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Abstract 
● AIM: To investigate and compare the efficacy of two 
machine-learning technologies with deep-learning (DL) 
and support vector machine (SVM) for the detection of 
branch retinal vein occlusion (BRVO) using ultrawide-field 
fundus images. 
● METHODS: This study included 237 images from 236 
patients with BRVO with a mean±standard deviation 
of age 66.3±10.6y and 229 images from 176 non-BRVO 
healthy subjects with a mean age of 64.9±9.4y. Training 
was conducted using a deep convolutional neural network 
using ultrawide-field fundus images to construct the DL 
model. The sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV) and area under the 
curve (AUC) were calculated to compare the diagnostic 
abilities of the DL and SVM models.
● RESULTS: For the DL model, the sensitivity, specificity, 
PPV, NPV and AUC for diagnosing BRVO was 94.0% 
(95%CI: 93.8%-98.8%), 97.0% (95%CI: 89.7%-96.4%), 96.5% 
(95%CI: 94.3%-98.7%), 93.2% (95%CI: 90.5%-96.0%) and 
0.976 (95%CI: 0.960-0.993), respectively. In contrast, for 
the SVM model, these values were 80.5% (95%CI: 77.8%-
87.9%), 84.3% (95%CI: 75.8%-86.1%), 83.5% (95%CI: 78.4%-
88.6%), 75.2% (95%CI: 72.1%-78.3%) and 0.857 (95%CI: 
0.811-0.903), respectively. The DL model outperformed 
the SVM model in all the aforementioned parameters 
(P<0.001).

● CONCLUSION: These results indicate that the 
combination of the DL model and ultrawide-field fundus 
ophthalmoscopy may distinguish between healthy and 
BRVO eyes with a high level of accuracy. The proposed 
combination may be used for automatically diagnosing 
BRVO in patients residing in remote areas lacking access 
to an ophthalmic medical center.
● KEYWORDS: automatic diagnosis; branch retinal vein 
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INTRODUCTION

B ranch retinal vein occlusion (BRVO) is a relatively 
common retinal vascular disorder that causes retinal 

hemorrhage and macular edema (ME), eventually leading to 
visual impairment[1-2]. ME resulting from BRVO is associated 
with poor visual outcomes[3-4]. It has been proposed that a 
delay in the initiation of ME treatment resulting from BRVO 
affects functional improvement and hinders improvement in 
visual acuity[5]. For BRVO, it is important to initiate treatment 
with antivascular endothelial growth factor agents at an early 
stage[5-6]. Treatment of patients at a vitreoretinal center shortly 
after the onset of BRVO is essential for the preservation of 
visual function. However, establishing vitreoretinal centers 
that provide such advanced ophthalmological treatments is 
impractical considering the associated costs burdening social 
security schemes of numerous nations worldwide[7].
Recently, remarkable progress has been achieved in the 
development of medical equipment, such as the ultrawide-field 
scanning laser ophthalmoscope (Optos 200Tx; Optos PLC, 
Dunfermline, United Kingdom) (Figure 1). The Optos system 
noninvasively provides wide-field fundus images without using 
a mydriatic agent and is used for the diagnosis, monitoring, 
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and treatment of various retinal and choroidal disorders[8]. If 
there is no risk of elevation of intraocular pressure due to pupil 
block after mydriasis, the examiner who is not permitted to 
administer treatment can acquire the images safely. This is 
ideal for telemedicine applications in areas where there is no 
ophthalmologist.
In recent years, image processing approaches using two 
machine-learning algorithms, namely the deep-learning (DL) 
and support vector machine (SVM) models, have attracted 
attention because of their extremely high classification 
performance. Several studies of their application in medical 
imaging have been conducted[9-13]. In ophthalmology, the 
application of an image processing technology using DL to 
obtain medical images has been previously reported[12,14-15]. 
However, to our knowledge, there have been no studies 
investigating the automatic diagnosis of BRVO through 
machine-learning technology using images produced by the 
Optos system. The aim of this study was to assess the ability of 
DL and SVM to detect BRVO using Optos images.
SUBJECTS AND METHODS
Ethical Approval  This study was conducted in compliance 
with the principles of the Declaration of Helsinki and was 
approved by the Ethics Committees of Tsukazaki Hospital and 
Tokushima University Hospital. Written informed consents 
were obtained from all subjects for publication of this study 
and accompanying images.
Data Set  Optos image data of patients with BRVO and those 
without fundus diseases were extracted from the clinical 
database of the ophthalmology departments of Tsukazaki 
Hospital and Tokushima University Hospital. These images 
were reviewed by a retinal specialist for the presence of acute 
BRVO and registered in an analytical database. Of the 466 
fundus images selected, 237 belonged to BRVO patients, while 
229 belonged to non-BRVO healthy subjects.
In this study, we used K-fold cross validation. This method has 
been described in detail previously[16-17]. In brief, the image data 
were divided into K groups. Subsequently, (K-1) groups were 
used as training data and one group was used as validation 

data. This process was repeated K times until each of the K 
groups became a validation data set. The number of groups 
(K) was calculated using Sturges’ formula (K=1+log2N). 
Sturges’ formula is used to decide the number of classes in the 
histogram[18-19]. In this study, 1+log2237≈8.89 at BRVO, and 
1+log2229≈8.84 at non-BRVO. So we categorized these two 
data into nine groups each.
The images of the training data set were augmented 
through adjustment of brightness, gamma correction, 
histogram equalization, noise addition, and inversion. Image 
augmentation increased the amount of learning data by 18-
fold. The deep convolutional neural network (DNN) model 
was created and trained using the data from the preprocessed 
images.
Deep-learning Model and its Training  The DNN model 
called a visual geometry group-16 (VGG-16)[20] used in the 
present study is shown in Figure 2. This type of DNN is known 
to automatically learn local features of images and generate a 
classification model[21-23]. The aspect ratio of the original Optos 
images was 3900×3072 pixels. For the analysis, we changed 
the aspect ratio of all input images and resized them to 
256×192 pixels. The red-green-blue image input has a range of 
0 to 255, so it is normalized into the range of 0-1 by dividing it 
by 255.
VGG-16 comprises five blocks and three fully connected 
layers. Each block includes convolutional layers followed 
by a max-pooling layer decreasing position sensitivity and 
improving generic recognition[24]. The flattening of the output 
of block 5 results in two fully connected layers. The first 
layer removes spatial information from the extracted feature 
vectors. The second layer is a classification layer, using the 

Figure 1 Representative fundus images obtained using ultra-
widefield scanning laser ophthalmoscopy  A: Ultra-widefield fundus 
images of the right eye without BRVO; B: Ultra-widefield fundus of 
the right eye with BRVO. The arrowheads indicate the areas of BRVO.

Figure 2 Overall architecture of the VGG-16 model  VGG-16 
comprises five blocks and three fully connected layers. Each block 
includes convolutional layers followed by a max-pooling layer. 
Flattening of the output matrix after block 5 results in two fully 
connected layers for binary classification. The DNN used ImageNet 
parameters: the weights of blocks 1-4 were fixed, while the weights of 
block 5 and the fully connected layers were adjusted.
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feature vectors of target images acquired in previous layers 
and the softmax function for binary classification. To improve 
generalization performance, dropout processing was done so 
that masking was performed with a probability of 25% for the 
first fully connected layer. 
Fine tuning was used to increase the learning speed and 
achieve high performance even with less data[25-26]. We used 
parameters from ImageNet: blocks 1 to 4 were fixed, while 
block 5 and the fully connected layers were trained.
The weights of block 5 and the fully connected layers were 
updated using the optimization momentum stochastic gradient 
descent algorithm (learning coefficient=0.0005, inertial 
term=0.9)[27-28]. Of the 40 DL models obtained in 40 learning 
cycles, the one with the highest rate of correct answers for 
the test data was selected as the DL model to be evaluated in 
this study. Keras (https://keras.io/ja/) was run on TensorFlow 
(https://www.tensorflow.org/), which is written in the Python 
programming language, to build and evaluate the model.
Support Vector Machine  We used the soft-margin SVM 
implemented in the scikit-learn library using the radial basis 
function (RBF) kernel[29]. We decreased the dimensionality 
of the images to 60 dimensions. This was the number of 
dimensions achieving the highest rate of correct answers for the 
test data (10-70 dimensions in steps of 10 were tested). Optimal 
values for the cost parameter C of the SVM and parameter γ of 
the RBF were determined through grid search using trifurcation 
cross validation. The combination with the highest average rate 
of correct answers was selected. The parameter values for C 
(1, 10, 100, and 1000) and γ (0.0001, 0.001, 0.01, 0.1, and 1) 
were tested. The final learning model was generated using the 
optimal parameter values C=10 and γ=0.001.
Validation  In each split, we calculated the answers of these 
models for the validation data and we collected the answers 
for 466 fundus images (237 BRVO images and 229 normal 
images) from those answers. In each split, training data and 
validation data are completely separated.
Outcome  Receiver operating characteristic (ROC) curves 
were constructed based on the abilities of the DL and SVM 
models to distinguish between BRVO and non-BRVO images. 
These curves were evaluated using sensitivity, specificity, 

positive predictive value (PPV), negative predictive value 
(NPV) and area under the curve (AUC).
Statistical Analysis  For comparison of Student’s t-test was 
used to compare the age between patients, while Fisher’s exact 
test was used to compare the sex ratio and the ratio of right to 
left eye images.
The 95%CI of the AUC was obtained as follows. Images 
judged to exceed a threshold were defined as positive for 
BRVO, and an ROC curve was constructed. We produced 
nine models and nine corresponding ROC curves. For AUC, 
a 95%CI was obtained by assuming a normal distribution 
and using the average and standard deviation of the nine 
ROC curves. For sensitivity and specificity, the optimal 
cutoff values, i.e. the points closest to the point at which both 
sensitivity and specificity are 100% in each ROC curve, were 
used[20]. The sensitivities and specificities determined at those 
cutoff values were used. The ROC curve was calculated using 
scikit-learn, and the CIs for sensitivity and specificity were 
determined using scipy. The paired t-test was used to compare 
the AUCs of the DL and SVM models.
Heat Map  Images were created by overlaying heatmaps 
of the DNN focus site on the corresponding BRVO and non 
BRVO images. A heatmap of the DNN image focus sites was 
created and classified using gradient-weighted class activation 
mapping[30]. The target layer is as the third convolution layer 
in block 3. The ReLU is represented as backprop_modifier. 
This process was performed using Python Keras-vis (https://
raghakot.github.io/keras-vis/).
RESULTS
In total, 237 BRVO images from 236 patients (mean age: 
66.3±10.6y; 123 males and 113 females; 119 left fundus 
images and 118 right fundus images) and 229 non-BRVO 
images from 176 patients (mean age: 64.9±9.4y; 92 males 
and 84 females; 110 left fundus images and 119 right fundus 
images) were analyzed. There were no significant differences 
observed between the two groups in terms of age, sex ratio, or 
the ratio of right to left eye images. There was a significantly 
higher rate of hypertension, diabetes and arterial occlusive 
disorders in the BRVO group than in the non-BRVO group 
(Table 1).

Table 1 Patient demographics
Parameters BRVO Non-BRVO P
No. of images (patients) 237 (236) 229 (176)
Age (y) 66.3±10.6 64.9±9.4 0.135 (Student’s t-test)
Sex, female (%) 113 (47.9) 84 (47.7) 0.975 (Fisher’s exact test)
Left fundus (%) 119 (50.2) 110 (48.0) 0.639 (Fisher’s exact test)
Hypertension (%) 131 (55.3) 48 (21.0) <0.001 (Fisher’s exact test)
Diabetes (%) 62 (26.2) 19 (8.3) <0.001 (Fisher’s exact test)
Arterial occlusive disorders (%) 27 (11.4) 11 (4.4) 0.006 (Fisher’s exact test)

BRVO: Branch retinal vein occlusion.
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The sensitivity of the DL model for the diagnosis of BRVO 
was 94.0% (95%CI: 93.8%-98.8%), the specificity was 97.0% 
(95%CI: 89.7%-96.4%), the PPV was 96.5% (95%CI: 94.3%-
98.7%), the NPV was 93.2% (95%CI: 90.5%-96.0%) and the 
AUC was 0.976 (95%CI: 0.960-0.993). In contrast, for the 
SVM model, these values were 80.5% (95%CI: 77.8%-87.9%), 
84.3% (95%CI: 75.8%-86.1%), 83.5% (95%CI: 78.4%-
88.6%), 75.2% (95%CI: 72.1%-78.3%) and 0.857 (95%CI: 
0.811-0.903). In the ROC curves, the AUC of the DL model 
was significantly better than that of the SVM model (P<0.001; 
Figure 3).
An image with the corresponding heat map superimposed was 
produced by the DNN, and the focused coordinate axes in the 
image were indicated. A representative image is presented 
in Figure 4. In the image without BRVO, the focal points 
accumulated around the optic disc. On the other hand, in the 
image with BRVO, the focal points accumulated around the 
optic disc and retinal hemorrhages. It is suggested that the 
DNN may distinguish a BRVO eye from a healthy eye by 
focusing on the retinal hemorrhages. Blue color was used 
to indicate the strength of the DNN attention. In the Optos 
images, the intensity of the color increased on the area of 
retinal hemorrhages and accumulation was noted at the focus 
points.
DISCUSSION
In this study, the DL model detecting BRVO through the use 
of Optos fundus images showed higher sensitivity, specificity, 
PPV, NPV and AUC than the SVM model. DL is known to 
automatically recognize the local feature values of images 
and generate classification models[21,25,28,31]. Additionally, 
DL includes several layers for the identification of local 
features of complicated differences, which can subsequently 
be combined[28]. Wang et al[32] reported that the performance 
of the DL model in the classification of mediastinal lymph 
node metastases of non-small-cell lung cancer using positron 
emission tomography/computed tomography images was 
not significantly different from that of the best standard 
methods, including SVM and human doctors. In the field of 
ophthalmology, we previously showed that the DL model 
using the DNN achieved a better AUC than the SVM model 
for the detection of rhegmatogenous retinal detachment using 
ultrawide-field fundus images[15]. The present study confirmed 
that the performance of the DL model using the DNN was 
better than that of the SVM model. This result indicates the 
possibility of early detection of BRVO through combination 
of Optos fundus images with DL. Our results demonstrated 
a classification performance of the DL model that was close 
to that based on the judgment of an ophthalmologist. At the 
heat map, the DNN focused around the optic disc in the non-
BRVO Optos fundus images and around the optic disc and 

retinal hemorrhages in the BRVO Optos fundus images. 
This finding suggests that the proposed DNN model may be 
useful in diagnosing BRVO by identifying suspected retinal 
hemorrhages caused by BRVO. 
The interpretation of all the acquired Optos fundus photographic 
images by an ophthalmologist is impractical and costly. 
However, screening for BRVO may be conducted by non-
physician personnel in a nonmydriatic and noninvasive 
manner using the proposed approach. The combination of the 
DL model and ultrawide-field fundus ophthalmoscopy is a 
cost-effective option for the screening and diagnosis of large 
numbers of patients. This approach may be particularly useful 
for the diagnosis of BRVO in areas with a shortage or lack of 
ophthalmic care.
Maa et al[33] reported that tele-ophthalmology has the 
potential to improve operational efficiency, reduce cost, 
and significantly improve access to care. In areas with a 

Figure 3 ROC curve of BRVO  ROC curve of the nine ROC curves 
in the DL and SVM models. The AUC of the DL and SVM models 
were 0.976 and 0.857, respectively. The AUC of the DL model was 
better than that of the SVM model (P<0.001).

Figure 4 Representative ultrawide-field fundus images and their 
corresponding heat maps  The ultrawide-field fundus image without 
BRVO (A) and its corresponding heat map (B); with BRVO (C) and its 
corresponding heat map (D). In the image without BRVO, the deep 
convolution neural network focused on the optic disc (B; blue color). 
Meanwhile, in the image with BRVO, the deep convolution neural 
network focused on the optic disc and retinal hemorrhages (D; blue color).
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shortage of ophthalmological care, the availability of an Optos 
system offers noninvasive ultrawide-field fundus imaging 
without requiring the use of a mydriatic agent and avoids 
the occurrence of complications. The DL technology is able 
to perform accurate diagnoses of BRVO at a high rate using 
Optos images. Patients diagnosed with BRVO using this 
method can immediately consult a retinal specialist and receive 
the necessary advanced treatment at an ophthalmic medical 
center. This approach will permit early intervention in BRVO 
patients residing in medically underserved areas. Moreover, 
this tele-ophthalmologic technology using Optos may preserve 
good visual function in BRVO patients residing in areas with 
inadequate ophthalmic care worldwide.
The following limitations of this study must be acknowledged. 
Firstly, this study compared only images of health retinas and 
retinas with BRVO. It did not include images of retinas with 
other fundus diseases. For an expanded application of this 
model in the clinical setting, an investigation of other retinal 
diseases is necessary. Secondly, the analytical ability of Optos 
is compromised in cases with disorders reducing the clarity of 
the eye, such as dense cataracts or severe vitreous hemorrhage. 
Hence, such images were not included in this study. Finally, 
it is necessary to conduct studies with larger sample sizes and 
include research on images of other fundus diseases for a more 
comprehensive evaluation of the performance and versatility 
of the DL model.
In conclusion, the combination of the DL model and ultrawide-
field fundus ophthalmoscopy may distinguish between healthy 
and BRVO eyes with a high level of accuracy.
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