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Abstract
● AIM: To develop a classifier for differentiating between 
healthy and early stage glaucoma eyes based on 
peripapillary retinal nerve fiber layer (RNFL) thicknesses 
measured with optical coherence tomography (OCT), using 
machine learning algorithms with a high interpretability.
● METHODS: Ninety patients with early glaucoma and 85 
healthy eyes were included. Early glaucoma eyes showed a 
visual field (VF) defect with mean deviation >-6.00 dB and 
characteristic glaucomatous morphology. RNFL thickness 
in every quadrant, clock-hour and average thickness were 
used to feed machine learning algorithms. Cluster analysis 
was conducted to detect and exclude outliers. Tree gradient 
boosting algorithms were used to calculate the importance 
of parameters on the classifier and to check the relation 
between their values and its impact on the classifier. 
Parameters with the lowest importance were excluded and 
a weighted decision tree analysis was applied to obtain an 
interpretable classifier. Area under the ROC curve (AUC), 
accuracy and generalization ability of the model were 
estimated using cross validation techniques.
● RESULTS: Average and 7 clock-hour RNFL thicknesses 
were the parameters with the highest importance. 
Correlation between parameter values and impact on 
classification displayed a stepped pattern for average 
thickness. Decision tree model revealed that average 
thickness lower than 82 µm was a high predictor for early 
glaucoma. Model scores had AUC of 0.953 (95%CI: 0.903- 
0998), with an accuracy of 89%. 
● CONCLUSION: Gradient boosting methods provide 
accurate and highly interpretable classifiers to discriminate 

between early glaucoma and healthy eyes. Average and 
7-hour RNFL thicknesses have the best discriminant power.
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INTRODUCTION

G laucoma is one of the principal causes of preventable 
irreversible visual loss. Its diagnosis and early treatment 

are critically important in order to preserve visual function[1]. 
However, detection of glaucoma in its early stages can be 
challenging due to the wide variation in the normal appearance 
of the optic nerve[2].
The newest optical coherence tomography (OCT) devices 
have enabled the detection of subtle defects in the retinal nerve 
fiber layer (RNFL) that were previously undetectable through 
clinical examination[3]. The OCT yields a huge amount of 
numerical data, whose combined analysis can be performed 
using machine learning methods. Among these methods, 
some have the property of interpretability which allow the 
comparison of the results with prior knowledge, as well as 
discovering how the algorithm works to obtain the result[4].
The goal of the present study was to develop and validate an 
interpretable classifier able to distinguish between healthy 
eyes and early glaucoma by means of the peripapillary RNFL 
thickness measured with OCT. The newest tree gradient 
boosting (GB) methods were used, for which there exists a 
GB explainer extension that allowed to achieve a high level of 
interpretability of the model.
SUBJECTS AND METHODS
Ethical Approval  The study had the approval of the 
Institutional Review Board of the hospital with approval 
number APR 18/16 and adhered to the principles of the 
Declaration of Helsinki. Informed consent was required to 
all subjects. All participants underwent a comprehensive 
ophthalmic examination.
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Study Design and Participants  This was an observational 
cross-sectional study of consecutive glaucoma patients at 
Fuenlabrada Hospital institution (Madrid, Spain) during the 
years 2018 to 2019. Normal subjects were recruited from the 
population who came to clinic for regular eye examination. 
Glaucoma patients were selected from those who came to 
clinic as a first diagnosis or for successive examination and 
showed only mild visual field (VF) damage. 
Spectral domain OCT examination was performed on all 
subjects using a commercially available equipment (Topcon 
3D OCT 2000 MarkII, FastMap v. 3.40, Topcon Corp., Japan). 
Tomographic images of the peripapillary area were obtained 
with the three-dimensional disc scan on a measured circle 
3.46 mm in diameter. Scans were obtained after pupil dilation 
with 1% tropicamide. Automatic perimetry with 24-2 Swedish 
Interactive Threshold Algorithm of the Humphrey Visual 
Field Analyzer (Carl Zeiss Meditec Inc.) was conducted on all 
subjects.
All tests were completed within a week in order to avoid 
changes in glaucoma stage while collecting the data.
Examination of the subjects was carried out using E-Snellen 
visual acuity test and conventional slit-lamp and funduscopic 
techniques to rule out anomalies of the anterior or posterior 
segment. Intraocular pressure (IOP) was measured using 
contact Goldman tonometry. Subjects accepted for research 
had best corrected visual acuity of 20/40 or better, spherical 
refraction between ±5.0 diopters and cylinder correction 
less than 3.0 diopters. They did not have any previous 
ocular surgery, except uncomplicated cataract extraction and 
intraocular lens implantation, and had no other anterior or 
posterior segment disease. 
Eligibility Criteria  One eye was randomly selected if both 
eyes were eligible for the study. Inclusion criteria for the patients 
with early stage glaucoma included a basal IOP ≥21 mm Hg, 
gonioscopic open angle, and a reproducible VF defect in the 
absence of any other neurological or ocular defect that may 
cause an abnormal VF test result. VF test was conducted at 
least three times. Based on Hoddap-Parrish-Anderson criteria, 
early VF damage was defined as an arc-like perimetric defect 
with mean deviation ≥ -6.00 dB, glaucoma hemifield test result 
outside normal limit or corrected pattem standard deviation 
(CPSD)/pattern standard deviation (PSD) significant at 
P<0.05[5]. Superior, inferior or both hemifields were affected. 
Reliability was calculated on a false negative rate <15%, 
false positive rate <10% and fixation losses <10%. Exclusion 
criteria for early glaucoma group included eyes with close 
or anomalous angle, IOP<21 mm Hg, unreliable VFs or 
anomalous disc aspect such as tilted discs.
Inclusion criteria for controls were those with no history of 
eye disease, no family history of glaucoma, IOP<21 mm Hg, 

no sign of glaucoma optic disc damage, and a normal result 
on three followed reliable VF tests. Eyes with VF defects, 
IOP>21 mm Hg or any anomalous appearance of the optic 
nerve were excluded in the control group.
OCT scans with segmentation errors or signal-to-noise ratio 
index lower than 45 were rejected. All examinations were 
reviewed by an experienced ophthalmologist and discarded 
if there was any suspicion of being decentered or not being 
completely reliable.
Analysis Algorithms  All statistical and machine learning 
algorithms were carried out using R-free software environment 
for statistical computing (version 3.6.2 for Windows).
Unsupervised k-medoid cluster analysis was taken with 
the unlabeled dataset, using all the peripapillary RNFL 
measurements obtained with OCT. Points located further than 
the sum of the mean distance of the points in each cluster 
to its center plus two times the standard deviation were 
considered as outliers and excluded of the dataset for further 
analysis[6]. Tree GB methods were applied to the processed 
data in order to produce a prediction model in the form of 
an ensemble of decision trees. These algorithms improve the 
accuracy of predictions, at the expense of loss in interpretation 
of the model[7]. Relative importance of the parameters in GB 
trees was calculated, and those with the greatest importance 
were selected. GB explainer extension was used to interpret the 
generated GB model, exploring the correlations between the 
numeric value of each parameter and its impact on classification.
In order to minimize overfitting, only parameters with the 
highest importance on the GB model were used as input data 
to build a pruned decision tree. A decision tree was chosen 
as the preferred classification algorithm due to its high level 
of interpretability, allowing the results obtained in our model 
to be checked against previous knowledge regarding RNFL 
damage in glaucoma. In order to minimize the number of early 
glaucoma eyes misclassified as normal eyes, a weight matrix 
was introduced in the model, and a fitted tree classifier was 
constructed. 
The outcome of our study will be a decision tree classifier. 
Detection of parameters with the greatest relative importance 
will be assessed. The ability to distinguish between glaucoma 
and controls will be evaluated using ten-fold cross validation, 
estimating the accuracy rate, AUC curves and sensibility and 
specificity. 
RESULTS
In this study we recruited 90 eyes with early stage glaucoma 
and 85 controls, who were included in the study. All 
participants were Caucasian race. 
Baseline characteristics of the study population are summarized 
in Table 1. Optic disc size difference was not significant among 
the groups. 

Interpretable classifier for early glaucoma diagnosis
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Kolmogorov-Smirnov one-sample test showed Gaussian 
distribution of the variables. Unpaired t-test analysis 
demonstrated significant difference for all RNFL values except 
for 9 clock-hour RNFL thickness.
Unsupervised clustering revealed four eyes in the early 
glaucoma group as outliers which were excluded from the 
dataset for further analysis. 
GB analysis displayed average thickness as the parameter with 
the highest importance in the classification model, followed by 
7 clock-hour thickness (Figure 1). 
Scatter-plot graphic correlating thickness values for the 
different RNFL parameters and the impact on classification, 
estimated through the log-odd of classification, showed a stair-
like pattern for average thickness, with a plateau at the values 
<80 µm, >90 µm and between 80 and 90 µm (Figure 2). Similar 
correlation graphs for the rest of the RFNL values exhibited a 
flat pattern with no step depending on thickness value.
The pruned decision tree built after excluding all those 
parameters which GB proved to have a low impact on 
classification is shown in Figure 3. Eyes with an average thickness 
inferior to 82 µm are glaucomatous eyes in 98% of cases. Eyes 
with an average thickness >90 µm and 7 clock-hour thickness 
>99 µm have a 95% predicted probability of being healthy. 
The overall classification accuracy evaluated through ten-fold 
cross validation was 89%. Estimated false negative rate was 
13% and AUC of the model was 0.953 (95%CI: 0.903-0.998). 
Sensibility reached 0.89 with specificity 0.885.
A modified tree constructed after adding a weight matrix in 
order to minimize misclassification of glaucoma eyes included 
average and inferior quadrant thickness as the splitting 
parameters, with different cleavage values than those in the 
non-weighted tree (Figure 4). However, classification accuracy 

Table 1 Clinical characteristics of the control and early glaucoma 
groups

Parameters Healthy 
(n=85)

Early glaucoma 
(n=90) P

Age (y) 61.07±8.93 65.61±10.20 0.005a

Male (%) 55.2 43.3 0.141b

Left eye (%) 44.7 60.0 0.051b

VA (logMAR) 0.02±0.05 0.07±0.09 <0.001a

SE (D) 0.21±1.33 0.45±1.60 0.332a

IOP (mm Hg) 17.21±2.01 22.56±3.6 <0.001a

VFI (%) 98.54±1.47 86.90±8.12 <0.001c

SAP MD (dB) -0.64±1.36 -47.74±1.76 <0.001c

SAP PSD (dB) 1.85±0.50 6.09±2.90 <0.001c

VA: Visual acuity; SE: Spherical equivalent; D: Diopters; IOP: 
Intraocular pressure; VFI: Visual field index; SAP: Standard 
automated perimetry; MD: Mean deviation; PSD: Pattern standard 
deviation. aUnpaired t-test; bχ2 test; cKrusal-Wallis test.

Figure 1 Relative importance of average, quadrants, and clock-
hour segments of peripapillary retinal nerve fiber layer thickness 
on the tree gradient boosting model  CH: Clock-hour; IQ: Inferior 
quadrant; SQ: Superior quadrant; TQ: Temporal quadrant; NQ: Nasal 
quadrant.

Figure 2 Impact on classification represented against average 
RNFL thickness  Impact on classification is expressed as the log-odd 
of classification. A positive impact value is associated with a greater 
probability of being classified as early glaucoma. RNFL: Retinal 
nerve fiber layer.

Figure 3 Pruned classification tree constructed after excluding 
outliers and including features which the greatest relative importance 
in gradient boosting model  Connecting lines include the splitting value 
for the parameter. Leaf nodes show the class of the node, the predicted 
probability of being healthy and the percentage of observations in the 
node. Average: Average RNFL thickness; CH: Clock-hour thickness.
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of the model drops to 84% as estimated with ten-fold cross 
validation. AUC of the model was 0.85 (95%CI: 0.752-0.958) 
and sensitivity was 0.745 with specificity of 0.956.
DISCUSSION
Early diagnosis in glaucoma constitutes one of the biggest 
challenges in ophthalmology. The importance of its early 
detection is justified by Mansberger: it is a significant public 
health problem; it is treatable and is able to be detected in early 
stages[8].
Clinical evaluation has been, until recent times, the gold 
standard for early detection[2]. However, VF defects are 
often difficult to evaluate due to the high variance in patients 
with low reproducibility, especially in elderly patients with 
cognitive impairment[9]. OCT technology provides an objective 
and reproducible analysis of the optic nerve and peripapillary 
RNFL. Many studies have shown evidence that structural 
damage often precedes the detection of functional changes, 
which supports the validity of the analysis of the RNFL with 
OCT for early diagnosis in glaucoma[1].
Several studies have reported the correlation between RNFL 
defects and VF damage[10-14]. Some authors have described 
macular ganglion complex cell (GCC) thinning in glaucoma. 
However, numerous studies support that RNFL parameters are 
superior to GCC for glaucoma diagnosis with OCT[15-17]. Vascular 
changes at the optic disc might provide useful information for 
diagnosis of glaucoma. Bojikian et al[18] have shown significant 
correlation between peripapilary blood flux and VF parameters 
and structural biometrics in primary open-angle glaucoma. In 
any case, OCT provides a huge amount of information that is 
not easily interpreted with traditional statistical techniques. 
Machine learning offer tools to deal with datasets which 
exhibit a large size and high multidimensionality. Using 
these techniques, we can find hidden patterns that would be 
undetected with classical statistical analysis. The number 
of these methods increases day by day, making it extremely 

complicated to decide which is the best method to apply. 
Classification and regression trees, linear discriminant 
analysis, Naïve Bayes, artificial neural networks, deep learning 
algorithms, random forest and other machine learning methods 
have been widely used to predict, classify or detect ocular 
diseases[19-25]. These methods obtain a high level of accuracy 
and can achieve a nearly perfect classification rate. However, 
they often lack one of the fundamental aspects of science: 
interpretability. 
Interpretability is defined as the capacity to gain insight into 
how a data mining method gets to the result[4]. It provides 
the possibility to link the results obtained using data mining 
techniques with previous knowledge. Tree based methods 
are highly interpretable and straightforward for visual 
understanding. However, they suffer from a high variance 
depending on the dataset used to train the model[26].
Gradient boosting is a new algorithm based on the construction 
of an ensemble of models[7]. It builds multiple models 
and combines their results to increase performance. GB 
also provides a rate of importance on the model for the 
different parameters that compounds the input, which have 
demonstrated a high local stability and consistency, opposite to 
other inconsistent techniques such as random forest and other 
machine learning methods[27]. Moreover, GB has an explainer 
extension containing a method to clarify why each example is 
classified in each group.
GB analysis applied to our data revealed that average RNFL 
thickness is the critical parameter to discriminate between 
early glaucoma and normal eyes, with a relative importance 
that is three times higher than the next most important 
parameter. Average thickness values display a stair-like graphic 
when plotted against its impact on the classification model, 
with steps at about 80 and 90 µm, indicating that inside the 
segments of <80 µm, 80 to 90 µm and >90 µm the influence 
on the classification model remains stable.
RNFL thickness at 7 clock-hour is the second most important 
parameter in our classifier. When plotted against its degree of 
impact on the model a flat horizontal graph is obtained, with 
no significant step, representing a linear relation between 7 
clock-hour thickness and impact on the result of the model.
Using a decision tree method, Huang found that the inferior 
quadrant was the parameter in RNFL with the best classification 
importance in glaucoma eyes. Using univariate analysis, this 
article revealed average, inferior quadrant and 6 and 5 clock-
hour thicknesses as the parameters with the best AUC[28]. 
In Medeiros et al[29] the highest discrimination power of 
individual OCT parameters was from the inferior quadrant 
thickness. Baskaran et al[30] reports that average and inferior 
quadrant RNFL thicknesses discriminate glaucoma better than 
the other parameters. Some authors describe that combining 

Figure 4 Modified classification tree built adding a loss matrix 
to minimize misclassification of glaucoma as healthy eyes  
Connecting lines include the splitting value for the parameter. Leaf 
nodes show the label of the node, the predicted probability of being 
healthy and the percentage of observations in the node. Average: 
Average RNFL thickness; CH: Clock-hour thickness.

Interpretable classifier for early glaucoma diagnosis
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OCT parameters by means of a multivariable predictive 
model outperforms univariable models in terms of AUC and 
classification rates[31-32]. Multiple studies combine several OCT 
features in a single parameter which contain information of its 
components, in order to obtain better classification models[33-34]. 
Nonetheless, this combination makes interpretation of the 
model completely unreachable. All these univariable and 
multivariable studies find disparate results regarding the 
parameter with the greatest discrimination power, though 
the general consensus is that average thickness and inferior 
hemisphere segments have the best AUC, similar to the 
importance rate we describe in our model. 
Our classification tree constructed including the best 
performing discriminating parameters reveals that average 
thickness remains as the key parameter. Eyes with an 
average thickness <82 µm are mostly predicted as glaucoma 
(probability: 98%). If average thickness >90 µm and RNFL at 
7 clock-hour >99 µm, the eye is classified as normal (predicted 
probability: 95%). These cut-off points for average thickness 
values are closely related to those found in our GB model. 
Using ten-fold cross validation, the calculated overall accuracy 
of the model was 89%, with an AUC of 0.953, which is better 
than AUC for any univariable model. Specificity of the model 
is 0.89 for a sensibility of 0.88.
Classifying a glaucoma eye as normal is a much more 
serious error than labeling a normal eye as glaucoma, since 
undiagnosed glaucoma can lead to irreversible visual loss. This 
consideration was included in our tree through a loss matrix, 
in order to minimize the false negative rate. This modified 
tree revealed average thickness as the principal parameter for 
classification. Eyes with an average thickness <80 µm are 
all glaucoma eyes. Average thickness ≥80 µm with inferior 
quadrant thickness ≥92 µm suggests a highly probable normal 
eye (predicted probability: 76%).
The estimated accuracy for the weighted model was 84% of 
correctly classified eyes, which is considered a good classifier. 
Moreover, the lower accuracy is balanced with a minimum 
false negative rate. AUC of the model was 0.85, which is lower 
than AUC in the non-weight model, but specificity increased to 
0.956.
Limitations to our study include the lack of a test group. 
Instead, we have made use of cross validation as a verified re-
sampling method to evaluate the performing of our model. 
Overfitting has been controlled by means of outliers detection, 
selecting those parameters with the best relative importance in 
GB model and pruning of the tree. We have only included eyes 
with early damage and IOP>21 mm Hg. Therefore, our results 
may not be applicable to more advanced glaucoma eyes or 
normal-tension glaucoma.

As a conclusion, GB methods based on tree structures selected 
RNFL average thickness as the parameter with the greatest 
power to distinguish early glaucoma eyes. Thickness at the 
7 clock-hour is the second most important parameter for 
classification. The fact that our classifier depends only on 
RNFL thickness favors its use in patients with unreliable visual 
field test, expanding the number of cases where our model can 
be valuable.
Although the number of subjects included in the present 
study is limited, we strongly believe that the development of 
an interconnected digital data warehouse coming from the 
electronic devices of multiple ophthalmology institutions will 
offer the foundations for future decision and classification 
models if adequate interpretable machine learning methods are 
applied.
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