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Abstract
● Artificial intelligence is a general term that means to 
accomplish a task mainly by a computer, with the least 
human beings participation, and it is widely accepted 
as the invention of robots. With the development of this 
new technology, artificial intelligence has been one of 
the most influential information technology revolutions. 
We searched these English-language studies relative 
to ophthalmology published on PubMed and Springer 
databases. The application of artificial intelligence in 
ophthalmology mainly concentrates on the diseases 
with a high incidence, such as diabetic retinopathy, age-
related macular degeneration, glaucoma, retinopathy of 
prematurity, age-related or congenital cataract and few 
with retinal vein occlusion. According to the above studies, 
we conclude that the sensitivity of detection and accuracy 
for proliferative diabetic retinopathy ranged from 75% to 
91.7%, for non-proliferative diabetic retinopathy ranged 
from 75% to 94.7%, for age-related macular degeneration 
it ranged from 75% to 100%, for retinopathy of prematurity 
ranged over 95%, for retinal vein occlusion just one study 
reported ranged over 97%, for glaucoma ranged 63.7% 
to 93.1%, and for cataract it achieved a more than 70% 
similarity against clinical grading. 
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learning; images processing; ophthalmology
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INTRODUCTION

A rtificial intelligence (AI) is a general term that means to 
accomplish a task mainly by a computer, with minimal 

human beings involved[1]. In other words, the purpose of AI 
is to make computers mimic the way of our thinking, and 
improve our work efficiency in the modern fast-pace life. It 
has become one of the most influential information technology 

revolutions[2]. Great progress has been made in theoretical 
research and its application as far as we can see. AI is widely 
accepted as the appearance of many robots in difference 
fields, especially in bioinformatics. Combined with medicine, 
some robot-assisted surgery has been conducted successfully. 
It makes doctor’s work more precisely and effectively. 
Nowadays, AI-assisted medical screening and diagnosis based 
on images are emerging[3-5]. As we all hear, melanoma, a skin 
cancer could be diagnosed with a computer algorithm based 
on macro images captured by a common camera[6]. In the field 
of ophthalmology, especially in the blind-causing diseases, 
it mainly attributes to medical imaging identification and 
auxiliary diagnosis.
The application of this technology of AI mainly depends on 
machine learning[7], which is represented by mathematical 
algorithms and models formed through lots of input experience.
SUBJECTS AND METHODS
We searched these English-language studies relative to 
ophthalmology published on PubMed and Springer databases. 
Later we gave a classification and statistic. Its application 
mainly concentrates on the diseases with a high incidence, 
such as diabetic retinopathy (DR), age-related macular 
degeneration (AMD), glaucoma, retinopathy of prematurity 
(ROP), age-related or congenital cataract and few with retinal 
vein occlusion (RVO). 
Principle of Artificial Intelligence  The AI devices mainly fall 
into two major categories[8] -the machine learning techniques[9] 
and the natural language processing methods. But so far, the 
former is the auxiliary screening and diagnostic technique 
what we often talk about[10]. 
Machine learning provides techniques or algorithms that 
can automatically build a model of complex relationships 
by processing the input available data and generalizing a 
performance standard[7]. And it can be briefly described as 
enabling computers make successful predictions or judgments 
by repeatedly learning existing representative materials. 
To be able to form an accurate model, machine learning 
often requires a large number of training data. And most of 
them need to be labeled its features in advance by relative 
authoritative experts. Besides, some other data are used to 
verify the established algorithm. That means the processes 
mainly include two parts, training set and validation set. 
Therefore, an important step is to collect a lot of representative 
training examples. Some experts mark the easy-identify 
and distinctive features, and input the computer to make it 
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recognize and remember. It is crucial that the feature selection 
or extraction requires much experience. 
There are mainly two deep learning models, including 
convolutional neural network (CNN) and massive-training 
artificial neural network (MTANN)[11]. They are powerful tools 
for identifying and classifying images. To our knowledge, 
CNN and MTANN both have many layers. The major 
differences are that convolutional operations are underwent 
within the network in CNN, whereas in MTANN they are 
outside the network. After an iterative process, the last 
convolution layer is connected with the whole. What’s more, 
CNN needs much more images than the latter. CNN has been 
successfully used in many fields, such as, large-scale image 
classification[12], scene labeling[13] and so on. 
RESULTS
Some current studies based on machine learning have 
achieved a satisfactory preliminary outcome. For example, the 
image identification of non-proliferative diabetic retinopathy 
(NPDR), proliferative diabetic retinopathy (PDR) and AMD 
attracts most of the attention. The diagnostic sensitivity for 
AMD ranged from 75% to 100%. Similarly, the sensitivity of 
detection and accuracy for PDR ranged from 75% to 91.7% 
and for NPDR, ranged from 75% to 94.7%. The average 
rate of diagnosis for these diseases can reach 91.3%[14]. Also, 
Ting et al’s[15] study aims to develop and evaluate the deep 
learning system for DR, AMD and glaucoma, based on the 
fundus images of multiethnic populations. Compared with 
professional graders, they conclude that their system can 
achieve a relative high sensitivity and specificity. 

Diabetic Retinopathy and Artificial Intelligence  DR is 
the leading cause of blindness in the working-age people[16], 
which mainly affects the retinal microvasculature, leading to 
progressive damage[17]. With more and more people affected, 
DR is gradually deemed to the global public health problem[18]. 
Therefore, the large scale screening of DR is needed urgently 
to detect potentially threatening changes at early stage which 
will benefit for treatment and management. As we all know, 
early intervention is the most cost-effective choice[19]. 
The automatic identification of DR has attracted a lot of 
attention, with studies conducting microaneurysm, hemorrhage, 
exudation, cotton-wool spot and neovascularization detection, 
and even further classify stages. Most of them use the fundus 
images as input. The process can be partly represented by 
Figure 1[14]. The computers receive many images labeled with 
diagnostic lesions, extract their characteristics and finally 
build a model. And then, it can identify the new input images 
and give a judgement. Wong et al[20] propose a method based 
on  microaneurysms and hemorrhages to by a three-layer feed 
forward neural network to classify the DR stages. Imani et al[21] 
form a technique to detected the exudation and blood vessel by 
morphological component analysis (MCA), and Pavle used the 
CNN. Yazid et al[22] put forward that they identified the hard 
exudation and optic disc based on inverse surface thresholding. 
Some reports say that they use a Lattice Neural Network with 
Dendritic Processing (LNNDP) or enhancement techniques 
to detect blood vessels in retinal images[23-24]. Akyol et al[25] 
detect the optic disc of fundus images automatically by using 
keypoint detection, texture analysis, and visual dictionary 

Figure 1 A fundus image is submitted to locate anatomic structures and lesions followed by feature extraction and analysis. The 
features are an index for searching the library to compare with similar images from database. It can also combine the patient’s 
clinical metadata.
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techniques. Niemeijer et al[26] fast detect the optic disc by a 
method combined k-nearest neighbour (kNN) and cues. They 
report that the sensitivity of automatic DR screening ranges 
from 75%-94.7%, also the specificity, accuracy is comparable 
and promising.
Furthermore, there will be a few studies involved with multimodal 
data to verify a disease more precisely. For instance, combining 
macular optical coherence tomography (OCT) with fundus 
image indentify macular edema, which is the sign of timely 
treatment. After all, a study has reported an algorithm can 
detect and quantify subretinal or intraretinal fluid based on 
OCT images, just described as Figure 2[27]. 
Apart from the above automatic detection and identification 
of DR, the study of the evaluation of deep learning models 
for DR grades. They reported the errors of deep learning 
models mainly concentrated on missing the microaneurysm 
and artifacts. For the moderate or worse DR, the sensitivity 
of deep learning models is about 97.1%, compared with the 
ophthalmologists’ 83.3%. Maybe the quality of input images is 
responsible for the minimal lesions missing, they think[28]. 
Age-related Macular Degeneration and Artificial 
Intelligence  AMD is a chronic and irreversible macular 
disease characterized by drusen, retinal pigment changes, 

choroidal neovascularization, hemorrhage, exudation and 
even geographic atrophy[29]. It is one of the leading causes of 
central vision loss in people aged over 50[30]. With the social 
population aging and the severity of this disease, it’s necessary 
to perform AMD screening regularly. Automatic AMD 
diagnosis may obviously reduce the work load of clinicians 
and improve efficiency. 
Many studies have reported their preliminary results. Most 
of them use fundus images as input original materials, and 
extract features of early, intermediate and late AMD to 
distinguish from the healthy images[31]. They can obtain a 
sensitivity ranging from 87% to 100%, also with a relatively 
high accuracy[32]. They think taking fundus photo as input is 
cheaper than OCT examination. But also, there exist researches 
combined spectral domain OCT with deep learning about 
AMD, including the macular fluid quantity of neovascular 
AMD (nAMD) just like Figure 2 and the retinal layers 
segmentation of dry AMD like Figure 3[33]. After an iteration 
training, the training and validation accuracy are both 100%[34]. 
They believe that other macular diseases will obtain the same 
effective results.
As we all know, intravitreal injection of anti-VEGF drugs 
is the first-line therapy for nAMD[35] and the follow-up 

Figure 3 Outline of the algorithm to segment the retinal layers of dry AMD.

Figure 2 Illustration of the automated detection of macular fluid in OCT  The intraretinal cystoid fluid is marked in green, subretinal fluid is 
marked blue. AMD: Age-related macular degeneration; DME: Diabetic macular edema; RVO: Retinal vein occlusion.
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observation is also very important. Bogunovic et al[36] 
utilize an algorithm to observe the treatment responders using 
OCT images. Some researchers combine the machine learning 
with OCT images to observe and predict the possibility of 
retreatment[37]. The model they built achieves a comparable 
performance for predicting the low and almost 50% better 
performance in predicting the high retreatment requires. 
Retinal Vein Occlusion and Artificial Intelligence  RVO has 
an estimated prevalence ranging from 0.3% to 2.1%[38-40] in 
different individuals, which is one of the most common blind-
causing diseases, ranking after DR[41]. We think, the direct 
reason of RVO may be that sclerotic retinal artery compress 
the retinal vein and block the blood return of terminal 
arborizations. Further, it causes superficial hemorrhage, 
exudation, and retinal edema. If any lesion involves macular, 
it will lead to vision acuity decreased significantly, or even 
blindness. Its risk factors mainly are people with old age and 
vascular sclerosis[42-44], such as hypertension, arteriosclerosis 
or cardiovascular disease. Thus, the early diagnosis of RVO is 
crucial for vision recovery. 
Automatic diagnosis will benefit both patients and 
ophthalmologists, if it is widely used. At present, the machine 
learning in RVO is relatively rare. A team reported that they 
utilized CNN combined with patch-based and image-based 
vote methods to recognize the fundus image of branch retinal 
vein occlusion automatically. They received a high accuracy 
over 97%[45]. It’s encouraging for the following researches. 
Retinopathy of Prematurity and Artificial Intelligence  
ROP is a leading cause of childhood blindness all over the 
world[46-47] and it is largely treatable with appropriate and 
timely diagnosis. Clinical studies have shown that ROP with 
plus disease or retinopathy in zone one stage 3 even without 
plus disease requires timely treatment to prevent blindness, 
and infants with pre-plus disease require close observation[48]. 
Repeated screening and follow-up of ROP will consume a 
lot of manpower and energy. So the application of AI in ROP 
screening may improve the efficiency of ROP care. 
Many studies have tried the automatic identification of ROP. 
Most of them focused on two-level classification (plus or not 
plus disease)[49-52]. They achieved a promising result. An report 
says that they could distinguish the plus disease with a 95% 
accuracy, which is comparable to experts’ diagnosis, much 
more precise than non-experts[53]. And Ataer-Cansizoglu 
et al’s[54] study took advantages of tortuosity and dilation 
features from arteries and veins to distinguish not plus or pre-
plus or plus disease. They classify the ROP more specifically 
and benefitial for the treatment.   
Anterior Segment Diseases and Artificial Intelligence  
Maybe, cataract and glaucoma are very common diseases in 
ophthalmology[55-56]. It is not surprising that there are some 
reports about the application of machine learning in anterior 

segment diseases[57-61]. Cataracts are a clouding of the lens 
and the leading cause of blindness all over the world[55]. The 
automatic recognition will be cost-effective.
Gao et al[57] have reported that they proposed a system 
automatically grade the severity of nuclear cataracts by slit-
lamp images. First, they find the lens region of interest and 
then CNN filters randomly select image patches generating 
local representations by an iteration process with random 
weights. Their system achieved a more than 70% similarity 
against clinical grading. Other like the research of Liu et al[58], 
they mainly focus on the identification of pediatric cataracts. 
They achieve an exceptional accuracy and sensitivity in lens 
classification and density. Also, it can automatically grade a 
cataract by lens OCT[59]. 
Glaucoma is a disease that mainly damages the optic nerve, 
which can cause irreversible blindness[56,60]. Although 
glaucoma may not be cured, the processing can be slow down 
by reasonable treatment[61]. Thus, early detection of glaucoma 
is highly needed. The detection of glaucoma mainly depends 
on the intraocular pressure, thickness of retinal nerve fiber, 
optic nerve and visual field examination[62-63]. 
Omodaka et al[64] developed a machine learning algorithm to 
classify the optic disc of open-angle glaucoma and reached a 
accuracy of 87.8%. Their algorithm based on the quantitative 
parameters mainly from the optic disc OCT examination. 
Many studies have tried to apply the machine learning in 
glaucoma identification. The machine usually assesses the 
cup disc ratio[65-66] in the fundus images, the visual field[67] 
or the thickness of retinal nerve fiber examined by OCT[68]. 
The accuracy of early diagnosis ranges from 63.7% to 93.1% 
depending on the input images. 
DISCUSSION
AI-assisted automated screening and diagnosis of the common 
diseases in ophthalmology may eventually help maximize 
the doctors’ role at the clinic. Outside the clinic, AI platforms 
offer the patients more medical opportunities and reduce 
obstacles to access for an eye care where an ophthalmologist 
is not available. To some extent, new technologies based on 
AI may reduce social inequalities[69]. Looking further into the 
future, AI-assisted system shows the potential to relieve the 
overburdened healthcare system’s problems. 
In general, the process of automatically detect a disease 
mainly include three steps[11,70]. Firstly, it’s necessary to collect 
a large amount of images, and relative experts have to label 
the characteristic lesions. It is fundamental but very crucial. 
Secondly, computers extract the features of a disease through 
a particular program based on the input of marked images. 
Finally, a given image can be distinguished from other kind of 
disease by statistical feature of target lesions. 
According to these studies, some algorithms have been 
preliminarily formed, such as DR, ROP, AMD, RVO, 
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glaucoma, cataract and so on. However, with so many present 
reports, there is seldom one realized a 100% accuracy and 
sensitivity. That is to say, not every image can be identified 
precisely or not be missed. Not only does it depend on the 
computer technique, but the quality of input images[71-72]. 
The main factors caused poor quality of posterior or anterior 
segment images may be the patient’s head or eyeball 
movement, undilated pupil, frequent blinking, opaque 
refractive medium and poor fixation[73-74]. Besides, the marking 
process by experts is also quite important. It’s the foundation 
of computer learning. Thus, the annotators must be trained for 
a uniform standard. 
Besides that, there may exist some other limitations about 
deep learning[11,75]. First, forming an algorithm needs a lot of 
computational cost and training experience. That means AI 
may be just useful for the diseases with a high morbidity. For 
rare diseases, it may not be available. Second, the computer 
recognizes a structure or a feature mechanically, so AI 
could not completely identify a disease separated from our 
intervention. A small portion of feature and variation that 
look like unusual will be missed. We infer that AI can pick 
out the majority of people with a kind of disease, not all of 
them. Third, to some extent, this work is complicated. The 
characteristics of a disease and parameters of an algorithm 
differ from tasks to tasks. Finally, if the relationship between 
input and expected output materials is complex, the machine 
will probably not build a model. What’s more important is that 
it may cause a mistake. Nguyen et al[76] described the process 
how the neural networks lead to a wrong classification.
From this perspective, AI can really efficiently conduct a task, 
but a certain degree of human intervention is essential during 
the process. 
In conclusion, AI has been widely studied in ophthalmological 
image processing, mainly based on the fundus photographs. 
Indeed, it achieves a promising accuracy comparable with 
clinical experts. However, more efforts should be made to 
explore the neural network to assist our work. 
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