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Abstract
● Gene therapy is a potentially effective treatment for retinal 
degenerative diseases. Clustered regularly interspaced 
short palindromic repeats (CRISPR)/CRISPR-associated 
protein 9 (Cas9) system has been developed as a new 
genome-editing tool in ophthalmic studies. Recent 
advances in researches showed that CRISPR/Cas9 has 
been applied in generating animal models as well as gene 
therapy in vivo of retinitis pigmentosa (RP) and leber 
congenital amaurosis (LCA). It has also been shown as 
a potential attempt for clinic by combining with other 
technologies such as adeno-associated virus (AAV) and 
induced pluripotent stem cells (iPSCs). In this review, 
we highlight the main points of further prospect of using 
CRISPR/Cas9 in targeting retinal degeneration. We also 
emphasize the potential applications of this technique in 
treating retinal degenerative diseases.
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Introduction

R etinal degeneration is a main cause of a large number 
of blinding diseases, such as retinitis pigmentosa (RP), 

age-related macular degeneration (AMD) and leber congenital 
amaurosis (LCA)[1-3]. Gene therapy has been regarded as a 
novel, potential and effective therapeutic method in treating 
those retinal degenerative diseases[4-8]. Recently, the clustered 

regularly interspaced short palindromic repeats (CRISPR)/
CRISPR-associated protein 9 (Cas9) system has been 
developed as a novel genome-editing tool in lots of medical 
aspects including ocular diseases[9]. Unlike other gene-editing 
tools such as transcription activator-like effector nucleases 
(TALENs) and zinc-finger nucleases (ZFNs), CRISPR/
Cas9 system has multiplexed gene-editing ability as well as 
significantly higher efficiency[10]. Thus, CRISPR/Cas9 could 
be considered as a novel tool by ophthalmologists in targeting 
retinal degenerative diseases. Herein we present an overview 
of research advances of CRISPR/Cas9 system as a therapeutic 
tool for retinal degenerative diseases. In this review, we also 
emphasize some important points regarding the potential 
applications of CRISPR/Cas9 in retinal degeneration.
OVERVIEW OF CRISPR/CAS9 SYSTEM
Originally reported in 1987 as a set of short repeats located 
downstream of the iap gene in E. coli[11], CRISPR was then found 
both in bacteria and archaea as a immune system to protect them 
from plasmids, invading viruses, and other foreign nucleic 
acids[12-14]. And the endonuclease Cas9 can cleave DNA 
according to the sequence within an RNA duplex and create 
site-specific double-strand breaks (DSBs)[15]. These site-
specific DSBs in the target DNA make CRISPR/Cas9 system 
a useful tool in genome editing with the ability to either cut 
or introduce a new gene to the genome. In the past decades, 
CRISPR/Cas9 has been increasingly recognized and applied as 
a powerful tool for regenerative medicine and gene/cell based 
therapy as well as animal model establishment [16-20]. With a 
breakthrough in 2015, CRISPR/Cas9 system has attracted 
tremendous attention from both scientists and clinicians and 
publications came out in different fields using this “magic” 
technology, especially with those diseases that remained 
untreatable for a long time such as AIDS, cancers and 
degenerative diseases. Scientists demonstrated that CRISPR/
Cas9 technologies had the capability for a promising and 
sustained genetic therapy for HIV[21-22] and might contribute 
to HIV-1 therapeutic resistance[23]; CRISPR/Cas9 was thought 
to be an useful tool for cancer therapy by inactivating tumor 
mutations[24] or knocking out a specific gene to decrease the 
malignant potential of cancer cells[25]; CRISPR/Cas9 has also 
been applied in neurodegenerative diseases[26] and retinal 
degenerative disease[27] as a choice of possible gene therapy. 
All these researches made CRISPR/Cas9 a super star in 
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the scientific world and brought this new technology to an 
unprecedented level. 
MECHANISMS OF CRISPR/CAS9 
According to an updated evolutionary classification of 
CRISPR/Cas system[28], CRISPR/Cas system can be divided 
into two groups, class I and class II, depending on whether 
the systems possess multisubunit CRISPR RNA (crRNA)-
effector complex such as CRISPR-associated complex for 
antiviral defense (Cascade) complex or a single protein, such 
as Cas9. In this classification, class I includes type I, II and the 
putative new type IV CRISPR/Cas systems, which all present 
a multisubunit crRNA-effector complex. However, class II 
contains the type II CRISPR/Cas system as well as a putative 
new classification, type V, which dramatically differs from 
the other three by requiring only one protein for gene editing 
instead of a multisubunit crRNA-effector complex. And Cas9 
is the signature gene of type II. Because of its simplicity, 
CRISPR/Cas9 has been studied and applied the most by 
scientists and clinicians. The mechanism of this system is also 
studied and reported the most by a great many scholars. 
In CRISPR/Cas9 system, the Cas9 protein is responsible for 
locating and cleaving target DNA. The Cas9 protein has 6 
domains (Figure 1), recognition (REC)1, REC2, Bridge Helix, 
protospacer adjacent motif (PAM) Interacting, HNH and RuvC 
(Nuclease domains)[29-30]. The Cas9 protein is activated after 
binding guide RNA (gRNA or sgRNA) by REC1 following 
a conformational change in the protein. Then, it searches for 
target DNA stochastically by binding with sequences that 
matches its PAM sequence [31] and immediately melts the bases 
of the PAM, paring them with the complementary region on 
the gRNA. By now, initiated by the PAM-interacting domain, 
target DNA binding is finished [29]. If the matching region and 
the target region are properly paired, the nuclease domains, 

RuvC and HNH, will cut the target DNA after the third 
nucleotide base upstream of the PAM. In the whole process, 
arginine-rich bridge helix is the key for initiating cleavage 
activity upon binding of target DNA[30].
Gene Knockout  gRNA or sgRNA are designed to a specific 
genomic sequence. sgRNAs and Cas9 can be cloned into 
plasmids and then introduced into mammalian cells by 
transfection, directing Cas9 to knockout the gene[32-33]. For 
long-term expression which will result in stable knockout, 
Cas9 protein associated with sgRNAs can be pre-packed into 
lentiviral vectors, and then transduced into target cells[34]. Both 
the sgRNA and Cas9 are integrated stably into the genome of 
host cells, and have the ability to pass along to their daughter 
cells when the cells divide. This will provide permanent 
expression of shRNA and Cas9, generating long-term and 
stable knockout gene expression. 
Gene Insertion/Knockin  CRISPR/Cas9-induced site-specific 
DNA DSBs can be repaired by homology-directed repair 
(HDR) or non-homologous end joining (NHEJ) pathways[35]. 
The mechanisms of these two pathways were studied by 
scientists and explained as follows: the HDR pathway repairs 
DNA damage accurately based on existing homologous 
DNA sequences mediated by a strand-exchange process[36], 
which we can intentionally replace the endogenous genome 
segments with plasmid sequences to insert targeted DNA 
into the genome and precisely induce genetic modification in 
living cells; the NHEJ pathway joins the broken ends through 
a homology-independent mechanistically flexible process 
to repair DNA DSBs, which often leads to random small 
insertions or deletions (indels)[37]. 
Gene Correction  After CRISPR/Cas9 located the specific 
target locus, deleting the mutated gene which considered 
to cause diseases, gene correction at the target locus can be 

Figure 1 Structure and applications of CRISPR/Cas9 in retinal degenerative diseases  BH: Bridge helix; PI: PAM interacting. The structure 
of Cas9 protein of this figure is adapted from Cavanagh&Garrity, “CRISPR Mechanism”, CRISPR/Cas9, Tufts University, 2014. Available at 
https://sites.tufts.edu/crispr/; accessed on Dec. 23, 2016.
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achieved by the insertion of the corrected sequences via NHEJ-
mediated insertions/deletions (indels) or HDR based on an 
exogenously supplied oligonucleotide[38-39].
Advantages of CRISPR/Cas9  As we presented, with the 
mechanism of CRISPR/Cas9, gene editing has become much 
easier than before. Most scientists and clinicians believe 
that the CRISPR/Cas9 system has created a new era for 
establishing animal models/generating cell lines and gene 
therapy. Compared with other tools for gene editing like ZFNs 
and TALENs, CRISPR/Cas9 has its own merits: a) target 
design simplicity: only a short guide RNA is needed[40]; b) high 
efficiency: when compared with other gene editing tools, it is 
more efficient[41-42]; c) multiplexed gene deletion or insertion. It 
can introduce in or knock out multiple genes at the same time 
by simply injecting them with multiple gRNAs[43-45].
APPLICATION OF CRISPR/CAS9 IN RETINAL 
DEGENERATION
With all these advantages we listed above, CRISPR/Cas9 
technology has now gotten increasingly high attention and has 
been widely used in creating knock out animal models and cell 
lines[16-17,46-47] to mimic diseases. At the same time, it has been 
broadly used for studying gene therapy for a great number 
of diseases[26,48-49], including retinal diseases[50]. For decades, 
retinal degenerative diseases in ocular have been challenging 
lots of ophthalmologists and researchers. With the advent of 
this magic CRISPR/Cas9 system, many animal models in the 
eye can be created and studied and several diseases that could 
not be treated in the eye now might have a promising way 
to cure. In this review, we are going to present the advances 
of CRISPR/Cas9 technology applied in retinal degenerative 
diseases.
Research Progress in Generating Animal Models  RP is 
the most frequent form of inherited retinal degeneration that 
mainly caused by gene mutations and can gradually lead 
to irreversible blindness[51]. This disease mainly affects rod 
photoreceptors and after rods die, cone photoreceptors die 
secondarily. And it can be passed from parents to offspring 
through one of three genetic inheritance patterns: autosomal 
dominant (AD), autosomal recessive (AR) and X-linked (XL) 
recessive traits[52]. In order to treat this disease, scientist has 
created numbers of animal models such as rd mice, N-methyl-
N-nitrosourea (MNU)-induced mice and zebrafish model 
for XL RP, etc. All these models are trying to mimic the 
degeneration of the photoreceptors. However, as we already 
know, RP is a genetic disease resulted by gene mutations 
such as RP2 mutation, retinitis pigmentosa GTPase regulator 
(RPGR) mutation[53], mutations in pre-mRNA processing 
factor 31 (PRPF31)[54], and c-mer proto-oncogene tyrosine 
kinase (MERTK) mutations[55] etc, the best way to generate 
animal models to represent this disease is gene editing. Thus, 
the appearance of CRISPR/Cas9 has provided a powerful tool 

to generate RP animal models for researchers and doctors to 
study.
Up to now, there are already some studies using this CRISPR/
Cas9 technology to create animal models for RP. Arno et 
al[56] reported a mouse model using gene editing mediated 
by CRISPR/Cas9 technology. They produced knock-in mice 
with the p.Leu135Pro RP-associated variant identified in one 
RP-affected mouse. By mimicking the clinical phenotypes 
of RP, including progressive photoreceptor degeneration and 
dysfunction of the rod photoreceptors, these homozygous 
knock-in mice can provide an better animal model for scientist 
to study[56]. In another study of the causes of rd1 mice, they 
performed gene editing via the CRISPR/Cas9 system and 
illustrated that the Y347X mutation is the contributing variant 
of the disease[50]. 
LCA is another challenging congenital  retinal dystrophy 
for ophthalmologists and scholars since patients with LCA 
usually end up with significant vision loss at an early age[57]. 
CRISPR/Cas9 was demonstrated to be a useful tool to generate 
a LCA mouse model to mimic human KCNJ13-related LCA 
disease[58]. 
Additionally, not only animal models of retinal degenerative 
diseases such as RP and LCA can be created by CRISPR/Cas9 
technology, animal models for other ocular diseases using 
this technology also have being studied widely. By injecting 
multiplex CRISPR/Cas9 gRNAs, a highly penetrant and rapid 
retinoblastoma (Rb) animal model was generated the first time 
and it will be a good model facilitating rapid identification of 
targets that allow therapeutic intervention[59]. 
Gene Therapies  Gene therapy for ocular diseases is currently 
a hot stone worldwide. Scientists are working extremely hard 
to find good ways to treat inherited eye diseases. As CRSPR/
Cas9 technology showed up with its ability to edit target 
genome specifically and efficiently as well as the capacity of 
targeting multiple genes at the same time, it soon has become 
a valuable and powerful tool for gene editing, which is perfect 
for gene therapeutic intentions in retinal degenerative diseases 
and gives ophthalmologists the hope for permanent treatment 
of ocular genetic diseases.  
Latella et al[60] reported a successful in vivo editing of the 
human mutant Rhodopsin gene, which is a common cause of 
RP, by application of CRISPR/Cas9 system. Thus, the genome 
editing by CRISPR/Cas9 system might be a great method to 
generate genomic deletions and targeted frameshifts in the 
retina, which provided us a new therapeutic tool for treating 
retinal degenerative diseases such as RP. 
The attempt of CRISPR/Cas9 system for treating retinal 
degeneration has also been done in 2015 in the respective 
S334ter-3 rat model[61]. A single subretinal injection of 
gRNA/Cas9 plasmid in combination with electroporation, 
and the generation of allele-specific disruption of the murine 
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S334ter allele were achieved, resulting in retinal degeneration 
prevention and visual function improvement. In another study, 
Suzuki et al[27] devised a homology-independent targeted 
integration (HITI) strategy through CRISPR/Cas9 technology, 
demonstrating that the efficacy of this strategy improved visual 
function in rat model of RP, which proved the therapeutic 
potential of this technology.
As a kind of small non-pathogenic dependovirus, adeno-
associated virus (AAV) has been recognized to show great 
potential for safe and long-term genetic pay-load in treating 
retinal diseases[62]. Da Costa et al[63] showed a novel method 
that combined vitreous aspiration and intravitreal injection 
of AAV2/8 could result in a widespread transduction of the 
retina (including photoreceptors and RPE cells), which also 
provided a new approach for CRISPR/Cas9 application 
in treating retinal diseases. Cereso et al[64] performed gene 
therapy mediated by AAV2/5 to induced pluripotent stem cells 
(iPSCs)-derived RPE cells from a choroideremia patient. As 
delivery of combined use of CRISPR/Cas9 and AAV has been 
reported successfully in mouse hepatocytes[65], Zheng et al[66] 
suggested to use AAV-CRISPR to deliver directly and locally 
for treating retinal diseases. CRISPR/Cas9 genome editing was 
also used for precise correction of a pathogenic RP mutation 
in patient-derived iPSCs[67]. Thus, CRISPR/Cas9 can also be 
considered as a tool to be combined with iPSCs for clinical 
applications in gene therapy. Further investigations are needed 
for combined use of these novel technologies for gene and cell 
therapy.
CONCLUSION
In this review, we summarized recent studies on CRISPR/
Cas9 in retinal degenerative diseases, and we believe that this 
new technology can be used not only in basic research such 
as creating animal models of retinal degenerative diseases 
like RP, but also in clinical applications such as developing  
therapeutic methods for those diseases in the future. We also 
believe that it is also promising in gene therapy to perform the 
combined utility with other technologies such as AAVs and 
iPSCs. Thus, CRISPR/Cas9 should be a useful and powerful 
tool for genome editing in targeting retinal degenerative 
diseases.
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