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·Hypothesis·
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Abstract
● Age-related macular degeneration (AMD) is a leading 
cause of blindness and is becoming a global crisis since 
affected people will increase to 288 million by 2040. 
Genetics, age, diabetes, gender, obesity, hypertension, 
race, hyperopia, iris-color, smoking, sun-light and pyroptosis 
have varying roles in AMD, but oxidative stress-induced 
inflammation remains a significant driver of pathobiology. 
Eye is a unique organ as it contains a remarkable oxygen-
gradient that generates reactive oxygen species (ROS) 
which upregulates inflammatory pathways. ROS becomes 
a source of functional and morphological impairments 
in retinal pigment epithelium (RPE), endothelial cells 
and retinal ganglion cells.  Reports demonstrated that 
hydrogen sulfide (H2S) acts as a signaling molecule and 
that it may treat ailments. Therefore, we propose a novel 
hypothesis that H2S may restore homeostasis in the eyes 
thereby reducing damage caused by oxidative injury 
and inflammation. Since H2S has been shown to be a 
powerful antioxidant because of its free-radicals’ inhibition 
properties in addition to its beneficial effects in age-related 

conditions, therefore, patients may benefit from H2S 
salubrious effects not only by minimizing their oxidant and 
inflammatory injuries to retina but also by lowering retinal 
glutamate excitotoxicity.
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inflammation; macula; oxidative stress; pyroptosis; retinal 
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Introduction 

S imilar to many aging diseases such as neurodegeneration, 
diabetes, cancer and atherosclerosis, role of ocular 

inflammation mediated by the disruption of redox homeostasis 
has been studied extensively in age-related macular 
degeneration (AMD)[1]. Since retina is one of the highest 
oxygen consuming tissues in our body, it generates significant 
reactive oxygen species (ROS) moieties and related radical 
contents (Figure 1), which makes it vulnerable to oxidative 
injury over time[2-3]. A large amount of oxygen resides in the 
choroid and as oxygen tension falls across retinal pigment 
epithelium (RPE) and outer retina, it creates a vast oxygen 
gradient towards inner segments of the eyes’ photoreceptor 
components. Also, photoreceptors in the retina contain 
relatively high levels of polyunsaturated fatty acids (PUFA) in 
comparison to other tissues. ROS-initiated lipid peroxidation 
reactions also generate reactive carbonyl compounds (RCC) 
from these biological lipids which further adds fuel to chronic 
neurodegenerative conditions such retinal degeneration[4]. Due 
to continuous accumulation of lipofuscin, which causes photo-
oxidative damage (lipofuscin is a product of oxidation of lipids 
and lipoproteins containing photo-oxidative fluorophores 
such as green light-emitting retinol and retinyl esters), 
together with other photosensitizers. Abundant light exposure 
and a high metabolic demand make retina a prime location 
for the oxidative damage (Figure 1). The non-degradable 
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fluorophores which accumulate as lipofuscin inside RPE have 
been shown to cause RPE degeneration in AMD patients. 
For example, N-retinylidene-N-retinylethanolamine (A2E), 
the major component of lipofuscin, irreversibly damages 
RPE[5-10]. Moreover, during aging, oxidative damage also 
keeps increasing gradually because antioxidant capacity 
decreases concurrently in mammals. As a result, the inherent 
repair capacity of RPE cells becomes compromised[11-12]. The 
outcome is the retinal dysfunction which slowly leads to cells’ 
loss and visual impairment because of the disruption in redox 
homeostasis. Different forms of RPE cell death are currently 
known to play important roles in AMD such as apoptosis, 
pyroptosis (cell death dependent on caspase-1) and necroptosis; 
the regulated necrosis dependent on receptor interacting protein 
kinase 3 and mixed lineage kinase domain-like but independent 
of caspases. All these retinal cell death pathways are important 
in AMD progression. In fact, ultrastructural investigations 
suggest that the predominant mechanisms of RPE cell death in 
AMD were mainly pyroptosis and necroptosis while apoptosis 
played only a minor role. Equally important though, some 
studies suggested that inflammasome activation can also 
alter the cell death pathway from apoptosis to pyroptosis as 
induced by photo-oxidation[7,13-14]. Such age-related changes 
are the hallmarks of AMD pathogenesis and along with 
genetic susceptibility and environmental factors they can 
further drive AMD pathology, eventually causing a full-blown 
AMD phenotype in patients[15]. World Health Organization 
(WHO) recently reported that retinal degenerative and 
vascular diseases have become the leading causes of blindness 

worldwide[16-17]. The fact that AMD is highly prevalent and can 
cause irreversible vision loss makes it an extremely important 
disease for ophthalmologists. Apart from AMD, oxidative 
injuries coupled with neurodegeneration are also involved in 
many other eye diseases as well, for which many studies have 
been published[18-20]. Aging, gene abnormalities and prominent 
metabolic stressors like hyperhomocysteinemia (HHcy) 
significantly increase oxidative stress, endoplasmic reticular 
(ER) stress and inflammation in the eyes of patients[21-27]. 
In past few years there has been a significant progress 
showing hydrogen sulfide (H2S) as a novel molecule that has 
tremendous potential in the treatment of various systems’ 
ailments[28-32]. In this manuscript, we discuss the potential 
beneficial effects of H2S on retinal degenerative and vascular 
diseases (Figure 2). Retinal degenerative diseases, including 
retinitis pigmentosa, AMD and glaucomatous optic neuropathy, 
share the pathological basis of abnormal structure and function 
of retinal neurons, at all levels, and cause irreversible vision 
loss[33]. A recent study showed H2S levels and expression 
of its endogenous enzymes cystathionine beta-synthase 
(CBS), cystathionine γ lyase (CSE) and 3-mercaptopyruvate 
sulfur transferase (3MST) in retinal tissues were significantly 
decreased along with the loss of retinal ganglion cells (RGCs) 
in a chronic ocular hypertension rat model. Furthermore, as 
briefly mentioned above, oxidative stress has been shown to 
play a harmful role in the development and progression of 
multiple neurodegenerative disorders including amyotrophic 
lateral sclerosis, Parkinson’s disease, Alzheimer’s disease, and 
Huntington disease[34-35]. We and others have also shown that 

Figure 1 A simple schematic depicting harmful effects of hyperhomocysteinemia induced oxidative stress that causes inflammation 
because of redox disturbance  The overall patho-physiological alterations are driven by oxidative stress, glutamate excitotoxicity and inflammation, 
and all together initiate and cause further worsening of the vision in AMD susceptible patient populations. GPx: Glutathione peroxidase; Hcy: 
Homocysteine; MS: Methionine synthase; THF: Tetrahydrofolate; MTHF: Methyltetrahydrofolate; SOD: Superoxide dismutase.

H2S for ocular inflammatory and oxidative injuries
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H2S does play a beneficial role in the physiology of nervous, 
cardiovascular, respiratory and gastrointestinal systems. It is 
an important and highly potent gasotransmitter produced by 
an enzymatic reaction in the brain and other tissues, and H2S 
is involved physiologically in the process of neuro-regulation, 
vasodilatation and endocrine functions[35-38]. However, the 
actual role played by H2S and its physiologically beneficial 
effects in the retina has yet to be fully realized. Nonetheless, 
some evidence does show that retina-derived H2S plays a 
protective role in various aspects of its biology. Therefore, 
alleviation of oxidative injury and inflammation by H2S is 
a novel approach that could help restore the dysfunctional 
redox homeostatic balance that is largely responsible for AMD 
(Figure 2).
Hypothesis
It is well known that oxidative stress-mediated inflammation 
in susceptible eyes can initiate patho-physiological changes 
that can lead to macular degeneration (Figure 1). Several years 
ago we probed the molecular mechanisms that are triggered 
by HHcy inducing the oxidative damage-related stress 

responses[39]. As a result, now homocysteine-induced oxidative 
stress and production of ROS moieties are considered as the 
hallmark of antioxidant system failure[26,40-43]. As mentioned 
earlier, H2S is an endogenous gaseous signaling molecule of 
significant physiological importance and is produced in various 
parts of the body such as the heart, blood, and central nervous 
system (CNS)[44]. H2S is generated from L-cysteine by CBS, 
CSE, and/or 3MST. So far, only a few enzymatic pathways 
that regulate H2S production have been studied: CBS, CSE, 
cysteine aminotransferase (CAT)/3MST and D-amino acid 
oxidase (DAO)/3MST. However, only the first three H2S 
synthesis pathways have been reported to be involved in the 
retina[36,45-47]. CBS and CSE are expressed in the retinal tissue 
of salamander and those of CSE in the retinal tissue of mice[48]. 
Later, other groups detected the expression of H2S-producing 
enzymes in almost every layer of the retina employing 
immunohistochemistry. These results also showed that 3MST 
and CAT were expressed in the inner plexiform layer, outer 
plexiform layer, inner nuclear layer, outer nuclear layer and 
outer segments of photoreceptors of the retina, with the absence 

Figure 2 A cartoon highlighting the beneficial contributions of H2S in reducing the deleterious effects as caused by HHcy mediated redox 
imbalance that leads to structural, physiological and functional changes in the retina  Our proposed hypothesis explains that many harmful 
effects in the retina could be potentially alleviated by H2S treatment, thus helping patients to protect or stabilize their vision during AMD who are 
relatively more prone to stress-related redox imbalance in their eyes. Ca2+: Calcium; e-: Electron; GSH: Glutathione; IFNγ: Interferon gamma; 
TNFα: Tumor necrosis factor alpha; Nrf2: Nuclear factor erythroid 2; IL-1β: Interleukin-1 beta; IL-18: Interleukin-18; IL-10: Interleukin-10; IL-8: 
Interleukin-8; NF-κB: Nuclear factor-kappa B.
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of CBS and CSE, which suggested that H2S generation might 
be catalyzed mostly by the CAT/3MST pathway in the retina. 
Subsequently, there was further confirmation of CBS, CSE, 
and 3MST expression in retinal tissue by Western blot and 
immunohistochemistry analyses[49-51]. In CNS, H2S has been 
reported to regulate synaptic activities as a neurotransmitter[52]. 
Ion channels and transporters were found to be involved in the 
regulatory effects of H2S on CNS, as well[53-54]. The physiologic 
effects of H2S in the retina along with its synthesis pathways 
and the fact that deficiency of CBS may lead to retinal 
degeneration and detachment indicate that H2S does play an 
important role in the eye as a gaseous neuromodulator[55]. For 
example, by regulating Ca2+ influx, H2S can protect retinal 
neurons against photo-toxicity (Figure 2). Excessive light 
exposure leads to photoreceptor degeneration and H2S pre-
conditioning can mediate the anti-apoptotic effects in retinal 
ischemia/reperfusion injury settings. Treatment with H2S 
relieved the symptoms of diabetic retinopathy by suppressing 
harmful effects of oxidative stress along with reducing the 
debilitating effects of inflammation in the eyes. It appears that 
further studies would greatly improve our understanding of 
the detailed physiologic mechanisms responsible for retinal 
health and the potential of H2S-centered therapy for the retinal 
diseases including AMD.
H2S exhibited a prominent relaxation effect on the retinal 
arteries by acting on ion channels, meaning that it did play 
an important role in modulating the retinal physiology. For 
example, Voltage-gated Ca2+ channels: transient (T-type) and 
dihydropyridine-sensitive long-lasting (L-type) channels, 
have been reported to be expressed in Müller cells of the 
retina[56]. Several other ion channels also play roles in retinal 
degenerations, and these may interact with H2S. Disturbances 
in calcium transport system exist in retinal Müller cells as well 
as in the RPE[57-58]. Furthermore, sodium and chloride channels 
have important effects on various physiologic processes in 
the retina[59-62]. Therefore, more experimental studies are 
warranted to explore relationships between retina-derived 
H2S and the ion channels that are closely linked together in 
the rapid excitatory synaptic transmission processes of CNS. 
Also, the glutamate aspartate transporter in retinal Müller cells 
is involved in maintaining the levels of glutathione (GSH)[63]. 
The oxidative stress mediated inflammatory process in the eyes 
of susceptible hosts that can lead to the beginning of subtle 
pathological changes are known to trigger the degenerative and 
inflammatory cascades in the retina[26].
Age-related dysregulation of immune response in the retina 
can contribute to disease pathogenesis[64-65]. As microglia are 
the primary resident immune cell in the retina, and are long-
lived cells that persist across long periods of chronological 
time senescent changes occurring within aging microglia 
may be one cause of immune response “failure”, conferring 

upon the retina an age-dependent vulnerability to disease[66-67]. 
Glutamate can also activate microglia and enhance cytokine-
induced neurodegeneration[68]. Therefore, we believe that this 
transporter which regulates neurotransmission in the retina is 
related to glutamate excitotoxicity, might be a potential target 
of H2S treatment. Even under such conditions, the treatment 
with H2S may also offer clinical benefits for alleviating 
excitotoxicity, and related ER stress conditions arising from 
the disturbed glutamatergic system operated cascade of events 
that invariably lead to microglial activation and inflammation 
(Figure 2). During the oxidative stress mediated glutamate 
excitotoxicity the extracellular concentrations of glutamate 
are increased and results in import of cystine in exchange for 
glutamate by the cystine/glutamate antiporter. Because cystine 
is reduced to cysteine in cells for the synthesis of GSH, a 
decrease in the cystine import results in the decreased synthesis 
of GSH. The enhanced glutamate level is also involved in 
microglia activation. Briefly, calcium dysregulation, ER stress 
and mitochondrial impairment and microglia activation are 
the major components of glutamate excitotoxicity. It appears 
that H2S reinstates the cystine import suppressed by glutamate. 
In a nutshell, it appears that H2S treatment might lower 
glutamate excitotoxicity, ER stress and microglial activation 
which are all linked to oxidative stress thus offering a potential 
interventional strategy for many ocular diseases including 
AMD.
CONCLUSION
The existence of endogenous H2S synthesis pathways in the 
mammalian retina and the physiological roles played by this 
important gasotransmitter makes it an ideal candidate to further 
explore its use in the treatment and prevention of chronic 
retinal diseases such as AMD. For example, by regulating Ca2+ 
influx, H2S can protect retinal neurons against light-induced 
degenerative events. Thus, H2S-based preconditioning can 
be employed to avoid development of chronic injury from 
oxidative stress or inflammation in AMD[69-70]. AMD is one 
of the leading causes of vision impairment worldwide, and 
thus new approaches are urgently needed to develop effective 
treatment and preventive options. Several treatments have 
been developed, such as anti-oxidant supplements to slow 
the progression of dry form of AMD, and photodynamic 
therapy and anti-VEGF agents  to treat the wet form of AMD; 
a more advanced form of AMD characterized by choroidal 
neovascularization under the macula. However, there remains 
neither a definitive preventive measure nor a cure for this 
dreaded disease[71-72]. Interestingly, HHcy-mediated oxidative 
stress has also been implicated in the pathogenesis of several 
vascular diseases[39]. Because of the inherent properties 
of H2S, it can easily penetrate plasma membranes, thus 
inducing a wide spectrum of signaling cascades in target cells 
(Figure 2). Studies employing cellular and animal models have 

H2S for ocular inflammatory and oxidative injuries
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suggested a number of mechanisms to explain the protection 
associated with H2S including reduction of mitochondrial 
damage[73-75], scavenging oxygen derived free radicals, reducing 
inflammation[76-81] apoptosis, and increasing vasodilation and 
neuroprotection[82-84]. H2S also increases the production of 
intracellular GSH, a major intracellular antioxidant which 
promotes vascular and neuronal protection[85-88]. As we 
know, unlike the CNS or cardiovascular system, a unique 
characteristic of the retina is its direct connection to the 
vitreous body, which is a perfect match to gaseous treatment 
modalities. To summarize, H2S has already proved beneficial 
as a neuromodulator agent in the eye. It is a suitable molecule 
to test further for its beneficial effects against oxidative stress, 
be it induced by HHcy, glutamate excitotoxicity, or ER stress. 
This novel hypothesis-centered strategy might curtail AMD 
progression by treating the oxidation-induced inflammation 
underlying AMD and other neurodegenerative diseases 
(Figures 1, 2). 
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