>et al</i> ^[22] , 2010	RCT	Veterans Affairs Boston Healthcare System Hospital in Massachusetts	7	15	85.7	100.0	80	78
Fong <i>et al</i> ^[27] , 2010	Retrospectively	Kaiser Permanente Southern California	128	324	39.1	43.5	81.8±7	78.2±9.3
Carneiro <i>et al</i> ^[30] , 2010	Retrospectively	Ophthalmology of the Hospital São João	219	97	NS	NS	77.74±7.40	77.82±7.75
Feng et al ^[28] , 2011	Retrospectively	Lions Eye Institute	93	278	39.8	42.1	80.0±7.8	80.0±7.5
Biswas et al ^[29] , 2011	RCT	Tertiary Hospital in Kolkata	54	50	40.7	56.0	63.48	63.36
Shah et al ^[24] , 2009	Retrospectively	NS	49	25	36.7	36.0	77.0±9.08	80.0±7.30
Bellerive et al ^[31] , 2012	Retrospectively	Centre Oculaire de Québec	50	147	29.0	36.0	76.9±8	76.4±8
Martin (monthly) et al ^[32] , 2012	RCT	CATT	301	286	39.2	37.1	79.2±7.4	80.1±7.3
Martin (as needed) et al ^[32] , 2012	RCT	CATT	298	300	37.9	38.7	78.4±7.8	79.3±7.6
Chakravarthy et al ^[33] , 2012	RCT	IVAN	296	314	38.9	41.1	77.8±7.6	77.7±7.2
Sharma <i>et al</i> ^[34] , 2012	Retrospectively cohort study	NS	351	173	36.8	42.2	78.7	76.9
De Bats <i>et al</i> ^[35] , 2012	Retrospectively	Croix-Rousse University Hospital and Édouard- Herriot University Hospital	28	30	39.3	43.3	77	79

NS: Not specified; RCT: Randomized controlled trial; CATT: Comparison of AMD treatments trials; IVAN: Inhibit VEGF in age-related choroidal neovascularization randomized trial.

Figure 1 Flow chart of literature search and study selection.

score of 5, and the other two had a score of 3. For the non-RCTs, one trial had a NOS score of 8, two had a score of 7, each three had a score of 5 and 6, and the remaining one trial had a score of 3. In Tables 3-6 it shows the main

results from each included study for our primary and secondary outcomes.

Visual Acuity and Best Corrected Visual Acuity Figure 2 shows the forest plots of 3 RCTs with 4 populations involving 1410 patients for the effect of VA. The mean difference of VA was not significant between the ranibizumab group and the bevacizumab group (WMD: -0.04; 95%CI: -0.08 to 0.00; P=0.06), with no evidence of heterogeneity ($\Gamma=0\%$, P=0.61). Two studies reported data for the mean BCVA. The pooled result showed that the mean BCVA was not significantly different between the two groups (WMD: -0.05; 95%CI: -0.10 to 0.00; P=0.05, data not shown).

Retina Thickness and Foveal Thickness Figure 3 presents 3 studies involving 1448 patients for the effect of RT. The overall result showed that the mean RT was not significantly thinner in the ranibizumab group than the bevacizumab group (WMD: -4.69; 95%CI: -13.15 to 3.76; P=0.86). This finding was consistent for both RCTs (WMD: -4.83; 95%CI: -13.44 to 3.78; P=0.27) and non-RCTs (WMD: -0.86; 95% CI: -45.62 to 43.90; P=0.97). The heterogeneity test was not significant ($I^2=0\%$, P=0.94).

Figure 4 shows the forest plot of 3 RCT studies and 3 non-RCT studies involving 1588 patients for the effect of FT. The overall result showed that the mean difference of FT was not significant between ranibizumab group and bevacizumab group (WMD: 10.91; 95%CI: -14.73 to 36.56; P=0.40), with a significant heterogeneity ($I^2=84\%$, P< 0.0001). Subgroup analyses showed that the result was

Bevacizumab and ranibizumab for age-related macular degeneration

Table 2 Details in treatment strategy of the included studies

Study	Duration of follow-	ip (mean or range)	Dosage (n	Dosage (mg/0.05mL)			Jadad	NOS
Study	Group R	Group B	Group R	Group B	Group R	Group B	score	1100
Chang <i>et al</i> ^[23] , 2009	3mo	3mo	0.5; 3 injection for every 4wk	1.25; 3 injection for every 6wk	NS	NS		6
Landa et al ^[25] , 2009	9mo 8mo		0.5	1.25	5.5	5.0		7
Gamulescu et al ^[26] , 2010	2-41	no	0.5; injection for every 4wk	1.25; injection for every 4wk	NS	NS		5
Subramanian et al ^[22] , 2010	12n	no	0.51; every month for the first 3mo	1.25; every month for the first 3mo	4.0	8.0	5	
Fong et al ^[27] , 2010	12n	no	NS	NS	6.2	4.4		5
Carneiro et al ^[30] , 2010	286.92±206.05d	286.92±206.05d 832.63±268.73d		NS NS		5.71±3.7		8
Feng et al ^[28] , 2011	12n	no	0.3	0.3 1.25		4.3±1.52		5
Biswas <i>et al</i> ^[29] , 2011	18n	no	0.5; 3 consecutive months	1.25; 3 consecutive months	5.6	4.3	3	
Shah et al ^[24] , 2009	3m	10	NS	NS	NS	NS		3
Bellerive <i>et al</i> ^[31] , 2012	12n	no	0.5; 3 monthly treatments	1.25; 3 monthly treatments	4.9	4.7		6
Martin (monthly) et al ^[32] , 2012	24n	no	0.5; every 28d	1.25; every 28d	NS	NS		
Martin (as needed) <i>et al</i> ^[32] , 2012	24n	no	0.5; signs of active neovascularization	1.25; signs of active neovascularization	NS	NS	5	
Chakravarthy et al ^[33] , 2012	12n	no	0.5	1.25	NS	NS	3	
Sharma et al ^[34] , 2012	12n	no	NS	NS	4.3	4.3		7
De Bats <i>et al</i> ^[35] , 2012	12n	no	0.5; every month	0.5; every month 1.25; every month		4.8		6

NS: Not specified; RCT: Randomized controlled trial; d: Day; CATT: Comparison of AMD treatments trials; IVAN: Inhibit VEGF in age-related choroidal neovascularization randomized trial; NOS: Newcasle-Ottawa scale.

Table 3 Visual results from included studies in the revie	w of ranibizumab and bevacizumal	o for treatment of AMD in RCT
---	----------------------------------	-------------------------------

Study	VA	BCVA
Subramanian <i>et al</i> ^[22] , 2010	Changes in ETDRS letters VA: group B improved from 34.9 ± 14.5 to 42.5 ± 13.7 vs group R improved from 32.7 ± 20.9 to 39 ± 10.1	NS
Biswas <i>et al</i> ^[29] , 2011	NS	After the first 3 injections change in ETDRS letters BCVA: group B improved from 56.80 letters to 61.72 vs group R improved from 58.19 letters to 64. After 18mo change in ETDRS letters BCVA: group B improved from 56.80 letters to 60.76 vs group R improved from 58.19 letters to 61.74
Martin (monthly) <i>et al</i> ^[32] , 2012	Change in ETDRS letters VA: group B improved from 60.2±13.6 letters to 68.2±16.1 <i>vs</i> group R improved from 59.9±14.2 letters to 68.5±18.9	NS
Martin (as needed) et al ^[32] , 2012	Change in ETDRS letters VA: group B improved from 60.6 ± 13.0 letters to 66.0 ± 19.9 vs group R improved from 61.6 ± 13.1 letters to 68.5 ± 15.3	NS
Chakravarthy <i>et al</i> ^[33] , 2012	Change in logMAR VA: group B decreased from 0.67 ± 0.33 to 0.62 ± 0.41 vs group R decreased from 0.66 ± 0.34 to 0.57 ± 0.38	Change in ETDRS letters BCVA: group B improved from 61.6 ± 15.6 letters to 66.1 ± 17.4 vs group R improved from 61.8 ± 15.0 letters to 69.0 ± 16.0

VA: Visual acuity; BCVA: Best corrected visual acuity.

consistent in both RCTs and non-RCTs.

Adverse Events Figure 5 shows the forest plot comparing the safety between ranibizumab and bevacizumab. In the pooled result of 3 RCTs and 1 non-RCT, more patients died in bevacizumab group compared to ranibizumab group. However, this difference was not statistically significant (RR: 0.92; 95%CI: 0.62 to 1.38; P=0.69; Figure 5A), with significant heterogeneity ($I^2=0\%$, P=0.88). The overall result from 3 RCTs and 3 non-RCTs showed that ranibizumab was not associated with a reduction in the risk of arterial thromboembolic events (RR: 0.75; 95%CI: 0.16 to 3.42; P=0.71; Figure 5B), with consistent result in both RCTs and non-RCTs. The risk of ocular inflammation was reported in 2 RCTs and 7 non-RCTs. The overall result showed that ranibizumab was associated with a decreased risk of ocular inflammation compared to bevacizumab (RR: 0.45; 95% CI: 0.23 to 0.89; P=0.02; Figure 5C), without heterogeneity ($I^2=45\%$, P=0.11). However, this finding was only significant in non-RCTs (RR: 0.40; 95% CI: 0.18 to 0.91; P=0.03). Figure 5D shows the forest plot of venous thrombotic events from 2 RCTs involving 1795 patients. The risk of venous thrombotic events was significantly less in the ranibizumab group than the bevacizumab group (RR: 0.27; 95% CI: 0.08 to 0.89; P=0.03). The heterogeneity test was not significant ($I^2=0\%$, P=0.79). Five studies investigated the serious ocular adverse, with four of them having no

Table 4 Measurement of thickness results from included studies in the review of ranibizumab and bevacizumab for treatment of AMD in RCTs

IC IS			
Study	СМТ	CFT	CRT
Subramanian et al ^[22] , 2010	For the baseline: group B (-50 $\mu m)$ vs R group (-90 $\mu m)$	NS	NS
Biswas <i>et al</i> ^[29] , 2011	After 3mo change in CMT: group B decreased from 284 to 209.84 <i>vs</i> group R decreased from 288.63 to 217.07. After 6mo change in CMT: group B decreased from 284 to 225.28 <i>vs</i> group R decreased from 288.63 to 232.37. After 12mo change in CMT: group B decreased from 284 to 257.56 <i>vs</i> group R decreased from 288.63 to 261.04	NS	NS
Martin (monthly) et al ^[32] , 2012	NS	Mean change from baseline group B (-180±196) group R (-190±172)	Mean change from baseline group B (-84±133) group R (-91±152)
Martin (as needed) et al ^[32] , 2012	NS	Mean change from baseline group B (-153±189) group R (-166±190)	Mean change from baseline group B (-84±145) group R (-78±131)
Chakravarthy <i>et al</i> ^[33] , 2012	NS	Change in CFT: group B decreased from 465±184 to 325±134 vs group R decreased from 468±187 to 322±139	Change in CRT: group B decreased from 264±131 to 180±92 vs group R decreased from 271±129 to 172±78

CMT: Central macular thickness; CFT: Central foveal thickness; CRT: Central retina thickness; NS: Not specified.

Table 5 Visual results from	included studies in the review of ranibizumab a	nd bevacizumab for treatment of AMD in non-RCTs
Study	VA	BCVA
Chang <i>et al</i> ^[23] , 2009	After 3 treatments for the baseline: group B improved 4 letters vs group R improved 7 letters	NS
Landa et al ^[25] , 2009	NS	Change in logMAR BCVA: group B decreased from 0.90±0.08 to 0.73 vs group R decreased from 0.91±0.07 to 0.77
Gamulescu <i>et al</i> ^[26] , 2010	NS	After 1mo change in logMAR BCVA: group B decreased from 0.74 to 0.68 vs group R decreased from 0.76 to 0.70. After 2mo change in logMAR BCVA: group B decreased from 0.74 to 0.62 vs group R decreased from 0.76 to 0.63. After 5mo change in logMAR BCVA: group B decreased from 0.74 to 0.62 vs group R decreased from 0.76 to 0.58
Fong <i>et al</i> ^[27] , 2010	Changes in Snellen VA($\geq 20/40$): group B improved from 13.6% to 22.9% vs group R improved from 11.7% to 25%	NS
Carneiro et al ^[30] , 2010	NS	NS
Feng <i>et al</i> ^[28] , 2011	For the baseline: group B 24.5% gained 15 letters or more v_s group R 25.8% gained 15 letters or more	NS
Shah <i>et al</i> ^[24] , 2009	NS	NS
Bellerive <i>et al</i> ^[31] , 2012	Change in logMAR VA: group B improved from 0.70 to 0.67 vs group R improved from 0.69 to 0.55	NS
Sharma <i>et al</i> ^[34] , 2012	NS	NS
De Bats <i>et al</i> ^[35] , 2012	NS	After 1 mo change in logMAR BCVA: group B decreased from 0.70 ± 0.46 to 0.63 ± 0.51 vs group R decreased from 0.55 ± 0.33 to 0.45 ± 0.32 . After 4mo change in logMAR BCVA: group B decreased from 0.70 ± 0.46 to 0.48 ± 0.37 vs group R decreased from 0.55 ± 0.33 to 0.51 ± 0.33 . After 13mo change in logMAR BCVA: group B decreased from 0.70 ± 0.46 to 0.48 ± 0.37 vs group R decreased from 0.55 ± 0.33 to 0.51 ± 0.33 . After 13mo change in logMAR BCVA: group B decreased from 0.70 ± 0.46 to 0.47 ± 0.37 vs group R decreased from 0.55 ± 0.33 to 0.54 ± 0.37 .

VA: Visual acuity; BCVA: Best corrected visual acuity.

events in both groups and one RCT [CATT 2012] indicating that the risk was lower in the ranibizumab group (RR: 0.79; 95%CI: 0.68 to 0.93; P=0.03, data not shown).

DISCUSSION

The studies included in this system review indicate robust efficacy and safety from ranibizumab and bevacizumab treatment based on RCTs and non-RCTs. The results of our meta-analysis suggest that ranibizumab and bevacizumab have equal clinical efficacy. However, the pooled analyses in the evaluation of safety showed that compared to bevacizumab, ranibizumab was associated with decreased risks of ocular inflammation and venous thrombotic events.

Although some systematic reviews investigated the efficacy and safety of ranibizumab and bevacizumab in AMD, the outcomes were assessed separately rather than a direct comparison and the conclusions were based on descriptive analysis ^[36]. In the present study, we included studies that compared the two drugs directly and found that the VA, RT

Table 6 Measurement	of thickness	results from	included	studies in t	he review	of ranibizumab	and bevacizumab	for treatment	of AMD in
non-RCTs									

Study	СМТ	CFT	CRT
Chang <i>et al</i> ^[23] , 2009	NS	For the baseline: group B decreased 20.2% vs group R decreased 29.2%	NS
Landa et al ^[25] , 2009	NS	Change in CFT: group B decreased from 325±72 to 300±69 vs group R decreased from 307±57 to 289±56	NS
Gamulescu <i>et al</i> ^[26] , 2010	NS	NS	Change in CRT: group B decreased from 317.87 ± 105.77 to 264.17 ± 77.72 vs group R decreased from 331.34 ± 157.17 to 263.31 ± 98.01
Fong <i>et al</i> ^[27] , 2010	NS	NS	NS
Carneiro <i>et al</i> ^[30] , 2010	NS	NS	NS
Feng et al ^[28] , 2011	NS	NS	NS
Shah <i>et al</i> ^[24] , 2009	NS	Change in CFT: group B decreased from 288±94 to 246±21 vs group R improved from 278±84 to 241±85	NS
Bellerive <i>et al</i> ^[31] , 2012	NS	NS	NS
Sharma <i>et al</i> ^[34] , 2012	NS	NS	NS
De Bats <i>et al</i> ^[35] , 2012	After 1mo change in CMT: group B decreased from 369 ± 77 to 307 ± 76 vs group R decreased from 340 ± 78 to 286 ± 46 . After 4mo change in CMT: group B decreased from 369 ± 77 to 285 ± 78 vs group R decreased from 340 ± 78 to 299 ± 82 . After 13mo change in CMT: group B decreased from 369 ± 77 to 285 ± 77 to 284 ± 87 vs group R decreased from 369 ± 77 to 284 ± 87 vs group R decreased from 369 ± 77 to 284 ± 87 vs group R decreased from 340 ± 78 to 271 ± 59	After 1mo change in CFT: group B decreased from 258 ± 81 to 203 ± 59 v_{S} group R decreased from 264 ± 87 to 215 ± 60 . After 4mo change in CFT: group B decreased from 258 ± 81 to 198 ± 53 v_S group R decreased from 264 ± 87 to 226 ± 74 . After 13mo change in CFT: group B decreased from 258 ± 81 to 194 ± 67 v_S group R decreased from 258 ± 81 to 194 ± 67 v_S group R decreased from 264 ± 87 to 203 ± 62	NS

CMT: Central macular thickness; CFT: Central foveal thickness; CRT: Central retina thickness; NS: Not specified.

	Rani	bizum	nab	Bevacizumab			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Tota	Mean	SD	Tota	Weight	IV, Fixed, 95% (CI IV, Fixed, 95% CI
1.6.1 RCT									
CATT(as needed) 2012	0.33	0.31	264	0.38	0.4	251	38.3%	-0.05 [-0.11, 0.01]] — — — — — — — — — — — — — — — — — — —
CATT(monthly) 2012	0.33	0.38	134	0.34	0.32	129	20.5%	-0.01 [-0.09, 0.07	
IVAN 2012	0.57	0.38	296	0.62	0.41	314	37.5%	-0.05 [-0.11, 0.01	j — — — — — — — — — — — — — — — — — — —
Subramanian 2010	0.92	0.2	7	0.85	0.27	15	3.6%	0.07 [-0.13, 0.27	
Subtotal (95% CI)			701			709	100.0%	-0.04 [-0.08, 0.00]	I →
Heterogeneity: Chi ² = 1.8	1, df = 3	(P = 0)	.61); I ^z	= 0%					
Test for overall effect: Z =	= 1.91 (P	= 0.06	5)						
Total (95% CI)			701			709	100.0%	-0.04 [-0.08, 0.00]	• •
Heterogeneity: Chi ² = 1.8	1, df = 3	(P = 0	.61); Iª	= 0%					
Test for overall effect: Z =	= 1.91 (P	= 0.08	ŋ						-U.2 -U.1 U U.1 U.2
Test for subaroup differer	nces: No	t applie	able						r avours experimental Favours control

Figure 2 Forest plots for WMD of visual acuity after surgery comparing ranibizumab to bevacizumab.

and CFT of ranibizumab in the treatment of AMD were, at least, equivalent to those of bevacizumab.

The epitopes of ranibizumab and bevacizumab locate in the receptor-binding region of VEGF, and both antibodies target VEGF in a similar way^[37]. However, bevacizumab (149 kDa) and ranibizumab (48.39 kDa) have different molecular weights, mainly because ranibizumab does not contain an Fc part. Moreover, bevacizumab is produced in a eukaryotic cell line and is N-glycosylated in its Fc region, but ranibizumab is expressed in prokaryotic E. coli without any glycosylation sites ^[38]. Therefore, the various molecular mechanisms of the drugs might result in different efficacy. Debates remained in the past years on whether ranibizumab or bevacizumab is

superior in treating AMD. Chang *et al*^[23] argued that being a smaller molecule, it is easier for ranibizumab to permeate the retina and inhibit abnormal blood vessel growth, thus leading to a better short-term efficacy of ranibizumab compared to bevacizumab. On the contrary, bevacizumab was found to be superior in long-term effects because of its decreased clearance from eye due to the larger size, and the consequent high accumulation in retinal pigment epithelial (RPE) cells^[39]. In our study, no difference was observed between ranibizumab and bevacizumab in terms of efficacy, likely that many mechanisms interplay in the clinical practice and the management is perhaps more complicated than we assumed. More standard clinical trials are needed to be done

	Ranibizumab			Beva	ocizuma	b		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Tota	Mean	SD	Total	Weight	IV. Fixed. 95% C	I IV. Fixed, 95% CI
1.9.1 RCT									
CATT(as needed) 2012	167	75	264	169	83	251	38.2%	-2.00 [-15.69, 11.69]	
CATT(monthly) 2012	162	81	134	166	79	1 29	19.1%	-4.00 [-23.34, 15.34]	
IVAN 2012	172	78	296	180	92	314	39.2%	-8.00 [-21.51, 5.51]	
Subtotal (95% CI)			694			694	96.4%	-4.83 [-13.44, 3.78]	•
Heterogeneity: Chi ² = 0.38	3, df = 2 (P	= 0.83); I ² = 0	1%					
Test for overall effect: Z =	1.10 (P =	0.2 7)							
1.9.2 non-RC T									
Gamulescu 2009	263.31	98.01	30	264.17	77.72	30	3.6%	-0.86 [-45.62, 43.90]	
Subtotal (95% CI)			30			30	3.6%	-0.86 [-45.62, 43.90]	
Heterogeneity: Not applica	able								
Test for overall effect: Z =	0.04 (P =	0.9 7)							
Total (95% CI)			724			724	100.0%	-4.69 [-13.15, 3.76]	•
Heterogeneity: Chi ² = 0.41	l, df = 3 (P	= 0.94	l); l² = 0	1%					
Test for overall effect: Z =	1.09 (P =)	0.28)							-30 -23 U 25 50
Test for subaroup differen	ces: Chiª=	0.03.	df = 1 (P = 0.86	i). I² = 0°	%			ravours experimental Favours control

Figure 3 Forest plots for WMD of central foveal thickness after surgery comparing ranibizumab to bevacizumab.

	Ranibizumab Bevacizumab				ab		Mean Difference	Mean Difference		
Study or Subgroup	Mean	SD	Tota	Mean	SD	Total	Weight	IV. Random, 95% (CI IV. Random, 95% CI	
1.8.1 RCT										
CATT(as needed) 2012	293	1 29	264	306	134	251	17.6%	-13.00 [-35.74, 9.74]	ıj — ■ +	
CATT(monthly) 2012	267	143	134	174	137	1 29	15.0%	93.00 [59.16, 126.84]	.j	-
IVAN 2012	325	134	296	322	139	314	17.8%	3.00 [-18.67, 24.67]	n — —	
Subtotal (95% CI)			694			694	50.4%	26.12 [-28.19, 80.42]		
Heterogeneity: Tau ² = 212	0.64; Cł	ni " = 2	7.31, di	f=2(P <	< 0.000	001); P	= 93%			
Test for overall effect: Z =	0.94 (P	= 0.35	5							
1.8.2 non-RC T										
Bats 2012	203	62	28	194	67	30	15.2%	9.00 [-24.20, 42.20]	Ŋ	
Landa 2009	289	56	31	300	69	37	16.0%	-11.00 [-40.71, 18.71]]	
Shah 2012	241	58	49	246	21	25	18.5%	-5.00 [-23.21, 13.21]	1 -	
Subtotal (95% CI)			108			92	49.6%	-3.83 [-17.89, 10.23]	1 🕈	
Heterogeneity: Tau ² = 0.0	0; Chi²=	0.81,	df = 2	(P = 0.6)	7); l² =	0%				
Test for overall effect: Z =	0.53 (P	= 0.59	0							
Total (95% CI)			802			786	100.0%	10.91 [-14.73, 36.56]	1	
Heterogeneity: Tau ² = 840	1.49; Chi	^e = 30.	.73, df :	= 5 (P <	0.0001	l); I*= (84%		-100 -50 0 50 100	-
Test for overall effect: Z =	0.83 (P	= 0.40	Ŋ						Favours experimental Favours control	

Figure 4 Forest plots for WMD of central retina thickness after surgery comparing ranibizumab to bevacizumab.

to conclude superiority.

Recently, intravitreal anti-VEGF drug injection has been reported with complications and adverse events, mainly including subconjunctival hemorrhage, cornea tear, ocular inflammation, uveitis, retinal detachment and cataract^[40,41]. Some studies compare PDT with either intravenous ranibizumab or bevacizumab [42-45]. Intravitreal injection of ranibizumab was reported to be associated with endophthalmitis ($\leq 2.1\%$), uveitis ($\leq 1.3\%$), retinal detachment ($\leq 1.5\%$), retinal tear ($\leq 1.9\%$) and vitreous hemorrhage ($\leq 8.0\%$) ^[42-44]. Compared to PDT group, an increase rate of pigment epithelial tears (5.5% vs 0.0%), posterior vitreous detachment (14.6% vs 0.0%) or cataract progression (7.3% vs 0.0%) was found in bevacizumab group in one RCT ^[45]. Although many studies assessed the safety of ranibizumab or bevacizumab comparing to control group, the comparison was not direct and likely led to an inconclusive result. In a previous meta-analysis, Schmucker et al [46] found that the difference of arterial thromboembolic events, serious nonocular hemorrhage and death were not statistically significant between the two drugs. But a pooled

analysis of serious ocular adverse events indicated a significantly increased RR for bevacizumab when compared to ranibizumab ^[47]. In combination of 2-year follow-up result of CATT study and the new RCT IVAN trial, we found a higher risk of bevacizumab in ocular inflammation and venous thrombotic events, indicating a better safety profile of ranibizumab in AMD patients^[32,33]. There were no substantial imbalances in demographic or ocular characteristics at baseline, indicating that the increased incidence of venous thrombosis is the result of truly higher risk. Regarding the safety profile of the two drugs, a previous meta-analysis including 11 studies, found that an increased risk of ocular and multiple systemic ocular adverse effects with bevacizumab, strengthening the better safety profile of R^[47]. With equal efficacy and better safety profile compared to bevacizumab, ranibizumab seems to be the prior choice of AMD. However, the issue of expensiveness remains with ranibizumab.

Additionally, in some studies the effect of ranibizumab and bevacizumab on retinal conditions was compared. Singer *et al* ^[48] concluded that in patients with retinal vein

Figure 5 Forest plots: pooled results of head-to-head studies for different safety outcomes A: Death (any cause); B: Arterial ihromboembolic events; C: Ocular inflammation; D: Venous thrombotic events.

occlusions, ranibizumab appeared to have a greater short-term effect in decreasing macular edema on OCT when compared to bevacizumab. In another study by Niederhauser *et al*^[49], the effect of bevacizumab or ranibizumab on visual acuity and central foveal thickness was evaluated in macular edema also resulted from retinal vein occlusion ^[48]. However no significant differences between bevacizumab and ranibizumab were found in the study^[49]. The present study had several limitations. First, the publication bias cannot be fully ruled out. The number of studies included is insufficient to carry out a further statistical analysis to detect publication bias through asymmetry plot. Second, the studies included were heterogeneous in terms of study location, population and basal condition. We were not able to use individual-level data to improve the quality of adjustment and the precision of estimates. Finally, the delay between literature search and publication was inevitable.

ACKNOWLEDGEMENTS

Conflicts of Interest: Zhang XY, None; Guo XF, None; Zhang SD, None; He JN, None; Sun CY, None; Zou Y, None; Bi HS, None; Qu Y, None, Wang HL, None; Li RX, None.

REFERENCES

1 Friedman DS, O'Colmain BJ, Muñoz B, Tomany SC, McCarty C, de Jong PT, Nemesure B, Mitchell P, Kempen J. Prevalence of age-related macular degeneration in the United States. *Arch Ophthalmol* 2004;122(4):564–572 2 Evans J, Wormald R. Is the incidence of registrable age-related macular degeneration increasing? *Br.J Ophthalmol* 1996;80(1):9–14

3 VanNewkirk M, Weih LM, McCarty CA, Taylor HR. Cause-specific prevalence of bilateral visual impairment in Victoria, Australia: the visual impairment project. *Ophthalmology* 2001;108(5):960-967

4 Resnikoff S, Pascolini D, Etya'ale D, Kocur I, Pararajasegaram R, Pokharel GP, Mariotti SP. Global data on visual impairment in the year 2002. *Bull World Health Organ* 2004;82(11):844-851

5 Chew EY, Lindblad AS, Clemons T. Summary results and recommendations from the age-related eye disease study. *Arch Ophthalmol* 2009;127(12):1678-1679

6 Chakravarthy U, Wong TY, Fletcher A, Piault E, Evans C, Zlateva G, Buggage R, Pleil A, Mitchell P. Clinical risk factors for age-related macular degeneration: a systematic review and meta-analysis. *BMC Ophthalmol* 2010;10:31

7 Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. *Nature Medicine* 2003;9(6):669-676

8 Kliffen M, Sharma HS, Mooy CM, Kerkvliet S, De Jong PTVM. Increased expression of angiogenic growth factors in age-related maculopathy. *Br J Ophthalmol* 1997;81(2):154-162

9 Emerson MV, Lauer AK. Current and emerging therapies for the treatment of age-related macular degeneration. *Clin Ophthalmol* 2008;2 (2):377-388

10 Kroll P, Meyer CH. Which treatment is best for which AMD patient. *Br.J. Ophthalmol* 2006;90(2):128–130

11 Gragoudas ES, Adamis AP, Cunningham ET Jr, Feinsod M, Guyer DR. Pegaptanib for neovascular age-related macular degeneration. *N Engl J Med* 2004;351(27):2805-2816

12 Mir O, Alexandre J, Coriat R, Ropert S, Boudou-Rouquette P, Bui T, Chapron J, Durand JP, Dusser D, Goldwasser F. Safety of bevacizumab 7.5 mg/kg infusion over 10 minutes in NSCLC patients. *Invest New Drugs* 2012;30(4):1756-1760

13 Yeung YA, Wu X, Reyes AE 2nd, Vernes JM, Lien S, Lowe J, Maia M, Forrest WF, Meng YG, Damico LA, Ferrara N, Lowman HB. A therapeutic anti–VEGF antibody with increased potency independent of pharmacokinetic half–life. *Cancer Res* 2010;70(8):3269–3277

14 Rosenfeld PJ, Moshfeghi AA, Puliafito CA. Optical coherence tomography findings after an intravitreal injection of bevacizumab (Avastin) for neovascular age-related macular degeneration. *Ophthalmic Surg Lascrs Imaging* 2005;36(4):331-335

15 Schmucker C, Ehlken C, Hansen LL, Antes G, Agostini HT, Lelgemann M. Intravitreal bevacizumab (Avastin) *vs* ranibizumab (Lucentis) for the treatment of age-related macular degeneration: a systematic review. *Curr* Opin Ophthalmol 2010;21(3):218-226

16 Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY. Ranibizumab for neovascular age-related macular degeneration.

 $NEngl JMcd \, 2006; 355(14): 1419-1431$

17 Steinbrook R. The price of sight-ranibizumab, bevacizumab, and the treatment of macular degeneration. *NEngl J Med* 2006;355(14): 409-1412 18 Harvey KJ, Day RO, Campbell WG, Lipworth W. Saving money on the PBS: ranibizumab or bevacizumab for neovascular macular degeneration? *Med J Aust* 2011;194(11):567-568

19 Martin DF, Maguire MG, Ying GS, Grunwald JE, Fine SL, Jaffe GJ. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. *N Engl J Med* 2011;364(20):1897-1908

20 Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, McQuay HJ. Assessing the quality of reports of randomized clinical trialss blinding necessary? *Controlled Clin Trial* 1996;17(1):1–12

21 Stang A. Critical evaluation of the Newcastle–Ottawa scale for the assessment of the quality of nonrandomized studies in meta–analyses. *Eur J Epidemiol* 2010;25(9):603–605

22 Subramanian ML, Ness S, Abedi G, Ahmed E, Daly M, Feinberg E, Bhatia S, Patel P, Nguyen M, Houranieh A. Bevacizumab *is*ranibizumab for age-related macular degeneration: early results of a prospective double-masked, randomized clinical trial. *Eye (Lond)* 2010;24 (11): 1708–1715

23 Chang TS, Kokame G, Casey R, Prenner J, Feiner L, Anderson N. Short-term effectiveness of intravitreal bevacizumab versus ranibizumab injections for patients with neovascular age-related macular degeneration. *Retina* 2009;29(9):1235–1241

24 Shah AR, Del Priore LV. Duration of action of intravitreal ranibizumab and bevacizumab in exudative AMD eyes based on macular volume measurements. *Br.J. Ophthalmol* 2009;93(8):1027-1032

25 Landa G, Amde W, Doshi V, Ali A, McGevna L, Gentile RC, Muldoon TO, Walsh JB, Rosen RB. Comparative study of intravitreal bevacizumab (Avastin) versus ranibizumab (Lucentis) in the treatment of neovascular age-related macular degeneration. *Ophthalmologica* 2009;223(6):370–375 26 Gamulescu MA, Radeck V, Lustinger B, Fink B, Helbig H. Bevacizumab versus ranibizumab in the treatment of exudative age-related macular degeneration. *Int Ophthalmol* 2010;30(3):261–266

27 Fong DS, Custis P, Howes J, Hsu JW. Intravitreal bevacizumab and ranibizumab for age-related macular degeneration a multicenter, retrospective study. *Ophthalmology* 2010;117(2):298-302

28 Feng XF, Constable IJ, McAllister IL, Isaacs T. Comparison of visual acuity outcomes between ranibizumab and bevacizumab treatment in neovascular age-related macular degeneration. *Int J Ophthalmol* 2011;4 (1):85-88

29 Biswas P, Sengupta S, Choudhary R, Home S, Paul A, Sinha S. Comparative role of intravitreal ranibizumab versus bevacizumab in choroidal neovascular membrane in age-related macular degeneration. *Indian J Ophthalmol* 2011;59(3):191-196

30 Carneiro AM, Barthelmes D, Falcão MS, Mendonça LS, Fonseca SL, Gonçalves RM, Faria-Correia F, Falcão-Reis FM. Arterial thromboembolic events in patients with exudative age-related macular degeneration treated with intravitreal bevacizumab or ranibizumab. *Ophthalmologica* 2011;225 (4):211–221

31 Bellerive C, Cinq-Mars B, Lalonde G, Malenfant M, Tourville E, Tardif Y, Giasson M, Hébert M. Bevacizumab and ranibizumab for neovascular age-related macular degeneration: a treatment approach based on individual patient needs. *Can J Ophthalmol* 2012;47(2):165–169

32 Martin DF, Maguire MG, Fine SL, Ying GS, Jaffe GJ, Grunwald JE, Toth C, Redford M, Ferris FL 3rd. Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. *Ophthalmology* 2012;119(7):1388-1398

Bevacizumab and ranibizumab for age-related macular degeneration

33 Chakravarthy U, Harding SP, Rogers CA, Downes SM, Lotery AJ, Wordsworth S, Reeves BC. Ranibizumab versus bevacizumab to treat neovascular age-related macular degeneration: one-year findings from the IVAN randomized trial. *Ophthalmology* 2012;119(7):1399-1411

34 Sharma S, Johnson D, Abouammoh M, Hollands S, Brissette A. Rate of serious adverse effects in a series of bevacizumab and ranibizumab injections. *Can J Ophthalmol* 2012;47(3):275-279

35 De Bats F, Grange JD, Cornut PL, Feldman A, Burillon C, Denis P, Kodjikian L. Bevacizumab versus ranibizumab in the treatment of exudative age-related macular degeneration: A retrospective study of 58 patients. *JFr*. *Ophtalmol* 2012;35(9):661–666

36 Abouammoh M, Sharma S. Ranibizumab versus bevacizumab for the treatment of neovascular age-related macular degeneration. *Curr Opin Ophthalmol* 2011;22(3):152-158

37 Van der Reis MI, La Heij EC, De Jong-Hesse Y, Ringens PJ, Hendrikse F, Schouten JS. A systematic review of the adverse events of intravitreal anti-vascular endothelial growth factor injections. *Rctina* 2011; 31(8):1449-1469

38 Zou L, Lai H, Zhou Q, Xiao F. Lasting controversy on ranibizumab and bevacizuma. *Theranostics* 2011;1:395-402

39 Chou R, Aronson N, Atkins D, Ismaila AS, Santaguida P, Smith DH, Whitlock E, Wilt TJ, Moher D. Assessing harms when comparing medical interventions: AHRQ and the Effective Health-Care Program. *J Clim Epidemiol* 2010;63(5):502-512

40 Ladas ID, Karagiannis DA, Rouvas AA, Kotsolis AI, Liotsou A, Vergados I. Safety of repeat intravitreal injections of bevacizumab versus ranibizumab: our experience after 2000 injections. *Retina* 2009;29 (3): 313–318

41 Martinez-Carpio PA, Bonafonte-Morquez E, Heredia-Garcla CD, Bonafonte-Royo S. Efficacy and safety of intravitreal injection of bevacizumab in the treatment of neovascular glaucoma: systematic review. *Arch Soc Esp Oftalmol* 2008;83(10):579–588

42 Brown D, Michels M,Kaiser PK, Heier JS, Sy JP, Ianchulev T. Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study. *Ophthalmology* 2009;116(1):57-69

43 Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY. Ranibizumab for neovascular age-related macular degeneration. *N Engl J Med* 2006;355(14):1419-1431

44 Bashshur ZF, Schakal A, Hamam RN, El Haibi CP, Jaafar RF, Noureddin BN. Intravitreal bevacizumab *rs* verteporfin photodynamic therapy for neovascular age-related macular degeneration. *Arch Ophthalmol* 2007;125(10):1357-1361

45 Lazic R, Gabric N. Verteporfin therapy and intravitreal bevacizumab combined and alone in choroidal neovascularization due to age-related macular degeneration. *Ophthalmology* 2007;114(6):1179-1185

46 Schmucker C, Ehlken C, Agostini HT, Antes G, Ruecker G, Lelgemann M, Loke YK. A safety review and meta-analyses of bevacizumab and ranibizumab: off-label versus goldstandard. *PloS One* 2012;(8):e42701

47 Magdelaine-Beuzelin C, Pinault C, Paintaud G, Watier H. Therapeutic antibodies in ophthalmology: old is new again. *MAhs* 2010;2(2):176-180

48 Singer MA, Cohen SR, Groth SL, Porbandarwalla S. Comparing bevacizumab and ranibizumab for initial reduction of central macular thickness in patients with retinal vein occlusions. *Clin Ophthalmol* 2013;7: 1377–1383

49 Niederhauser N, Valmaggia C. Bevacizumab and ranibizumab for macular edema due to retinal vein occlusions. *Klin Monhl Augenheilkd* 2013;230(4):405-408