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Abstract
● AIM: To identify the potentially pathogenic gene variants 
that contributes to the etiology of strabismus. 
● METHODS: A Chinese pedigree with strabismus was 
collected and the exomes of two affected individuals 
were sequenced using the next-generation sequencing 
technology. The resulting variants from exome sequencing 
were filtered by subsequent bioinformatics methods and 
the candidate mutation was verified as heterozygous in the 
affected proposita and her mother by sanger sequencing.
● RESULTS: Whole exome sequencing and filtering identified 
a nonsynonymous mutation c.434G-T transition in paired 
box 3 (PAX3) in the two affected individuals, which were 
predicted to be deleterious by more than 4 bioinformatics 
programs. This altered amino acid residue was located in 
the conserved PAX domain of PAX3. This gene encodes a 
member of the PAX family of transcription factors, which 
play critical roles during fetal development. Mutations in 
PAX3 were associated with Waardenburg syndrome with 
strabismus.
● CONCLUSION: Our results report that the c.434G-T 
mutation (p.R145L) in PAX3 may contribute to strabismus, 
expanding our understanding of the causally relevant 
genes for this disorder.
● KEWORDS: strabismus; whole exome sequencing; paired 
box 3
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INTRODUCTION

Strabismus is a common ocular disorder which is 
characterized by the misalignment of the eyes[1-4]. 

Strabismus is often associated with amblyopia of children, 
which can cause visual disturbance[1]. It is reported that the 
prevalence of strabismus is 2.4% in Hispanic/Latinos, 2%-4% 
in Caucasians, 2.5% in African-Americans, and 1% in East-
Asians[5-8]. Additionally, the incidence of specific types of 
strabismus also shows differences in different racial groups, in 
which Asian strabismus are exotropia, suggesting the relevance 
of genetic factors[9-11]. Summing data from the medical 
literature show that the etiology of strabismus has a genetic 
component because the familial clustering of strabismus has 
been recognized[12-13]. 
Three inheritance patterns including dominant, recessive 
and sex-linked have been associated with nonsyndromic 
strabismus in family studies[14-15]. Parikh et al[16] found that a 
family of nonsyndromic strabismus conformed to the recessive 
inheritance model, and they identified susceptibility locus 
7p22.1 with a multipoint LOD score of 4.51. However, linkage 
to 7p in 6 other families was not observed. In addition, 7p22.1 
of dominant inheritance model, 16p13.12-p12.3 of recessive 
inheritance model and 4q28.3 dominant inheritance model has 
been selected as comitant strabismus associated locus[17-19]. 
Considering the genetic heterogeneity among families, the 
identity of the relevant candidate genes remains a challenge. 
Further work should be conducted to identify more causally 
relevant genes, improving the understanding of this disorder.
After the exciting finding that exomes sequencing was first 
developed in 2009[20], exome sequencing was widely used to 
locate causative genes in rare Mendelian diseases or complex 
diseases with high sensitivity and specificity[21-25]. Advances in 
genetic methodology may provide insight into the genetic basis 
for inherited strabismus. In the current study, we used whole 
exome sequencing to identify the causative gene for the two 
affected individuals in a Chinese strabismus family. Several 
evidences supported the causal role of paired box 3 (PAX3) in 
strabismus susceptibility.
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SUBJECTS AND METHODS
Subjects  For the purpose of this study, a three-generation 
Chinese strabismus family with two affected individuals was 
recruited (Sample II:2 and III:1) (Figure 1A). The proposita 
was a 7-year-old girl from Shandong Province who presented 
with intermittent exotropia of unknown etiology, leading to 
amblyopia (uniocular visual neglect). Once she was tired, one 
of the eyes will turn outwards intermittently when looking 
into the distance. The amount of tropia was -50△ (near) and 
-50△ (far) and the unaided visual acuity was 1.0 in the right 
eye and 1.0 in the left eye. Moreover, her mother was 35-year-
old and also presented with intermittent exotropia with similar 
phenotypes. The amount of tropia was -40△ (near) and -40△ 
(far). Her best-corrected visual acuity was OD 1.0 and OS 1.0. 
Given the high suspicion for a congenital strabismus family, 
the two affected individuals were enrolled for the exome 
sequencing screen. Peripheral blood samples were collected 
in EDTA tubes from the participants for DNA extraction. 
The written informed consent was then obtained from study 
subjects or guardian before the study. Our study was approved 
by the Ethics Committee of the Affiliated Hospital of Qingdao 
University (2015-012).
Exome Capture Analysis  Genomic DNA was extracted 
from the blood samples obtained from the available patients 
according to the standard procedures. The 2 μg of genomic 
DNA was fragmented with about 200 bp, then ligated with 
adapters and amplified by ligation-mediated polymerase 
chain reaction (PCR). The qualified genomic DNA was used 
for exome capture and high-throughput sequencing. Agilent 
SureSelect Human All Exon 50 Mb Exon Kit was used to 
perform exome target enrichment. The captured library was 
sequenced on the Illumina HiSeq 2500 Sequencer with paired-
end 125 bp and mean coverage of 100X. 

Variant Calling and Filtering  Raw data of exome sequencing 
was filtered by removing adapter, contaminating reads and low 
quality reads, and remains were the clean ones. The exome 
sequencing clean reads were mapped to the reference human 
genome sequence (hg19) (http://genome.ucsc.edu/) using the 
Burrows-Wheeler Alignment (BWA) tool, which can do short 
reads alignment to a reference genome and support paired-end 
mapping[26]. The sequence alignment/map (SAM) file was then 
generated. Picard was used to mark and exclude the duplicate 
reads. Variants [single nucleotide variants (SNVs), insertions 
and deletions] calling was performed using the Genome 
Analysis Toolkit (GATK)[27] and MuTect software[28]. 
To pinpoint the functionally important variants, the resulting 
SNVs were annotated with ANNOVAR tool (http://www.
openbioinformatics.org/annovar/)[29], and the information 
for variant frequencies and location within genes were 
obtained. Moreover, the SNVs were sequentially filtered and 
given higher priority with the following criteria: 1) minor 
allele frequency (MAF) <0.01 in 1000 genomes project; 2) 
nonsynonymous SNVs; 3) damaging as predicted by more 
than 4 bioinformatics programs (e.g. SIFT, Polyphen2, LRT, 
MutationTaster, MutationAssessor, FATHMM, RadialSVM, 
LR); 4) consistent with model of dominant disease 
transmission. Besides, more than 5X coverage of the given 
positions were required for genotype calling. 
Variant Validation  To validate the variants identified through 
exome sequencing, candidate SNVs were selected and sanger 
sequencing was performed at Majorbio (Shanghai, China). 
Peripheral blood samples were obtained from additional 7 
affected individuals and 3 unaffected individuals. Genomic 
DNA was extracted and SNVs were tested in the original 
two individuals who underwent exome sequencing and ten 

Figure 1 The analysis of PAX3 in strabismus  A: Pedigree for the Chinese family with strabismus, individuals II:2 and III:1 underwent 
exome sequencing; B: Affected amino acid residue was highly conserved across species; C: Conserved domains in PAX3. The mutation 
c.434G-T (p.145R-L) was located in the conserved PAX domain of PAX3.

Paired box 3 variant responsible for strabismus
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additional individuals. Oligonucleotide primers for PCR were 
designed by well-known program Primer 3[30]. 
Silico Analysis  Protein conservation was analyzed using the 
multiple alignment tools (https://blast.ncbi.nlm.nih.gov/Blast.
cgi). The affected residue was visualized using MEGA7.0. 
The conserved domains present in the protein sequence were 
identified using the Conserved Domain Search Service (http://
www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi).
RESULTS
Exome Sequencing Identifies a Candidate Gene  The whole 
exomes of II:2 and III:1 were sequenced, followed by variant 
detection and filtering. Totally, we generated 10.58 Gb and 
20.18 Gb raw sequences as paired-end 125 bp reads for II:2 
and III:1, respectively. After removing adapter, contaminating 
reads and low quality reads, 10.42 Gb and 19.85 Gb clean data 
were retained. Above 98% clean reads can be aligned to the 
human reference sequence (Table 1). The exome sequencing 
led to the detection of 525787 SNVs. 
Considering that a causal mutation is usually a rare variant or 
novel in the known database, the SNVs with global MAF>0.01 
in 1000 genomes project were excluded and 111 738 SNVs 
were retained. Among the variants identified through exome 
sequencing, we focused on the 1340 nonsynonymous SNVs in 
exonic region, which can alter the coding sequence and were 
more likely associated with the disease. With the assumption 
of dominant-inherited mode of the strabismus pedigree, 193 
SNVs were retained which were shared by the two affected 
individuals. It is well known that most pathogenic variants 
are predicted to be deleterious. Total of eight bioinformatics 
programs were used to assess the likely functional impact 
of nonsynonymous SNVs. Further filtering resulted in a list 
of 27 SNVs that were damaging as predicted more than 4 
bioinformatics programs (Table 2). Given that strabismus 
is an eye development disease, we surveyed the literature 
and narrowed down the gene list to two genes of PAX3 and 
MYO10 that may be associated with strabismus. 
MYO10 encodes a member of the myosin superfamily. 
Myosins are actin-dependent molecular motors that play 
important roles in muscle contraction. The head domain is a 
molecular motor, which utilizes ATP hydrolysis to generate 
directed movement toward the plus end along actin filaments. 
A cyclical interaction between myosin and actin provided the 
driving force for movement of the extraocular muscles[31-32]. 
The mutation of c.493G>A in MYO10 (p.E165K) was highly 

conserved and the altered amino acid residue (p.E165K) 
was located in the conserved motor domain. Even so, the 
association of MYO10 and strabismus has not been reported. 
Therefore, the candidate mutant in MYO10 was further 
excluded.
PAX3 is a member of the PAX family of transcription factors, 
which play critical roles during fetal development. Mutations 
in PAX3 were associated with Waardenburg syndrome with 
strabismus, and associated with craniofacial-deafness-hand 
syndrome with short palpebral fissures and hypertelorism. 
Considering that, we speculated that the mutant c.G434T 
(p.R145L) in PAX3 was the most likely causative gene mutant 
in this Chinese strabismus pedigree. The mutation of c.G434T 
in PAX3 was highly conserved (Figure 1B) and the altered 
amino acid residue (p.R145L) was located in the conserved 
PAX domain (Figure 1C).
Sanger Sequencing of the Candidate Causative Variants  
To further confirm the variant of c.434G>T in PAX3 in 
strabismus, Sanger sequencing was performed in additional 
ten individuals. The results showed that the variants were not 
observed in additional ten individuals with strabismus, strongly 
supporting the genetic heterogeneity of strabismus.
DISCUSSION
Strabismus was a large group of ophthalmic diseases with 
genetic heterogeneity among families. Accumulating 
evidences have suggested that the etiology of strabismus has 
important genetic factors[12-13,33]. While only the susceptibility 
locus 7p22.1 was reported[16], leaving the genetic basis of this 
disorder remains unclear and challenging. In the present study, 
we enrolled two individuals with strabismus in a Chinese 
strabismus pedigree. In this pedigree, the proposita and her 
mother were diagnosed as intermittent exotropia. We suggested 
this was a congenital strabismus family and it was consistent 
with the model of dominant disease transmission. Therefore, 
exome sequencing was ideally suited to screen for the causal 
genes of the strabismus pedigree. Our result identified a novel 
heterozygous mutation in PAX3 (c.G434T; p.R145L), which 
was not reported in dbSNP 138, 1000 genome project or 
ESP6500. This change may be associated with strabismus. 
The pathology of strabismus inheritance was complex[15,34-35]. 
In the current study, genetic analysis was conducted on a 
Chinese strabismus pedigree, and a mutation in PAX3 was 
identified that may be responsible for hereditary susceptibility 
of strabismus. PAX3 encoded a member of PAX family of 

Table 1 Summary of exome sequencing data

Sample Raw data 
(Gb)

Clean data 
(Gb)

Map bases rate 
(%)

Target region map 
bases (Gb)

Target region map 
bases rate (%)

Coverage 
(%) Mean depth

II:2 10.58 10.42 99.04 5.89 56.53 81.37 104.23

III:1 20.18 19.85 98.27 11 55.42 84.94 186.56

Average 15.38 15.135 98.655 8.445 55.975 83.155 145.395
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transcription factors, which played critical roles during fetal 
development. PAX3 gene contained 10 exons[36-37] and was 
mapped to chromosome 2q35[38]. The human PAX3 gene 
contained a PAX and a paired-type homeobox. Molecular 
genetic studies were conducted and a series of variations in 
the PAX3 gene were gradually identified in unrelated patients or 
family patients with Waardenburg syndrome type 1[39-44]. In vitro 
functional expression studies showed that the mutant proteins 
of PAX3 had decreased or abolished ability to transactivate 
the MITF promoter[45]. Watanabe et al[46] found that its paired 
domain or the homeodomain failed to transactivate the MITF 
promoter, causing Waardenburg syndrome in some individuals. 
Experiments on the mouse mutant splotch of Waardenburg 
syndrome showed that mutations in PAX3 were associated with 
Waardenburg syndrome that was related to human strabismus 
phenotypes[39,47-48]. Here, we identified the conserved domains 
present in the protein sequence of PAX3 and found that the 

candidate causal mutation of PAX3 (c.G434T; p.R145L) was 
located in the conserved PAX domain. These findings supported 
our PAX3 variant as the likely causative mutation, which may 
play roles in the pathological mechanism of strabismus. 
Ridgeway and Skerjanc[49] suggested that strabismus was 
associated with an imbalance between convergence and 
divergence. More evidences indicated that ocular alignment 
depended on complex sensory, motor pathways, and the 
development and function of the extraocular muscles. The 
expression of PAX3 can control a cascade of transcriptional 
events, which are necessary for myogenesis[49]. The absence 
of PAX3 can arrest the muscle development[50]. PAX3/
FKHR fusion protein activated a myogenic transcription 
program involved in several aspects of muscle function[51-53]. 
The chimeric protein PAX3-FOXO1 was the most common 
genetic aberration in rhabdomyosarcoma. Roeb et al[54] found 
that myoblasts from transgenic mice expressing PAX3/

Table 2 Deleterious rare variants (MAF<0.01) identified in the family with strabismus

Chr Position Ref Var Gene Variant type Amino acid 
change

1000 genome
frequency

EA-ESP
frequency rs

1 40422828 C T MFSD2A Nonsynonymous p.P55S 0.000399 - rs181094032

1 45797401 G A MUTYH Nonsynonymous p.A345V 0.001398 - rs35352891

2 74474313 C T SLC4A5 Nonsynonymous p.E637K - - -

2 223160264 C A PAX3 Nonsynonymous p.R145L - - -

3 156979081 G A VEPH1 Nonsynonymous p.R782C 0.000399 - rs199678437

4 6302757 T C WFS1 Nonsynonymous p.V412A 0.001398 - rs144951440

4 57340223 T C SRP72 Nonsynonymous p.Y120H 0.0002 - -

4 74442424 T A RASSF6 Nonsynonymous p.D215V 0.000399 - rs200656717

4 103647776 C T MANBA Nonsynonymous p.S81N - - rs372866446

5 896841 C A TRIP13 Nonsynonymous p.P107H - - -

5 16783553 C T MYO10 Nonsynonymous p.E165K - - -

5 96329584 G T LNPEP Nonsynonymous p.R439L 0.0002 - -

6 75804894 C G COL12A1 Nonsynonymous p.G1696A - - -

8 33449641 C T DUSP26 Nonsynonymous p.V176M 0.0002 - -

11 73717970 G A UCP3 Nonsynonymous p.R40C 0.0002 0.000077 rs199727434

11 129795006 C T PRDM10 Nonsynonymous p.R464Q 0.0002 0.0002 rs201242124

12 2224509 G A CACNA1C Nonsynonymous p.D57N - - -

14 88946042 G A PTPN21 Nonsynonymous p.T578M - - -

15 43132561 C A TTBK2 Nonsynonymous p.L96F - - -

16 87885411 G A SLC7A5 Nonsynonymous p.R195W - - -

17 3957414 G A ZZEF1 Nonsynonymous p.P1791S - - -

17 63156387 G T RGS9 Nonsynonymous p.G81V - - -

17 66890377 A T ABCA8 Nonsynonymous p.N991K 0.0002 - -

19 38103754 T C ZNF540 Nonsynonymous p.C525R 0.000599 0.0005 rs138665562

19 50796922 G A MYH14 Nonsynonymous p.R1775H - 0.000077 rs201923258

22 40801217 C T SGSM3 Nonsynonymous p.R120C - - -

X 43652695 T A MAOB Nonsynonymous p.Y300F - - -

MAF: Minor allele frequency; Chr: Chromosome; Ref: Reference allele; Var: Variant allele; EA-ESP: European American Exome Sequencing 
Project; rs: Accession number in dbSNP138.

Paired box 3 variant responsible for strabismus
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FOXO1 were unable to complete myogenic differentiation. A 
recent study reported that oculo-auriculo-vertebral spectrum 
(OAVS) presented a generalized myopathy and PAX3 may be 
responsible for non-branchiomeric myopathy with strabismus 
and limb hypotrophy[55]. These findings suggested that genetic 
aberrant of PAX3 may be involved in development and function 
of the extraocular muscles, which affected the ocular alignment 
and contributed to strabismus.
Taken together, strabismus was a complex disease with significant 
genetic heterogeneity, leading to the genetic findings 
hampered. We demonstrated the presence of a novel causative 
mutation, c.434G-T (p.145R-L), in PAX3 in the affected 
individuals, which may potentially contribute to strabismus 
susceptibility. Further functional studies are needed to gain the 
pathogenic mechanism and the role of PAX3 in strabismus. 
There was a limitation in this study. Herein, we only tested two 
subjects including the proposita and her mother in the whole 
exomes sequencing. Other relatives such as, father, uncle 
and the maternal grandparents of the proband should also be 
studied. Additionally, larger numbers of sporadic individuals 
with strabismus are needed to investigate the value of the 
identified variant. Anyhow, we found the mutation gene of 
PAX3 in the strabismus family, which provided a new field in 
understanding the genetic pathology of strabismus. 
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