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Abstract
● Retinopathy of prematurity (ROP) is a retinal vascular 
disorder frequently found in premature infants. Different 
therapeutic strategies have been developed to treat ROP. 
However, there are still many children with ROP suffering 
by severe limitations in vision or even blindness. Recently, 
ROP has been suggested to be caused by abnormal 
development of the retinal vasculature, but not simply 
resulted by retinal neovascularization which takes about 
4 to 6wk after birth in premature infants. Thus, instead 
of focusing on how to reduce retinal neovascularization, 
understanding the pathological changes and mechanisms 
that occur prior to retinal neovascularization is meaningful, 
which may lead to identify novel target(s) for the development 
of novel strategy to promote the healthy growth of retinal 
blood vessels rather than passively waiting for the 
appearance of retinal neovascularization and removing it 
by force. In this review, we discussed recent studies about, 
1) the pathogenesis prior to retinal neovascularization in 
oxygen-induced retinopathy (OIR; a ROP in animal model) 
and in premature infants with ROP; 2) the preclinical and 
clinical research on preventive treatment of early OIR 
and ROP. We will not only highlight the importance of the 
mechanisms and signalling pathways in regulating early 
stage of ROP but also will provide guidance for actively 
exploring novel mechanisms and discovering novel 
treatments for early phase OIR and ROP prior to retinal 
neovascularization in the future.
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INTRODUCTION

R etinopathy of prematurity (ROP) is one of the leading 
causes of visual loss in children[1]. Although the timely 

diagnosis and treatment of ROP have resulted in better 
improvement of retinal structure and visual acuity than before, 
however, ROP remains as a major cause of blindness in 
premature infants and the incidence is increased along with 
the elevated survival of infants born at very early gestational 
ages[2-6]. ROP can be divided into an early ischemic stage and a 
late neovascular stage, and early retinal ischemia leads to late 
retinal neovascularization (RNV)[7-8]. At present, most of the 
therapeutic treatments are focusing on depressing RNV[9-10]. 
However, at some circumstance, such as residual anatomical 
changes, amblyopia and high ametropia, and injury to the 
vulnerable retina caused by treatments themselves, make 
it difficult to restore impaired vision function by inhibiting 
RNV[11-17]. These studies suggest that treatment for ROP should 
be done prior to RNV. We predict that the optimal timing for 
ROP treatment should focus on retinopathy during the early 
ischemic stage but not during the late neovascular stage. 
Indeed, early treatment of retinopathy of prematurity (ETROP) 
has been proven to be promising method for rescuing visual 
function in premature infants[18-25]. However, currently, ETROP 
still aimed at pre-threshold retinopathy, which still hurt retina, 
thus, to actively explore the optimal therapeutic strategy 
for ETROP is necessary. In this review, we summarize the 
potential mechanisms involved in early ischemic stage ROP, 
which may contribute to improve ETROP in the future.
OXYGEN AND RETINOPATHY OF PREMATURITY  
Oxygen plays a critical role in ROP[26]. It was found that the 
relatively high levels of oxygen routinely given to premature 
infants were an important risk factor, and that reducing the 
level of oxygen given to premature babies reduced the incidence 
of ROP[27-28]. With advanced technology to monitor the oxygen 
levels applied to infants, the importance of oxygen as a risk 
factor has been diminished. However, for understanding the 
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mechanisms of ROP, oxygen-induced retinopathy (OIR) is 
still used to generate ROP in animal models[29]. OIR can be 
divided into an early hyperoxic phase and a late hypoxic phase 
as in ROP[30]. The morphological changes of retina in the early 
phase of OIR are more obvious than those in the late phase[31]. 
To explore the mechanism of hyperoxia-induced vascular loss 
in the early phase of OIR, which is closely related to primary 
retinal vascular loss in ROP, may help to develop better 
therapeutic strategies for treating ROP.
Limited oxygen application is able to reduce the incidences 
of ROP, whereas it is concomitant to an increase in mortality 
among preterm infants. Thus, studies of how to avoid the 
occurrence of ROP while an infant is treated with oxygen 
are significant[32-33]. Clinical studies indicated that newborn 
resuscitation should not be conducted with 100% oxygen 
supplementation and the levels of SaO2 during the neonatal 
period in extremely low-birth-weight (LBW) infants should 
be maintained at between 85% and 93% or possibly between 
88% and 95%, but absolutely not exceed 95%, and fluctuations 
should be avoided[34]. Maintain of SaO2 values between 83% 
and 93% in the period immediately following birth combined 
with the strict control of oxygen fluctuations could prevent the 
early vaso-obliterative phase and the subsequent development 
of severe ROP in very LBW premature infants[35]. It had also 
been observed that the hyperoxia of 85%-93% versus 90%-99% 
was beneficial for the development of the immature retinal 
vasculature and decreased the incidence of ROP in preterm 
infants with body weights ≤1000 g[36].
Lower oxygen (85% to 92% SaO2) at early gestational ages 
(<34wk) and higher oxygen (92% to 97% SaO2) at older 
gestational ages (>34wk) induced normal retinal development 
and decreased the severity and the incidence of ROP[37-38]. 
However, there is a debate of whether partially decreasing 
SaO2 increased the rate of mortality or disability in premature 
infants. It was reported that SaO2 of less than 90% in extremely 
preterm infants was associated with an increased risk of death, 
whereas one study found SaO2 between 85%-89% versus 
91%-95% resulted in no significant effects on the mortality rate 
or the disability rate in extremely preterm 18mo infants, while 
recently, another study denied this opinion once again[32,39-40]. 
In addition, oxygen used with 90%-99% versus 85%-93% has 
the similar clinical effects on the development of the early and 
late type 1 ROP[41]. It is also observed that hyperoxia treatment 
(40%-75% SaO2) initiated on P14 during the pre-proliferative 
phase of ischemic retinopathy was effective in accelerating 
the process of retinal revascularization and preventing the 
development of RNV[42]. Thus, hyperoxia is not always 
harmful to premature infants, and in some circumstance, it may 
be beneficial for the development of retinal vessels and reduce 
the incidence of ROP. Thus, to what extent that hyperoxia 
should be lowered which benefit to the development of retinal 
vasculature and simultaneously do not harm to the fate of 

premature infants still need be further investigated in clinical 
studies.
HYPOXIA INDUCIBLE FACTOR AND EARLY 
RETINOPATHY OF PREMATURITY
Hypoxia inducible factor-1 (HIF-1), including an oxygen-
regulated HIF-1α subunit and a constitutively expressed HIF-1β 
subunit, regulates gene transcription by binding to the hypoxia-
response elements in gene promoters. Some of the HIF-1 
target genes are involved in adapting to insufficient oxygen 
or hypoxia[43-47]. HIF-1α is regulated by prolyl hydroxylases 
(PHD1, PHD2, and PHD3) and asparagine hydroxylase 
factor inhibiting HIF (FIH-1)[48-50]. During normoxia and 
hyperoxia, HIF-1α is unstable due to its hydroxylation and 
subsequent ubiquitination and proteasomal degradation[51-53], 
whereas during hypoxia, HIF-1α can be stabilized by PHDs 
via post-translational modifications[54-55]. It has been reported 

that increasing HIF-1α expression or decreasing HIF-1α 
degradation during the early stage of OIR can markedly 
reduce the avascular area and prevent hyperoxia-induced 
vessel loss, and recently, the role of liver-specific HIF-1α in 
promoting retinal vasculature in hyperoxia has been further 
proved[56-57]. However, the expression of HIF-1α in the late phase 
of OIR results in an inevitable increase in vascular endothelial 
growth factor (VEGF) expression, which accelerates 
neovascularization[58]. In addition, the systemic administration 
of dimethyloxalylglycine, a PHD inhibitor, during the early 
phase of OIR stabilizes HIF activity in the retina, and prevent 
oxygen-induced central-vessel loss and subsequent vascular 
tortuosity and tufting, which reduces subsequent RNV[59-60]. 
These studies suggest that HIF-1α may be a drug target and 
inhibition of PHDs during the early ischemic stage may be an 
effective treatment for ROP.
VEGF AND EARLY RETINOPATHY OF PREMATURITY
VEGF stimulates vasculogenesis and angiogenesis and is 
primarily regulated by HIF-1 at the transcriptional level under 
the condition of hypoxia[61]. VEGF can bind with its two 
membrane-bound receptors: VEGFR-1 and VEGFR-2, on 
endothelial cells[62]. The primary role of VEGFR-1 after 
binding by VEGF is to negatively regulate the bioactivity 
of VEGFR-2[63-64]. VEGFR-2 is essential for endothelial 
physiology and pathology during development, including the 
processes of angiogenesis and neovascularization[64-66]. In a 
mouse model of ischemia-induced retinal revascularization, 
an increased level of VEGFR-2 was noted in the vessels 
near the avascular area, whereas VEGFR-1 expression in 
the hypoxic retina was almost the same compared to that in 
control animals[67]. A critical role of VEGFR-1 in maintaining 
the vasculature of the neonatal retina has been reported and 
activation of VEGFR-1 by placental growth factor-1 has been 
proposed as an alternative strategy for preventing OIR without 
provoking RNV[68]. It has been noted that the levels of serum 
VEGF were lower at birth in infants who developed ROP 
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than infants without ROP, and it remained low in children 
with ROP who required treatment[69-70], which suggested 
that addition of VEGF-A during the early stage might be 
beneficial to the development of the retinal vasculature in 
preterm infants. However, it is also reported that exogenous 
VEGF administration on P14 was not sufficient to induce 
RNV in hyperoxia treatment mice, whereas injection of the 
VEGF antagonist VEGFR1/Fc blocked both pathologic and 
physiological angiogenesis but did not rescue astrocytes[42]. In 
addition, administration of a neutralizing antibody targeting 
VEGF decreased the phosphorylation of VEGFR-2 within 
the retina and around the blood vessels, and increased levels 
of VEGF in the free intraretinal space during the early stage 
of OIR, leading to significantly and sustainably reduce RNV 
without interfering in the ongoing retinal vascularization[71]. 
Thus, early administration of VEGF may be not enough to 
promote retinal vascular development in premature infants, and 
it is necessary to investigate the role of VEGFR1 and VEGFR2 
in this process.
NORRIN AND EARLY RETINOPATHY OF PREMATURITY
Norrin is constitutively expressed in the retina and involved 
in retinal angiogenesis. Together with its receptor (Frizzled-4, 
FZD4), Norrin activates the Wnt-signalling pathway and 
controls the formation of the retinal vasculature during eye 
development[72-73]. It was reported that Norrin could significantly 
reduce vascular loss in transgenic mice with OIR and could 
increase the anatomically accurate regrowth of vessels while 
suppressing RNV[74]. Abnormal Norrin production led to 
premature retinal vascular invasion, resulting in characteristic 
defects in the intraretinal vascular architecture[75]. In addition, 
an antagonist of FZD4 not only inhibited physiological and 
pathologic sprouting angiogenesis within the retina but also 
induced the upregulation of plasma lemma vesicle-associated 
protein. Thus, FZD4 is required for physiological and 
pathologic angiogenesis in the retina and for the regulation of 
retinal endothelial cell differentiation[76]. These studies suggest 
the role of Norrin in ROP and its therapeutic potential in the 
treatment of the early stage ROP.
INSULIN-LIKE GROWTH FACTORS AND EARLY 
RETINOPATHY OF PREMATURITY
Insulin-like growth factor (IGFs) constitute a large family of 
insulin-related peptides that include IGF-I and IGF-II, their 
cell surface receptors (IGF-IR and IGF-IIR), and IGF binding 
proteins (IGFBP-1 through -6) as well as their proteases and 
interacting molecules, which work together to regulate cell 
proliferation, differentiation and apoptosis[77-78]. The majority 
of circulating IGF-I and IGF-II binds to IGFBPs, whereas 
IGFBPs also regulate their biological activities and modulate 
cellular activity via IGF independent pathways[79-80]. It has been 
found that IGF-IR and insulin receptor (IR) are predominantly 
expressed in photoreceptors and blood vessels, in which the 
expression of IGF-IR is 100-fold more than that of IR[81]. 

IGFBP-3 expression in neovascular tufts of OIR was increased 
more than 5-fold during hypoxia, whereas IGFBP2, IGFBP4 
and IGFBP5 expression remains unchanged. In addition, it 
also found that neonatal mice from larger litters showed lower 
body weights and lower levels of circulating IGF-I than mice 
from smaller litters and that they were more susceptible to 
developing more severe OIR[82]. The early administration of 
IGF-I at postnatal day 4 increased body weight and resulted in 
more rapid maturation and less OIR[82]. The early short-term 
systemic administration of JB1, an IGF-I analog, increased 
soluble VEGFR-1 and decreased retinal OIR pathology more 
effectively than long-term treatment with JB1[83]. It has also 
been reported that the IGF-I levels are deficient after premature 
birth and that, at birth, non-ROP neonates show higher IGF-I 
levels than neonates with ROP. The severity and duration 
of low-serum IGF-I are correlated with the development of 
ROP[84-86]. The serum levels of IGF-I during the third week 
post partum provide a sufficient and reliable prognostic marker 
for the identification of patients at high risk to develop ROP[87].
IGFBP-3 regulates the elevated expression of endothelial NO 
synthase in human endothelial progenitor cells (EPCs) and 
promotes NO generation, thereby facilitating EPC migration 
into the ischemic retina. IGFBP-3 exposure also led to the 
redistribution of vasodilator-stimulated phosphoprotein, an 
NO-regulated protein critical for cell migration. Furthermore, 
IGFBP-3 increased pericyte ensheathment and reduced pericyte 
apoptosis, activated microglia and induced the apoptosis of 
neuronal cells in the developing retina with OIR, resulting in 
a more stable retinal vascular bed[88-89]. Fresh-frozen plasma 
(FFP) from adult donors contains higher concentrations of 
IGF-I and IGFBP-3, and two or more transfusions of FFP 
during the first week of life decreases the risk of developing 
any grade of ROP in preterm infants with a gestational age 
of less than 29wk[90-91]. Direct and continuous intravenous 
infusion of IGF-I/IGFBP-3 was effectively and safely to 
increase the serum concentrations of IGF-I and IGFBP-3 in 
preterm infants[92]. The prolonged administration of IGF-I/
IGFBP-3 did not show any negative impact on blood-glucose 
levels and was beneficial for the total body growth of neonatal 
mice[93]. These studies suggest that IGF-I and IGFBP-3 may be 
safely used for ETROP.
OXIDATIVE STRESS AND EARLY RETINOPATHY OF 
PREMATURITY
Oxidative stress plays an important role in angiogenesis 
and neovascularization[94-95] and is also crucial for ROP. 
Oxidative stress is an imbalance between the production 
of reactive oxygen species (ROS) and reactive nitrogen 
species (RNS), in which cyclo-oxygenase (COX), NADPH 
oxidase and NO synthase are their important sources[95-97]. 
It has been reported that the administration of indomethacin 
and ibuprofen, improved OIR during the hyperoxia phase in 
newborn C57BL/6J mice without affecting the normal retinal 
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development. Administration of high-dose ibuprofen at birth 
decreased retinal VEGF levels and VEGFR-2 transcripts in a 
rat OIR model at postnatal day 14, whereas indomethacin only 
suppressed retinal VEGF164 transcripts with no effects on the 
expression of VEGF receptors[98-99]. Furthermore, ibuprofen is 
more effective than indomethacin in suppressing retinal VEGF 
signaling. Newborn rats treated with high-dose ibuprofen at 
birth showed significantly less somatic growth and higher 
serum and vitreous IGF-I levels than indomethacin treated 
rats[100]. However, early administration of indomethacin exerted 
more potent suppressive effects than ibuprofen on growth 
hormone binding protein, somatic growth, renal COX-2 and 
vasodilator prostanoids[101-102]. In addition, both of ibuprofen 
and indomethacin could increase serum IGF-I[101-102]. Although 
the administration of ibuprofen and indomethacin during the 
hyperoxia phase was able to improve OIR in the neovascular 
phase, their roles in ameliorating early ROP and their adverse 
effects on the development of newborn infants needs to be 
further investigated.
It has also been shown that treatment with apocynin, a 
NAPDH oxidase inhibitor, reduced avascularity and apoptosis 
in the OIR model via pathways triggered by the generation 
of ROS[30,103]. In addition, glutathione peroxidase-1, Nrf2, 
epicatechin, the thiol donor N-acetylcysteine and vitamin E 
have all been shown to protect against retinal vascular cell 
death and to reduce the avascular OIR area in hyperoxia, 
and additionally, Nrf2 can protects against oxidative stress-
mediated damage to glia of OIR retina in hyperoxia[104-109].
RNS also plays an important role in early ROP besides ROS. 
It has been reported that in OIR, hyperoxia-induced vascular 
injury is mediated by dysfunction of endothelial NO synthase, 
which results in peroxynitrite formation. Treatment with 
arginase inhibitor 2 or deletion of the arginase 2 gene can 
normalize NOS activity and reduce peroxynitrite formation, 
thus prevents hyperoxia-induced retinal vascular injury[110].
Furthermore, the effect of superoxide dismutase 1 and 2 and 
vitamin E on the prophylactic treatment of ROP has also 
been shown in the clinic, although complications of high 
rates of sepsis and necrotizing enterocolitis resulting from 
vitamin E therapy have made it difficult to use routinely for 
the prophylaxis of ROP[111-114]. In sum, these studies suggest 
that oxidative stress plays a crucial role in the formation of the 
avascular area during the hyperoxia phase of OIR and ROP.
NEURAL RETINA AND EARLY RETINOPATHY OF 
PREMATURITY
The sensitivity of photoreceptor and postreceptor cells 
in a rat OIR model at early ages was associated with 
vascular tortuosity[115]. Following the cessation of oxygen 
exposure, the recovery of postreceptor neural retinal-cell 
sensitivity and the decrease of vascular tortuosity occurred 
in parallel. Furthermore, mRNA expression of VEGF(164) 
and semaphorin IIIA (Sema3A), the neuronal guidance 

cue proapoptotic/repulsive factor, was elevated early and 
decreased with age. Low sensitivity of rod photoreceptors 
and postreceptor cells were significantly associated with 
high VEGF(164) and Sema3A expression[115-116]. Sema3A 
can be secreted by hypoxic neurons in the avascular retina 
in response to the proinflammatory cytokine interleukin-1β 
(IL-1β)[117]. Sema3A contributes to vascular decay and the 
later formation of a chemical barrier that repels neo-vessels 
toward the vitreous through interfering with the actions of 
the IL-1 receptor[117]. Sema3A can enhance normal vascular 
regeneration within the ischemic retina, thereby diminishing 
aberrant neovascularization and preserving neuroretinal 
function[117-118]. The reduction in astrocyte density induced by 
hyperoxia led to a reduced astrocytic network in hypoxia[119]. 
Astrocytes provide important guidance for RNV. Protection of 
the retinal astrocytes and microglia was correlated directly with 
accelerated revascularization of the normal retinal plexuses 
and a reduction in RNV, which are normally associated with 
OIR[119-120]. Müller cell-derived and astrocyte-derived VEGF 
played a minor role in the development of the normal retinal 
vasculature, whereas it played an important role in hyperoxia-
induced vaso-obliteration and RNV[121-123]. The ablation of the 
expression of neural cell adhesion molecule (N-CAM) from 
Müller cells and astrocytes, resulted in reduced vascular tuft 
formation in OIR, whereas retinal developmental angiogenesis 
remained unaffected[124]. These studies suggest that the neural 
retina appears to mediate the vascular abnormalities in OIR, 
and early treatment that targets the neural retina by decrease of 
Sema3A and N-CAM may be beneficial to retinal vasculature 
of ROP in hyperoxia.
NEUROPEPTIDES AND EARLY RETINOPATHY OF 
PREMATURITY
Neuropeptides and their receptors are widely distributed 
throughout the central and peripheral nervous systems and the 
peripheral organs including the retina[125-126] and their roles in 
ROP have been explored.
Somatostatin and Early Retinopathy of Prematurity  
Somatostatin inhibits the secretion of many hormones by 
binding to G-protein-coupled somatostatin receptors (Sstr) and 
then activating cellar signaling pathways, such as adenylate 
cyclase/cAMP and MAPK signaling[127]. It has been showed 
that in OIR, somatostatin and Sstr2 levels were reduced. Sstr2 
was decreased in the neuroretina but increased in capillaries. 
Octreotide, a Sstr2 agonist, caused a notable reduction in 
the hypoxia-induced increase in VEGF and its receptors and 
inhibited apoptotic signals from retinal cells, resulting in 
recovery of the a- and b-waves of electroretinograms[128-130]. In 
the ischemic retina, VEGF was released by damaged neurons 
and reached the retinal capillaries, whereas the activation of 
Sstr2 protected neurons from ischemic damage by decrease 
of the VEGF release and response[131-132]. Growing evidence 
indicate that retinal neurodegeneration is an early event in the 
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pathogenesis of diabetic retinopathy (DR) and administration of 
somatostatin has been contemplated as an appropriate therapeutic 
approach for DR[133]. As DR initiates with neurodegeneration as 
that occurs in ROP, thus, it is worth to test whether administration 
of somatostatin is an option for the prophylaxis of ROP.
Neuropeptide Y and Early Retinopathy of Prematurity  
Neuropeptide Y (NPY) is located primarily in the majority of 
sympathetic nerve fibers and regulates hormone release from 
the pineal glands of mammals[134]. It has been showed[135] that 
retinal NPY and NPY-Y2 receptor expression was altered 
during the development of OIR in a mouse model and this 
alteration might provide a target for potential modification 
during the development of retinopathy. However, the change 
in NPY levels without the presence of NPY-Y2 receptors in 
the immature retina, indicate that NPY may not be involved in 
the physiological vascularization of the retina. A recent study 
further showed[136] that NPY decreased only to a slight extent 
during hyperoxia, and a more pronounced decrease in NPY 
was significantly delayed during relative hypoxia. Therefore, 
whether NPY is involved in early ROP is uncertain and needs 
to be determined.
Other Neuropeptides and Early Retinopathy of 
Prematurity  In addition to somatostatin and NPY, vasoactive 
intestinal peptide, opioid peptides, angiotensin II (Ang II) and 
other peptides have been explored in the ischemic retina[137]. 
However, their roles in early ROP are also uncertain. Based 
on neuropeptides being neuroprotective for the retina and on 
the intimate relationship between the retinal neurons and the 
retinal vasculature, it would be valuable to actively explore the 
role of neuropeptides in the prophylaxis of early ROP. 
ENDOCRINE HORMONES AND EARLY RETINOPATHY 
OF PREMATURITY
Erythropoietin and Early Retinopathy of Prematurity  
Erythropoietin (Epo) is effective in maintaining the erythrocyte 
mass in the circulation and shows marked neuroprotective 
and neotrophic effects[138-139]. Although early administration of 
high-dose recombinant human Epo to very preterm infants did 
not markedly improve brain injury or ROP [140], the low plasma 
levels of Epo in preterm infants provided a rationale for the use 
of Epo to prevent or treat anemia. It was found that local retinal 
Epo levels were suppressed during the vessel-loss phase and 
the early administration of exogenous Epo not only prevented 
both vessel dropout and subsequent RNV but also protected 
against hypoxia-induced retinal neuronal apoptosis[141]. In 
contrast, retinal Epo mRNA levels were highly elevated during 
the neovascular phase of retinopathy, resulting in that late 
exogenous Epo treatment did not protect the retina but instead 
enhanced RNV. However, it has been reported that early Epo 
treatment significantly increased the overall risk of ROP (any 
grade) compared with late Epo administration (initiated at 
8 to 28 days of age)[142], and early Epo+Fe administration 
could induce the appearance of grade 1 ROP[143]. Therefore, 

understanding the change of Epo levels during ROP is critical 
for determining the timing for treating ROP.
Glucocorticoids and Early Retinopathy of Prematurity  
Early treatment with triamcinolone acetonide reduced 
neovascularization and subsequent endostatin presence in an 
OIR model, and late treatment limited pathological vascular 
sprouting but did not interfere with normal vascularization of 
the retina[144]. Ng et al[145] reported that the stage of ROP was 
significantly associated with the basal and peak plasma levels 
of adreno-cortico-tropic-hormone (ACTH) and with peak 
serum cortisol levels at P7. It was also reported that antenatal 
corticosteroids (ACS) reduced the need for exogenous 
surfactant endotracheal tube insertion at birth in very LBW 
premature infants, whereas the development of ROP did not 
differ between groups administered one dose or multiple 
doses of ACS or between a betamethasone-treated group and 
a dexamethasone-treated group[146]. In addition, low-dose 
dexamethasone therapy in 4-7 days old preterm infants with 
surfactant-pretreated respiratory distress syndrome facilitated 
weaning from mechanical ventilation and shortened the 
duration of oxygen supplementation, although the incidence 
of ROP was not different at P28[147]. Thus, whether application 
of glucocorticoids works in the prophylaxis of ROP cannot be 
concluded at present.
Estrogen and Early Retinopathy of Prematurity  The role 
of estrogen in ROP has been explored, particularly, with regard 
to angiogenesis[148]. The serum levels of estradiol were low in 
premature infants, which suggested that estradiol might play 
a role in ROP. An inhibiting effect of 17-alpha- and 17-beta-
estradiol on RNV in OIR was reported[149-153]. However, due to 
the adverse effects, it is unfeasible to treat premature infants 
with estradiol. In addition, since 17-beta- and 17-alpha-
estradiol are not highly selective for the estrogen receptor 
and can combine with the alpha, beta and other estrogen 
receptors[154-155], studies aim to explore which estrogen receptor 
plays the primary role in the prophylaxis of ROP are necessary.
Ghrelin and Early Retinopathy of Prematurity  Ghrelin, 
a gastrointestinal endocrine peptide and predominantly 
generated in the gut, which also expressed in the rodent eye 
with the highest expression levels occurring in the retina and 
iris[156-157]. It was reported that OIR pups with poor weight 
gain showed high levels of ghrelin during the early post-
OIR phase[158]. Ghrelin was produced locally in the retina 
and its level decreased during the vaso-obliterative phase but 
increased during the proliferative phase of OI [159]. Intravitreal 
delivery of ghrelin significantly reduced retinal vessel loss 
during the hyperoxic phase of OIR whereas ghrelin promoted 
pathologic angiogenesis during the neovascular phase[159]. 
These findings suggest that early supplementation with ghrelin 
might contribute to the retinal vasculature in hyperoxia, thus 
reducing RNV. Whether ghrelin plays a role in the prophylaxis 
of ROP need to be investigated.
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Insul in  and Early  Ret inopathy of  Prematuri ty  
Hyperglycemia has been associated with the development of 
ROP in premature infants[160-161]. Early insulin therapy could 
decrease blood-glucose and increase IGF-I bioactivities, 
resulting in decrease of morbidity associated with 
hyperglycemia and IGF-I levels[162]. Although insulin treatment 
in premature infants has been suggested to increase the risk 
of ROP, another study showed that insulin infusions for 
hyperglycemia were safe and resulted in infrequent episodes 
of hypoglycemia with no increased risk of ROP[163-164]. In 
addition, the results from randomized trials also could not 
provide sufficient evidence to determine the effects of insulin 
administration in treating or preventing neonatal hyperglycemia 
in very LBW infants with ROP or other adverse effects[165-166]. 
Thus, whether insulin treatment for hyperglycemia is beneficial 
for the prophylaxis of ROP needs to be further investigated.
Angiopoietin and Early Retinopathy of Prematurity  Ang 
is an important modulator of angiogenesis. Together with Tie 
receptors, Ang is essential for embryonic vessel assembly 
and maturation and functions as a key regulator of adult 
vascular homeostasis[167]. Ang-1 recruits pericytes and smooth 
muscle cells during vascular remodeling and integrates them 
during neovascularization[168-170], whereas Ang-2 is a natural 
antagonist of Ang-1 and Tie-2[171]. There was a negative 
correlation between the Ang-1 and Ang-2 levels in moderately 
and mildly vascular-active ROP eyes[172]. Ang-1 was found to 
play a substantial role in the formation of the retinal vascular 
network during postnatal development. It was reported that 
Ang-1 supplementation rescued vascular retinopathies by 
simultaneously promoting healthy vascular network formation 
and inhibiting subsequent abnormal angiogenesis and neuronal 
dysfunction in the retinas of an OIR model[173]. The functions 
of Ang-1 might be related to a dual signalling pathway of 
Tie-2 signaling in the vascular region and integrin αvβ5 
signaling in astrocytes[173]. Oliner et al[174] observed that AMG 
386 (a selective Ang-1/2-neutralizing peptibody) prevented 
RNV in OIR when administered from P8 to P16, but it 
transiently impeded regression of these abnormal vessels when 
administered from P17 to P23. Combining AMG 386 with 
VEGF inhibition also led to cooperative prevention of retinal 
angiogenesis in this model. Whether Ang-1 supplementation is 
beneficial for ROP prophylaxis needs to be further investigated.
Adrenergic System and Early Retinopathy of Prematurity  
The adrenergic system involves the primary ligands 
epinephrine and norepinephrine and their adrenergic receptor 
(AR) families: α1, α2, α3, β1, β2 and β3 receptors[175-176]. It has 
been reported that in OIR, hypoxia did not influence β-AR 
expression beyond increasing β3-AR expression in engorged 
retinal tufts[177]. Propranolol dose-dependently reduced the 
upregulation of VEGF and decreased hypoxic levels of 
IGF-I mRNA and HIF-1α, thereby protecting against retinal 
angiogenesis and ameliorating blood-retinal barrier dysfunction 

in OIR[177]. It was also reported that a β2-AR antagonist, ICI 
118 551, regulated Müller-cell release of VEGF in an OIR 
model, indicating that β2-AR activity might play a role in 
RO[178]. Although propranolol could retard the progression of 
stage 2 ROP to stages 3 and 4 ROP as well as reduce laser and 
intravitreal Lucentis treatment, however, it is controversial 
whether it can induce serious systemic adverse effects[179-180]. 
By the way, 2% of topical propranolol could significantly 
reduce VEGF and IGF-1 upregulation following hypoxia 
and profoundly reduced HIF-1α accumulation and STAT3 
phosphorylation, leading to reduce RNV in the superficial, but 
not the deep, vascular plexus in OIR[181]. Thus, it is hopeful that 
the agents of adrenergic system may be used in the early stage 
of ROP in the future.
Renin-angiotensin-aldosterone System and Retinopathy of 
Prematurity  It has been reported[182] that renin-angiotensin- 
aldosterone system (RAS) components are localized to blood 
vessels and cells in the retinal ganglion cell (RGC) layer 
of newborn rats, where they may stimulate the growing 
vasculature to extend into the peripheral retina and increase 
the vascular density in the periphery. It has also been 
reported[183-184] that Ang II via its type 1 and type 2 receptors 
regulates the generation of ROS by NADPH oxidase, which 
is crucial for the vasculature, including retinal angiogenesis. 
In addition, aldosterone might be through reducing glucose-6-
phosphate dehydrogenase to exacerbate angiogenesis in early 
OIR, whereas an antagonist of the mineralocorticoid receptor 
(MR) reversed this effect of aldosterone[185]. Furthermore, the 
fact that the 32-gestational-week twin girls who were exposed 
to blockage of the RAS during gestation and received very 
little additional oxygen following birth showed severely 
reduced retinal vasculature and developed severe ROP later[186], 
suggested that RAS might play an important role in ROP 
development. Whether RAS is crucial for retinal vasculature 
and early administration Ang II is beneficial for the prophylaxis 
of ROP need to be further investigated.
E A R LY N U T R I T I O N A L S U P P L E M E N T A N D 
RETINOPATHY OF PREMATURITY
Vitamin A and Early Retinopathy of Prematurity   Vitamin 
A refers to a group of compounds, including retinol, 
retinaldehyde, and retinoic acid. In the retina, reversible 
oxidation of vitamin A produces retinaldehyde, which is an 
essential constituent of the visual pigment rhodopsin[187]. It 
has been reported that in hyperoxia, retinoic acid promoted 
VEGF expression in OIR retina, supported retinal vascular 
development and counteracted vaso-obliteration in OIR 
mice[188]. Premature infants were prone to subclinical vitamin A 
deficiencies during the first week of life, and these deficiencies 
could be treated with adequate enteral feeding and routine 
multivitamin supplementation, suggesting that a high dose 
of vitamin A was not necessary for healthy premature 
infants[189-190]. Mactier et al[191-192] showed that early high-dose 
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intramuscular vitamin A supplementation in infants at risk for 
ROP improved retinal function at 36wk of postmenstrual age. 
Thus, early vitamin A supplementation may be beneficial to 
premature infants at risk for ROP. However, the optimal dose 
and most appropriate route of administration of vitamin A in 
preterm infants needs to be determined in the future.
Early Nutrition and Weight Gain and Early Retinopathy 
of Prematurity  Premature infants often have low weights, 
and early nutrition plans and weight gain have been speculated 
to be beneficial to the treatment of ROP. However, only 
limited data regarding the administration of early parenteral 
and enteral nutrition to very LBW infants are available[193]. It 
has been reported that newborn OIR mice with poor postnatal 
nutrition and poor weight gain exhibit a prolonged phase of 
proliferative retinopathy, prolonged overexpression of VEGF, 
low serum non-fasting levels of glucose, insulin, and IGF-I and 
high levels of ghrelin during the early post-OIR phase[158]. In 
addition, early and aggressive introduction of total parenteral 
nutrition and enteral feeding could benefit weight, length and 
head circumference measurements, reduce nutritional deficits 
in very LBW infants, increase the levels of IGF-I and IGFBP3 
and reduce the risk of ROP, while other study found that 
feeding with human milk and vitamin, rather than parenteral 
nutrition, reduced the rate of severe ROP[194-198]. The risk of 
developing severe ROP in extremely premature infants could 
also be reduced by providing nutritional support via special 
delivery of lipids and total calories to increase weight gain, 
and recently, a fish-oil based lipid emulsion (LE) and a newer 
LE from alternative lipid sources with reduced polyunsaturated 
fatty acid (PUFA) content compared to the conventional 
soybean oil based LE has been preliminarily proved to be more 
effective in decreasing the early stages (1-2) of ROP[199-201]. It 
has also been suggested that monitoring postnatal longitudinal 
systemic factors, such as weight gain and IGF-I and IGFBP3 
levels, may enhance the clinician’s ability to identify the 
patients who would require treatment for ROP[202]. Studies 
further indicated that WINROP, could accurately predict 
when the rate of weight gain would be decreased to a specific 
threshold, and enabled early detection in 100% of infants who 
developed ROP and required treatment[203-205]. ROP typically 
occurs 4-6wk after birth in premature infants, which provides 
sufficient time to supply premature infants with adequate and 
reasonable nutrition to reduce the incidence and severity of 
ROP, and it has been proved that poor postnatal weight gain 
in the first two weeks is an independent risk factor for ROP 
requiring treatment[206], so it is meaningful to actively explore 
the components and methods that should be used for nutritive 
treatment for premature infants.
Iron Supplementation and Early Retinopathy of 
Prematurity  Iron is an essential micronutrient that plays 
an important role in cellular function. It has been found that 
premature infants showed reduced iron stores, compared 

with full-term infants[207]. Early iron supplementation in 
preterm very LBW infants could improve serum ferritin and 
hemoglobin levels but has less effect on the incidences of 
ROP[208-209]. Whether iron supplementation benefits to preterm 
or LBW infants with regard to the development of the retinal 
vasculature needs to be further investigated.
Polyunsaturated Fatty Acids and Early Retinopathy of 
Prematurity  Omega-3 and omega-6 PUFAs are essential 
components of cell membrane phospholipids and substrates 
of various enzymes. It has been reported that omega-3 PUFAs 
decrease the avascular area of the OIR retina by increasing 
vessel regrowth under hyperoxic conditions, thereby reducing 
the hypoxic stimulus of neovascularization[210]. Bioactive 
omega-3-PUFA-derived mediators also potently protected 
against neovascularization by suppressing tumor necrosis 
factor-alpha[211]. Sapieha et al[212] found that 5-lipoxygenase 
(LOX) played a pivotal role in the protection of dietary 
omega-3 PUFAs against OIR and that COX inhibitors, 
might be used without losing the beneficial effects of dietary 
omega-3 PUFAs. Recently study suggested that, in addition 
to anti-angiogenic metabolites of COX and LOX, cytochrome 
P450 epoxygenases (CYP2C8) metabolized omega-3 PUFAs 
and produced bioactive epoxides that were inactivated by 
soluble epoxide hydrolase (sEH) into transdihydrodiols[212]. 
In an OIR model, CYP2C8 is upregulated, whereas sEH is 
suppressed, resulting in an increased retinal epoxide-to-diol 
ratio. Overexpression of CYP2C8 or sEH in mice does not 
affect normal retinal vascular development. The proangiogenic 
role of CYP2C8 in the retina on both omega-3 LCPUFAs 
and omega-6 LCPUFAs and the anti-angiogenic role of sEH 
on omega-3 LCPUFA metabolism could influence RNV[212]. 
And recently, It has been reported that early administration 
parenteral omega-3 FAs in the form of fish-oil lipid emulsions 
markedly reduced the incidence of severe ROP or need for laser 
therapy in preterm infants[213]. Thus, early supplementation of 
omega-3 LCPUFAs and omega-6 LCPUFAs may contribute to 
retinal vasculature of premature infants and reduce the risk of ROP.
Sepsis and Early Retinopathy of Prematurity  Sepsis is 
a potentially fatal whole-body inflammatory state that is 
caused by severe infection. Early-onset sepsis was associated 
with severe ROP, and sepsis also associated with the onset 
of posterior ROP[214-216]. In addition, perinatal inflammatory 
stress induced a significant increase in retinal vascular density, 
as well as a pronounced increase in activated microglial cells 
in RGC layer and in the outer plexiform layer immediately 
prior to their vascularization[217]. At maturity, perinatal 
inflammatory stress led to depleted retinal vascular beds and 
significantly decreased retinal function, resulting in abnormal 
retinal vascular development and increased vessel anastomosis 
and, finally, impairment in retinal function associated with 
microglial activation[217]. Therefore, management of sepsis may 
be beneficial in reducing the incidence and severity of ROP.

Prophylactic treatment of ROP
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Hypercapnia and Early Retinopathy of Prematurity  
Hypercapnia is generally defined as an abnormally high 
level of CO2 (e.g. more than 45 mm Hg) in the arterial blood. 
Permissive hypercapnia has been recognized, as a method to 
reduce lung injury and other adverse effects and to improve 
survival in preterm neonates[218]. However, hypercapnia 
might be a risk factor for ROP in clinical setting[219]. It has 
been reported that increase of CO2 levels was associated with 
retardation of normal retinal vascular development and increase 
of peripheral avascular area in neonatal OIR rats, which is a 
critical step preceding RNV. The following findings suggest 
that hypercapnia may hinder efficient neovascularization and 
contribute to ROP[220-223]. Hypercapnia is able to induce an early 
increase in endothelial NO synthase and RNS. In vivo RNS 
is associated with retinal vaso-obliteration and leads to the 
nitration of arachidonic acids (AAs) into trans-AAs (TAAs). 
TAAs can act as mediators of nitrative stress by: 1) causing 
microvascular degeneration through inducing the expression 
of the antiangiogenic factor thrombospondin-1, which is 
associated with astrocyte impairment and endothelial cell 
death; 2) downregulation of the proangiogenic prostaglandin 
E2 receptor EP3. Thus, management of hypercapnia may 
ameliorate early ROP.
Early Light Reduction and Early Retinopathy of 
Prematurity  Recent study suggested that continuous light 
radiation caused a time-dependent decrease in RGC-5 response 
and resulted in photo-damage within 10h due to the depletion 
of adenosine 5’-triphosphate and an increase in ROS levels, 
similar to photo-damage in vivo[224]. Thus, it is reasonable to 
postulate that an early reduction in light exposure in premature 
infants might decrease the incidence of acute ROP. However, 
this hypothesis was not supported by studies that decreased 
exposure of the retina to light in premature infants did not 
reduce the incidence of ROP[225]. Whether light contributes to 
ROP needs to be further investigated.
Stem Cells and Early Retinopathy of Prematurity  Stem 
cells (SCs) are pluripotent cells with self-renewing capability. 
Recent studies have shown that SCs play important roles in 
RNV[226-227], which suggests a role of SCs in ROP. It was found 
that a deviation in the functional bioactivities of bone marrow-
derived EPCs (BM-derived EPCs) enabled intact vascular 
development under abnormal oxygen dynamics[228]. EPCs 
were increased significantly in the peripheral blood and bone 
marrow of mice with OIR and a decrease in circulating EPCs 
might arrest vessel growth during normal retinal development 
in OIR rats[229-230]. Early EPCs and very small embryonic-like 
SCs were also significantly increased in preterm infants with 
ROP, which suggested that EPCs and circulating SCs may play 
a role in ROP[231]. In addition, BM-derived monocyte lineage 
cells (BM-MLCs) could differentiate into endothelial cell 
(EC)-like cells and function as EC progenitors that acquire the 
ability to adhere to injured endothelium in a MCP-1-dependent 

manner[232]. The reduction of BM-MLCs infiltrating into the 
OIR retina is associated with an increase in the avascular 
area and preretinal neovascular tufts, which suggests that 
recruitment of BM-MLCs to the hypoxic retina may be used 
to promote intraretinal revascularization, thereby preventing 
RNV[233]. Furthermore, it has been reported that a number of 
adult BM-derived myeloid progenitor cells could migrate to 
avascular regions of the OIR retina and then differentiated 
into microglia to facilitate normalization of the vasculature[234]. 
These studies suggest a role of SCs in regulating vascular 
regeneration in ROP, which also provides a rationale for stem 
cell therapy in ROP in the future.
Gene Expression Profiles and Retinal Proteome Changes 
During Early OIR  In the past years, studies are also focusing 
on analysing gene expression profiles and retinal proteomic 
alterations during OIR. It has been shown that the expression 
of 83 genes, which are associated with development, metabolism, 
transport, stress response, cell adhesion, inflammation or vision, 
are significantly altered in hyperoxic P12 retinas. In particular, 
genes associated with retinal growth and vascular development, 
such as Pdgfb and Robo4, were downregulated[235]. In a mouse 
OIR model, enriched genes associated with cytoskeletal 
formation were identified at P8, whereas the enriched genes 
associated with various pathological processes, including the 
modulation of RNV were identified at P13[236]. Furthermore, 
in the iTRAQ study, upregulation of 25 proteins and 
downregulation of 14 proteins were identified in OIR retinas 
at P12 compared with the control retina[237]. These genes and 
proteins identified in OIR may be potential novel therapeutic 
targets for treating ROP.
CONCLUSION
Current treatments of ROP are focusing on RNV, which have 
caused new problems and debates over the current management 
protocols[238]. Since it takes approximately 4 to 6wk from birth 
to the RNV of ROP, the optimal preventive treatments for 
ROP should also be applied during these periods[239]. 
In Figure 1, we summarized the molecular regulators and 
signalling pathways that may contribute to the pathogenesis 
prior to RNV in OIR and in premature infants with ROP, which 
includes signalling regulators of HIF-1α, VEGF, IGF and 
Norrin, oxidative stress, neuroretina and its communication 
with the retinal vasculature, neuropeptides, endocrine 
hormones, early nutrition supplementation, sepsis and SCs as 
well as blood SaO2 and hypercapnia. We also discussed the 
preclinical and clinical studies on preventive treatment of early 
OIR and ROP, which includes: 1) supplementation of HIF-1α, 
Norrin, IGF-I or IGFBP-3, somatostatin, NPY or Epo, vitamin 
A, iron, PUFAs or other nutrients; 2) administration of VEGF, 
VEGFR-1 agonist or VEGFR-2 antagonist, glucocorticoids, 
highly selective estrogen receptor agonist, ghrelin, insulin, 
Ang-1, Ang-2 inhibitor, β-AR antagonist or Ang-II; 3) 
suppression of oxidative stress; 4) protection of neural cells in 
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retina and decrease of Sema3A and N-CAM; 5) mitigation and 
even elimination of sepsis; 6) management of hypercapnia; 
7) decrease of light exposure; 8) transfusion of stem cells; 9) 
increase of the expression of Pdgfb, Robo4 and cytoskeletal 
formation genes. We wish to not only highlight the importance 
of the mechanisms or signalling pathways in regulating early 
stage of ROP but also provide guidance for exploring novel 
treatments for early phase OIR and ROP prior to RNV in the 
future.
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