INTRODUCTION

The vitreous gel, which is mostly composed of water, is optically transparent, and has important roles in eye development, refraction, cellular barriers, and intraocular oxygen metabolism. The vitreous gel liquefies with aging, and the liquefaction process is involved in many vitreoretinal diseases, including rhegmatogenous retinal detachment (RRD). RRD is caused by the formation of retinal tears, allowing vitreous fluid into the subretinal space, which results in the separation of the retinal neuroepithelial layer from the retinal pigment epithelium (RPE). The reported incidence of RRD is 18.6 eyes per 100 000 person-years[1]. Scleral buckling (SB) is the traditional procedure for the treatment of RRD, and demonstrates favorable curative effect with few complications, such as scleral laceration, choroidal hemorrhage, epiretinal membranes, macular fold and buckle exposure[2]. However, with the continuous development of vitrectomy techniques and equipment, the use of SB is gradually declining and even facing the possibility of being eliminated. Some doctors choose intravitreal injection and pars plana vitrectomy (PPV) without the proper indications, because of inadequate knowledge of the vitreous body, leading to severe complications that could have been avoided, such as cataract, preretinal fibrosis, oil migration, corneal edema, oil emulsification and intraocular hypertension[3]. Studies show no significant difference in the achievement ratio of operations between PPV, SB, and the combined procedures for the treatment of RRD[1]. Unlike PPV, SB retains the intact vitreous body and reduces the interference of intraocular metabolism to the lowest level, in order to reduce the possibility of serious complications due to vitreous metabolic disturbance. Hence, we have emphasized the importance of recognizing the functions of the vitreous body and increasing the popularity of SB for treating primary RRD, as well as advised caution in the use of more aggressive surgery such as PPV. Besides that, the traditional SB is also improved by several modifications, which reduce complications and surgical difficulty, and shorten the operation time[4], increases the popularity of SB for treating primary RRD and maintain SB as an option for appropriate patients in the future[5]. It is time to recognize the functions of the vitreous, and the necessity for following strict surgical indications and careful assessment for vitrectomy procedures.
COMPOSITION AND PHYSIOLOGY OF THE VITREOUS BODY

It was thought previously that the vitreous body had no well-substantiated physiological function, apart from giving the eye its shape and volume, so that the eye would not be adversely affected by vitreous gel removal[6]. However, the new understanding is that an intact vitreous gel is crucial for stable intraocular metabolism. The vitreous gel plays a major role in refraction, cellular barriers, participating in intraocular oxygen metabolism and the pathology of diseases. To understand the physiological function of vitreous body, we must first understand its structure, components, development, and metabolism.

The transparent, gelatinous vitreous makes up 80% of the intraocular volume, adjacent to the retina, lens and ciliary body. Vitreous gel is composed of the vitreous membrane, cortex and nucleus. The vitreous membrane, composed of dense collagen fibers, is located in the peripheral part of the vitreous. The vitreous cortex is located between the vitreous membrane and nucleus. The vitreous nucleus occupies most of the space in the middle, and in the center is the Cloquet canal, degenerated from the vascular primary vitreous. The vitreous is most-closely connected with the retina at the vitreous base, macula and optic disc[7]. The posterior vitreous boundary membrane and inner limiting membrane jointly constitute the vitreous-retina interface.

As the embryo develops, vitreous gel formation is a dynamic process in which the avascular transparent secondary vitreous gradually replaces the primary vitreous. The highly hydrated, almost acellular vitreous gel is composed mainly of collagen and hyaluronan, with water accounting for approximately 98%-99% of it. The 0.1% of the gel consisting of macromolecules is the most important for its matrix structure[8], which is responsible for the gel’s viscoelastic properties, and is composed of collagen fibrils and macromolecules (such as hyaluronan and versican) arranged in a network[9]. Collagen fibrils are composed of collagen types II, V/XI, and IX, of which type II accounts for three-quarters[10]. Type II collagen is transformed from a soluble precursor (type II procollagen) with an amino-propeptide terminus and a carboxy-propeptide terminus and is synthesized and excreted by cells[11]. It has also been shown to be synthesized in adult bovine eyes[12]. Hyaluronan fills the gaps in the collagen-fiber network to stabilize the structure. Versicans, such as proteoglycans and glycoproteins, bind to the components of the extracellular matrix and are interrelated[13].

Vitreous gel is important in the development of the eyeball, in maintaining its elasticity and in reducing the scattering of light. Furthermore, the matrix, glue-like state of the vitreous gel acts as a barrier to cell invasion: it inhibits cell proliferation, inflammatory responses and neovascularization. These actions may be related to the vital function of intraocular oxygen distribution and metabolism[14].

VITREOUS OXYGEN METABOLISM

It was suggested previously that the main metabolites in vitreous gel are glucose and lactic acid. The vitreous gel is also important for the regulation and distribution of oxygen. Vitreous oxygen is derived from retinal, choroidal, and iris vessels. Studies have shown that there is a gradient oxygen tension in the vitreous gel, which plays an important role in the protection of the lens and trabecular network from oxidative stress[15]. The oxygen distribution in human intraocular fluids has been reported as follows: oxygen levels are highest near the retinal and iris vessels and the corneal posterior surface; the oxygen levels of the aqueous humor decrease closer to the pars plicata of the ciliary body and the trabecular meshwork; and they generally decrease closer to the lens[15]. The rich retinal blood circulation increases the oxygen tension near the retina, so that the tension there is higher than the central vitreous oxygen tension. The preretinal oxygen tension of the detached retina is much higher (around 30.0±4.8 mm Hg). Human retinal vasculature aids in perfusing the detached retina with relatively high levels of oxygen[16]. Eyes without previous cataract surgery or vitrectomy exhibit a gradient oxygen tension in the aqueous humor. This is because oxygen consumption by the posterior lens is high (0.2-0.4 mL/h), with high oxygen permeability of the posterior capsule, and oxygen tension in the posterior chamber closely correlates with that in the trabecular meshwork[17]. For example, oxygen in the anterior chamber derives from the cornea and the vessels of the ciliary body, diffuses from the retinal vessels through the vitreous, and is consumed by the ciliary epithelium and lens[15]. The oxygen distribution in the human eye before and after vitrectomy is shown in Figure 1.

The excessive oxygen stress has been suggested to promote nuclear cataract formation[17]. In addition to oxygen, all molecules, for instance, vascular epithelial growth factor (VEGF), are transported relatively slowly through the viscous vitreous humor from the retinal vessels in the intact eye[18]. The unique oxygen concentration gradient in vitreous gel results from the oxygen supply and oxygen-consumption rate balance in different parts of the vitreous gel. The maintenance of vitreous oxygen tension is mainly related to the oxygen consumption of vitreous ascorbate (vitamin C). In intact vitreous gel, the average vitamin C content is close to 2 mmol/L[19], whereas in the blood it is approximately 50-60 pmol/L. In addition to the high oxygen demand and rich blood circulation of the retina, active vitamin C transporters of the retina and ciliary body pigment epithelium actively transport vitamin C by a temperature-sensitive and energy-dependent kinetic
mechanism, so the normal vitreous has a high amount of vitamin C and low vitreous oxygen tension[20]. The retina has the ability to regulate its own blood flow, and this self-regulation is largely controlled by retinal chemical conditions, especially oxygen tension. The variation in vitreous oxygen tension is closely related to intraocular diseases[21].\vspace{1em}

LIQUEFACTION, THE AGE-RELATED VITREOUS DEGENERATION

Vitreous gel is a homogeneous jelly inside infant eyes. The vitreous body condenses and degrades in a slow process, and collagenous condensation and liquefied cavities gradually form[8]. Vitreous gel liquefaction might be the initial factor in many vitreoretinal diseases. However, its pathogenesis is not well understood. Aging vitreous collagen fibrils degrade, which may underlie vitreous liquefaction and the ensuing posterior vitreous detachment (PVD). Changes, with aging, in the collagen fibrils on the vitreous surface include a loss of type IX collagen and a fourfold increase in the exposure of type II collagen; these changes predispose the vitreous collagen fibrils to fusion, fusion and weakening of the vitreoretinal adhesion[22]. In PVD, the cortical vitreous pulls away from the retina. This can result in the formation of retinal tears, epiretinal membranes, and macular holes and the development of RRD, vitreomacular traction syndrome, and macular edema. Although vitreous liquefaction plays a major role in many vitreoretinal diseases, little is known about its pathogenesis. Advanced glycation end products, proteoglycan, hyaluronic acid, and other macromolecules, gradually liquefy the vitreous, destroying the balance of oxygen distribution and disturbing the regulation of oxygen.

Vitreal-matrix status is also affected by the ascorbate content. The concentration of ascorbate in the aqueous vitreous of individuals with PVD is decreased, compared with that in vitreous in the gel state, and the oxygen consumption of the vitreous also decreases, indirectly increasing the oxygen tension of the vitreous. That can cause oxygen stress, but may be beneficial against ischemic retinal diseases[23]. The movement of oxygen in the vitreous gel is regulated by several mechanisms, including diffusion, convection, hydrostatic pressure, osmotic pressure, and active transport. After vitreous liquefaction or vitrectomy, the viscosity of the vitreous essentially disappears. Increased convection in aqueous vitreous bodies facilitates the diffusion of oxygen and other substances, including the transport of oxygen and nutrients[24]. The oxygen tension in the liquefied vitreous increases that in the whole vitreous because there is no diffusion barrier to oxygen in the inner retinal layer[25].\vspace{1em}

Unlike PVD, incomplete PVD is a risk factor for many retinal diseases, including sight-threatening diabetic retinopathy[26], because the attachment and traction of the vitreous cortex to the macula can induce chronic low-grade inflammation, which may also develop into wet age-related macular degeneration (AMD). The adherent posterior vitreous interferes with
oxygenation and nutrition of the macula and binds VEGF to
the collagen fibers at the retinal vitreous interface, resulting
in exacerbation of the retinal exposure to these cytokines,
and promoting the formation of neovascularization. Inducing
complete PVD might protect against wet AMD27. In a previous
study, oxygen tension in the central part of the vitreous was
46% lower in diabetic retinopathy patients than in healthy
controls, whereas oxygen tension anterior to the retina was
37% higher. The preretinal oxygen level was closely related to
the vitreous VEGF concentration; for instance, retinal hypoxia
or chronic inflammatory stimulus could increase the vitreous
VEGF concentration in proliferative diabetic retinopathy
(PDR)28. The concentrations of both VEGF and hypoxia-
inducible factor-1α (HIF-1α) are increased in the vitreous
body in PDR and closely correlate with disease activity29,30.
Substantial evidence suggests that VEGF plays a key role
in the pathogenesis of neovascularization10-31, which is the
primary cause of vision loss in PDR12-33. Neovascularization
is the formation of new microvascular networks from existing
blood vessels34, and is characterized by vasodilation,
microvascular leakage, and abnormal proliferation of vascular
endothelial cells. Gao et al35 found that vitreous carbonic
anhydrase increased in diabetic macular edema, caused a pH
shift, and led to retinal vascular leakage. Successful vitrectomy
for PDR stabilizes the oxygen levels, maintains the balance of
oxygenation, and inhibits neovascularization36.

TRENDS IN VITREORETINAL PROCEDURES FOR RRD

RRD is a common, potentially blinding eye disease, caused
by vitreous liquefaction and retinal tears31. Historically, SB
surgery was the operation chosen as the treatment for RRD.
Over the past decade, the PPV technique has developed
rapidly and advanced in numerous ways. Studies of United
States Medicare Part B Fee-for-Service data have shown that
vitreoretinal procedures increased six-fold from 2000 to 2014;
vitrectomy use for RRD increased from 13 814 to 19 288
surgeries, whereas SB sharply declined from 6502 to 1260
procedures. The percentages of different types of operations
for retinal detachment repair were 83% vitrectomy, 5% SB
and 12% pneumatic retinopexy in 201437. A study analyzed
data between 1997 and 2007, and found that vitrectomies
for RRD increased 72%, and the quantity of intravitreal
injections was more than doubling every year, whereas SBs
performed without vitrectomy decreased 69% across the 10-
year interval38. During 2003-2016, PPV became the most
common operation, whereas the proportion of SB was only
10%, or less39. PPV was more common (49%) than SB
(11%), especially in the pseudophakic patients and patients
with vitreous hemorrhage40. Vitreous surgery is considered
by American retinal surgeons to be the first choice for treatment
of RRD30. A study in South Korea reported that no obvious
trend was observed in the surgical approaches from 2007 to
201141. These results suggest that vitrectomy and intravitreal
injection have been considered the mainstay of therapy instead
of SB. Therefore, one could ask whether SB surgery has been
replaced by vitrectomy. At least, the possible replacement
of SB surgery by vitreous surgery is now a relevant question.
The main reasons why surgeons are reluctant to perform
SB surgery are that the operative techniques are difficult
to learn and indirect ophthalmoscopy is not easy to master. To
solve such problems, novel techniques for SB have been
developed, including sutureless buckling and suprachoroidal
buckling, reshaping the silicone segment, modified needle
drainage, laser choroidotomy, infusion-assisted drainage42,
and chandelier-assistance SB5. These new techniques make
the learning process easier and safer. No matter how exquisite
the PPV surgical skill is, PPV will inevitably lead to damage
in the vitreous structure and the intraocular environment.
Therefore, we advocate that the ophthalmologists enhance
their knowledge of SB surgery.
The surgeons should select the proper surgery for RRD
based on the patient status. PPV was more likely to be
performed on older patients, or those with pseudophakia
and vitreous hemorrhage; young patients tended to undergo
SB39-41. In older patients and those with pseudophakia and
vitreous hemorrhage, RRD is usually caused by retinal tears,
vitreoretinal traction induced by PVD, and extensive vitreous
liquefaction. Vitreoretinal traction and extensive liquefaction
reduce the retattachment rate of SB. In young patients without
obvious PVD or extensive vitreous liquefaction, RRD is
characterized by small atrophic holes, shallow detachment,
and slow progression, which can usually be cured with SB
alone. SB remains the first-choice surgical procedure in young
phakic patients, as it retains the vitreous body intact and does
not interfere with intraocular metabolism46. Therefore, SB still
has its unquestionable indications, such as in young patients,
or patients with an old retinal detachment or inferior retinal
detachment caused by an atrophic hole.

COMPARISON OF OUTCOMES BETWEEN VITRECTOMY AND SB SURGERY

Studies have shown no significant differences in the
achievement ratio of operation between PPV, SB and the
combined surgery, with primary anatomical success rates of
89.0%, 87.0% and 85.7%, and final anatomical success rates
at 6mo of 98.1%, 100% and 99.4%, respectively1. Another
study, focused on pneumatic retinopexy performed for RRD at
six academic centers in the United States, found that the single-
procedure anatomical success rate was 66.8%41. The relative
efficacy of PPV and SB surgeries remains controversial, and there may be no differences in primary
success rates, visual acuity improvement, final anatomical
Vitreous function and vitrectomy

reattachment, and incidence rates of repeated retinal detachment between PPV and SB in treating primary RRD. In terms of complications, a previous study found that cataract progression and iatrogenic tears were more common after PPV, whereas choroidal detachment was more common after SB[41]. The rate of cataract occurrence in young patients after PPV is as high as 60% and is closely related to intraocular gas[46]. The single-surgery anatomic success rates of SB and PPV/SB have been found to be higher than that of PPV, and SB has been shown to have better visual outcomes than PPV or PPV/SB, even after cataract extraction[47]. The largest randomized clinical trial showed that the mean best-corrected visual acuity (BCVA) change was significantly greater after SB of phakic patients, and the difference in re-detachment rates of SB and PPV in the phakic patients was not statistically significant[48]. The refractive error induced by the vitreous-gel substitutes causes the vision decline temporarily. For example, the refractive state of the eyes with silicone oil injection is a hyperopic shift of +4.0 to 7.0 D[49]. SB induces only a small refractive error and is beneficial to visual rehabilitation in the early postoperative period[50]. Thus, although the anatomic success rates of PPV and SB are similar, SB is superior to PPV for RRD in many respects, including early recovery of visual acuity and prevention of cataract progression[43].

Proliferative vitreoretinopathy (PVR) occurs in 5%-10% of RRD cases and is the leading cause of surgical failure[51-53]. The frequency of PVR after PPV and SB is similar[45,33]. PVR is initiated by fibroblasts derived from RPE cells that are transformed into mesenchymal cells and begin the deposition of collagen and the extracellular matrix, arranged by disordered inflammatory chemokines and growth factors that induce excessive inflammation in the positions of retinal tears and detachment[51,54].

A systematic and comprehensive review of the literature from 1980 to the present found that the development of PVR is closely associated with pre-existing PVR, extensive retinal detachment, vitreous hemorrhage, huge retinal breaks, pseudophakia, and surgical factors[55]. Hooymans et al[52] reviewed the rate of postoperative PVR of 186 consecutive patients with primary RRD repaired with SB combined with cryotherapy, and found that in 6% of the eyes with PVR, the PVR had presented preoperatively, and that pseudophakia may also be a risk factor. Therefore, careful preoperative physical examination and timely diagnosis of pre-existing PVR are effective ways to prevent PVR. Some studies have found several predictive biomarkers for determining the probability of PVR, which might be beneficial in choosing suitable operation techniques[51].

Surgical factors include extensive laser retinopexy and cryopexy, unclosed retinal tears, scleral perforation, and vitreous hemorrhage in the perioperative period[53]. Cryotherapy causes chorioretinal trauma, leads to alterations in the protein matrix, and results in the release of RPE cells throughout the ocular fluid[56-57]. Imprecise cryotherapy can result in increased risk of PVR[58]. Location of the break with a cryoprobe, adjuvant photocoagulation, and drainage of the subretinal fluids (SRF) followed by cryopexy ensures precise retinopexy and less release of RPE[42].

Nevertheless, SB surgery can cause several complications during the discharge of fluid from the suprachoroidal cavity. The traditional SRF drainage through the incision may cause incomplete drainage, dry tap, choroidal hemorrhage, retinal incarceration, and retinal tears. Sudden hypotony due to copious drainage can cause choroidal detachment[42].

To prevent such problems, novel techniques for SB have been introduced. First, the modified needle drainage is performed through a sclera puncture with a 26-gauge needle, which provides adequate drainage with a much lower complication rate (15%) than the traditional method (32.5%)[59]. In addition, an endolaser probe was applied to perform the choriodotomy after scleral cut-down in order to hemostasis by coagulating the choroidal vessels and prevent iatrogenic retinal break. Laser choriodotomy reduces the incidence of retinal perforation and bleeding at the time of drainage[50-51]. Infusion-assisted drainage can be placed to combat sudden hypotony due to copious drainage and to maintain intraocular pressure during drainage[42].

Lincoff[62] discussed the advantages of cryotherapy and highlighted benefits of non-drainage of SRF, which remains relevant in RRD repair today. The operation includes three main procedures: occluding retinal hiatus by cryotherapy, placing a silicone sponge for each retinal break, and non-drainage of SRF. Minimal segmental buckling without drainage is an effective technique for repair of RRD with a single break or a few breaks within a few clock hours, and may result in less postoperative pain[63]. This technique of SB surgery simplifies the operative procedures, reduces the operation difficulty, shortens the operation time, and decreases the surgical trauma[64].

Although, for those more complicated RRD cases, such as huge retinal tears, multiple breaks, PDR and PVR, PPV are much safer and more effective. However, SB remains a relevant surgery for the right cases, with better results and fewer complications.

COMPICATIONS AND VITREOUS METABOLIC DISTURBANCES OF PPV

PPV removes all the natural vitreous resulting in metabolic disturbance of the vitreous, which leads to a high risk of complications[14,22]. Some adverse events appear to be more common in association with PPV than with SB, such as
cataract (46%), preretinal fibrosis (33%), recurrent traction retinal detachments (15%), oil migration to the anterior chamber (12%), corneal edema (12%), oil emulsification (9%) and new iatrogenic breaks (5.42%)\(^{[43]}\), whereas choroidal detachment was more commonly seen in SB than PPV\(^{[45]}\). Although there are many reasons for these complications, disturbance of oxygen metabolism in the natural vitreous may be one of the important factors.

The incidence of cataract, glaucoma or retinal disease is elevated after PPV, which may be related to vitreous oxygen distribution in patients. A clinical study compared the preoperative and postoperative vitreous oxygen tension: in eyes at baseline, the vitreous oxygen tension was low adjacent to the lens (8.7±0.6 mm Hg) and in the middle vitreous (7.1±0.5 mm Hg), immediately after vitrectomy, oxygen tension became higher adjacent to the lens (69.6±4.8 mm Hg) and in the middle vitreous (75.6±4.1 mm Hg). Thus, vitreectomy increases intraocular oxygen level significantly, by 7-8 times, and the oxygen tension was still maintained at a high level 2 years later\(^{[46]}\). In a group of RRD patients after PPV, 56.5% had an increase in intraocular pressure (IOP) during the follow-up period\(^{[66]}\). The risk of open angle glaucoma increases after PPV, which is associated with increased oxygen stress potentially damaging trabecular-meshwork cells\(^{[15]}\) (Figure 1).

The mechanism by which surgical excision of vitreous gel can increase oxygen tension is as follows. First, the concentration of ascorbate is reduced in a sodium-free medium and other substances, including the transport of oxygen and nutrients\(^{[19-21,23]}\). Second, after vitrectomy, the viscosity of the vitreous gel essentially disappears. Increased convection in an aqueous vitreous body facilitates the diffusion of oxygen and other substances, including the transport of oxygen and nutrients\(^{[20]}\). In vitrectomized eyes, VEGF production decreases due to increased oxygen diffusion, and the clearance of VEGF is faster. These two mechanisms combined inhibit retinal neovascularization and macular edema\(^{[18]}\). The oxygen tension in the liquefied vitreous increases uniformly because there is no diffusion barrier of oxygen in the inner retinal layer\(^{[25]}\).

Vitreous is non-renewable, and therefore vitreous replacements must be used after a PPV for RRD. Gases, silicone oil, heavy silicone oil and hydrogels, of which the gases and silicone oil are widely used clinically as vitreous substitutes. However, none of the current substitutes can completely replace the natural vitreous, as the substitutes lack the structure and function of the natural vitreous gel, so complications often occur\(^{[67]}\). A multicenter study between 2002 and 2016 found that the single-procedure anatomic success rate with pneumatic retinopexy was 66.8%, while the incidence of cataract was significantly increased\(^{[44]}\). Intravitreal silicone oil is associated with many complications, such as temporary high IOP, inflammation, cataract, emulsification, glaucoma, ocular hypotension, keratopathy and PVR\(^{[68]}\). There is often unexplained atrophy of the optic nerve after silicone-oil filling\(^{[69]}\). Silicone oil, as a foreign substance, was shown to aggravate chronic inflammation in eyes with chronic uveitis and phthisis bulb that were enucleated from patients after vitrectomy with silicone-oil tamponade\(^{[70]}\).

COMPlications AND VITREOUS METABOlIC DISTURBANCES WITH LASER VAPORIZATION AND INTRAVITREAL DRUG INJECTION

In addition to vitrectomy, vitreous interventions include laser photocoagulation and intravitreal injections. Neodymium-doped yttrium aluminum garnet high-energy pulsed-laser ablation (Nd:YAG laser vitreolysis) has recently been applied to relieve vitreous floaters, whose prevalence may increase with a dramatically increased incidence of myopia\(^{[71]}\). In 1987, Hrisomalos et al\(^{[72]}\) first reported Nd:YAG laser vaporization on six patients with floaters and transaction of bands. Nd:YAG laser disrupts tissues through the formation of ionized gas that causes a shock wave to relieve vitreous floaters but may damage the adjacent lens and retina\(^{[73]}\). There has not been sufficient evidence to prove that Nd:YAG laser vitreolysis is a safe and effective therapy, although the incidence of complications has thus far been low. Moreover, Lim\(^{[74]}\) suggested that there was only fragmentary evidence to support the visual improvement after Nd:YAG laser vitreolysis. A clinical study on 32 eyes reported that the laser produced significant improvement in near visual function and the visual disturbance rate, but not in distance visual function at 6-month follow-up\(^{[75]}\). A sham-controlled, randomized clinical trial found that the BCVA changed by -0.2 letters in the laser group, which was not significantly different from the result in the sham group\(^{[76]}\). The resolution of floaters by Nd:YAG laser ranges between 0 and 100%, but for young patients (<30 years old) with floaters, the chances of significant improvement of symptoms are not high\(^{[77]}\). A research study on rabbits, focused on the possible hazardous side effects of treating floaters with Nd:YAG laser, suggested that Nd:YAG laser treatment should be restricted to the anterior portion of the vitreous to avoid disturbing the state of the vitreous gel, as laser treatment in the middle and posterior vitreous can increase the protein content, refractive index, and viscosity\(^{[78]}\).

Intravitreal injections were the primary driving force for the growth of vitreous interventions\(^{[77]}\); the annual number of intravitreal injections has more than doubled since 2000\(^{[38]}\). Intravitreal drug injection is the main treatment for many retinal diseases. Repeated injections lead to increased risk of retinal detachment, retinal tear, increased IOP, cataracts, endophthalmitis, RPE atrophy and narrowing of the vascular...
Vitreous function and vitrectomy
diameter[79]. There are also some rare complications, identified in recent years, such as RPE tear[80], mycobacterium abcessus scleritis[81], and corneal subepithelial infiltrates that are associated with the intravitreous injection of bevacizumab, because of an immune response to bevacizumab[82]. Eight of seventy-one eyes of patients with PDR developed ghost scleritis because of an immune response to bevacizumab associated with the intravitreous injection of bevacizumab, thus avoiding the complications of PPV. As we do not fully understand the function of vitreous gel, we should perform vitreous surgical intervention only after careful assessment.

CONCLUSION

Vitreous gel plays a key role in ocular metabolism and in the pathological mechanisms of ocular disease. It is necessary to pay attention to vitreous metabolic function and conduct vitreous intervention prudently to better maintain the metabolic balance and visual function of the eye. SB surgery remains the preferred therapy in young phakic patients without PVD, particularly in maintaining the integrity of the vitreous gel, to pay attention to vitreous metabolic function and conduct vitreous surgical intervention only after careful assessment.

ACKNOWLEDGEMENTS

Foundations: Supported by the China Postdoctoral Science Foundation (No.2017M612214); the Natural Science Foundation of Shandong Province (No.ZR2018BH013).

Conflicts of Interest: Zong Y, None; Gao QY, None; Hui YN, None.

REFERENCES

Vitreous function and vitrectomy

74 Lim JI. YAG laser vitreolysis–is it as clear as it seems? JAMA Ophthalmol 2017;135(9):924-925.

81 Golen JR, Espana EM, Margo CE. Mycobacterium abscessus scleritis that developed following intravitreous injection of bevacizumab. JAMA Ophthalmol 2013;131(10).
