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Abstract
● AIM: To identify disease-related miRNAs in retinas of mice 
with oxygen-induced retinopathy (OIR), and to explore their 
potential roles in retinal pathological neovascularization. 
● METHODS: The retinal miRNA expression profile in mice 
with OIR and room air controls at postnatal day 17 (P17) 
were determined through miRNA microarray analysis. 
Several miRNAs were significantly up- and down-regulated 
in retinas of mice with OIR compared to controls by 
quantitative real-time reverse transcription-polymerase 
chain reaction (qRT-PCR). Two databases including 
Targetscan7.1 and MirdbV5 were used to predict target 
genes that associated with those significantly altered 
miRNAs in retinas of mice with OIR. Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analyses were also conducted to identify possible 
biological functions of the target genes. 
● RESULTS: In comparison with room air controls, 3 and 
8 miRNAs were significantly up- and down-regulated, 
respectively, in retinas of mice with OIR. The qRT-PCR 
data confirmed that mmu-miR-350-3p and mmu-miR-202-
3p were significantly up-regulated, while mmu-miR-711 
and mmu-miR-30c-1-3p were significantly down-regulated 
in mice with OIR compared to controls. GO analysis 
demonstrated that the identified target genes were related 
to functions such as cellular macromolecule metabolic 
process. KEGG pathway analysis showed a group of 
pathways, such as Wnt signaling pathway, transcriptional 

misregulation in cancer, Mucin type O-glycan biosynthesis, 
and mitogen-activated protein kinase (MAPK) signaling 
pathway might be involved in pathological process of 
retinal neovascularization.
● CONCLUSION: Our findings suggest that the differentially 
expressed miRNAs in retinas of mice with OIR might 
provide potential therapeutic targets for treating retinal 
neovascularization.
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INTRODUCTION

H ypoxia-induced retinal neovascularization is a major 
complication of many ocular diseases including 

diabetic retinopathy, retinopathy of prematurity and retinal 
vein occlusion, and it universally leads to severe visual 
loss[1-3]. Numerous studies demonstrated that vascular 
endothelial growth factor (VEGF) acts as a critical factor 
in intraocular neovascular diseases, and anti-VEGF agents 
can effectively suppress intraocular neovascularization in 
clinical applications[4-7]. Nevertheless, some of the patients 
were not responding to anti-VEGF therapy, and various drug-
related adverse effects have been reported, including retinal 
detachment, increased intraocular pressure and macular hole 
formation[4]. In addition, studies suggest that there are several 
molecules other than VEGF that contribute to the pathogenesis 
of retinal neovascularization[8-9]. Oxygen-induced retinopathy 
(OIR) in mice is a commonly used animal model to investigate 
the molecule mechanisms of retinal neovascularization[10]. 
Several studies have explored gene expression profiles 
in mice with OIR, suggesting that a number of genes are 
involved in the induction of retinal neovascularization[11-13]. 
Moreover, OIR mouse model was also used to explore the 
roles of macrophages, periostin and interleukins in retinal 
neovascularization[14-16].
MicroRNAs (miRNAs) are about 22 nucleotides (nt) long and 
non-coding RNAs that post-transcriptionally regulate coding 
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gene expressions. miRNAs usually binds to the 3’-untranslated 
region (3’-UTR) of target genes, resulting in either translational 
inhibition[17] or degradation of mRNAs[18]. miRNAs have been 
recognized to play crucial regulatory roles in a wide range of 
physiological and pathological processes[19-21], and are also 
known to be expressed in a tissue-specific manner[22]. A few 
studies have found aberrant miRNA expression in different 
pathological ocular tissues[23-26], suggesting important roles of 
miRNAs in ocular diseases. Although several similar studies 
have reported the retinal miRNA expression profile in OIR 
model[27-29], the mechanisms by which miRNAs regulate 
target gene expression that induce retinal neovascularization 
still remain unclear. Thus, we assess miRNA expression 
profile in retinas of mice with OIR by miRNA microarray and 
bioinformatically analyze the interaction of target genes of 
those altered miRNAs in retinal neovascularization.
MATERIALS AND METHODS
Ethical Approval  C57BL/6J mice (Hunan SJA Laboratory 
Animal Co., Ltd, Changsha, Hunan, China) were used in 
the study. Animal experiments were performed following 
the Statement on the Use of Animals in Ophthalmic and 
Vision Research of Association for Research in Vision and 
Ophthalmology. Institutional Animal Care and Use Committee 
of Central South University approved the experimental 
procedures of the study.
Mouse Model of Oxygen-induced Retinopathy and 
Sample Collection  OIR was induced in mice according to 
previous protocols[10,30-31]. Briefly, pups at postnatal day 7 (P7) 
accompanied with the nursing mother were exposed to oxygen 
of 75%, and returned to room air at P12. Pups in room air 
during the whole period were used as a control group. Mouse 
retina samples from both groups were collected at P17.
RNA Isolation and miRNA Expression Microarray  The 
total RNA of retinas was isolated using Trizol reagent (Life 
technologies, NY, USA). Briefly, the retinas from both eyes 
of a mouse were pooled as a sample, followed by addition 
of 300 µL of Trizol reagent. After homogenization, the 
homogenized samples were added with 60 µL of chloroform 
and were vigorously shaked. Samples were centrifugated at 
12 000×g for 15min at 4℃. The aqueous phase was placed 
into a microtube with 150 µL of 100% isopropanol, followed 
by centrifugation at 12 000×g for 10min at 4℃. Finally, the 
resulting pellet containing RNAs was washed with 300 µL of 
75% ethanol, and the air-dried RNAs were dissolved in RNase-
free water. NanoDrop ND-1000 spectrophotometer (NanoDrop 
Technologies, Wilmington, DE, USA) was used for measuring 
the RNA quality and quantity, and denaturing agarose gel 
electrophoresis was used to determine the RNA integrity.
miRNAs labeled by a miRCURY Hy3/Hy5 Power labeling kit 
(Exiqon, Vedbaek, Denmark) were hybridized by a miRCURY 

Array (v.19.0, Exiqon), and the array were scanned by an 
Axon GenePix 4000B microarray scanner (Axon Instruments, 
Foster City, CA, USA). The raw data were imported into the 
system of a GenePix Pro 6.0 software (Axon Instruments) 
for the purpose of grid alignment and data extraction. After 
normalization, altered miRNAs were identified at fold change 
≥1.5, and P<0.05. The microarray data were uploaded to the 
NCBI Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo/) for public access (GEO Series 
accession number GSE115949).
Quantitative Real-Time Reverse Transcription-Polymerase 
Chain Reaction Validation for Altered miRNAs  The 
miRNAs were validated by quantitative real-time reverse 
transcription-polymerase chain reaction (qRT-PCR). Briefly, 
1.5 µg of total RNA that included the small RNAs was 
reverse-transcripted using All-in-One™ miRNA First-Strand 
cDNA Synthesis Kit (GeneCopoeia, Rockville, MD, USA). 
qRT-PCR was conducted by using the StepOne Plus Real-
Time PCR System (Applied Biosystems, Foster City, CA, 
USA). The expression levels of miR-350-3p, miR-202-3p, 
miR-711, miR-30c-1-3p, and U6 were measured by qRT-
PCR using a miRNA qPCR Mix (GeneCopoeia). Primers 
purchased from GeneCopoeia were defined as follows: miR-
350-3p (MmiRQP0982), miR-202-3p (MmiRQP0923), miR-
711 (MmiRQP1139), miR-30c-1-3p (MmiRQP0394), and U6 
(MmiRQP9002). The U6 small nuclear RNA was employed 
as an endogenous control to normalise the expression levels 
of miRNAs. The relative expression of miRNAs in mice with 
OIR was calculated using the median ΔCt value of the normal 
retina tissues by the 2-∆∆Ct method.
In Silico Analyses  We used Targetscan7.1 (http://www.
targetscan.org/mmu_71/) and MirdbV5 database (http://mirdb.
org/miRDB/) to predict target genes of miRNAs. Those shared 
target genes between two databases were used for miRNA-
mRNA network analysis. Gene Ontology (GO) analysis (http://
www.geneontology.org) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis (http://www.genome.jp/
kegg/) were conducted to predict possible biological functions 
of those target genes of altered miRNAs. 
Statistical Analyses  The statistical difference of significance 
was assessed by Student t-test, and P<0.05 was considered as 
statistically significant throughout the present study. 
RESULTS
Altered miRNA Expression in Mice with Oxygen-induced 
Retinopathy  To investigate the difference in retinal miRNAs 
expression profile between OIR and control mice, we 
performed the Exiqon microarray with retinas from 6 mice 
(3 OIRs and 3 controls). miRNAs microarray data analysis 
suggested that 289 miRNAs were upregulated in OIRs 
compared to controls with fold change greater than 1.5-fold, 

miRNAs in mice with OIR
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and 59 miRNAs were downregulated at more than 1.5-fold 
(Figure 1A). As showed in Figure 1 and Table 1, among these 
miRNAs, 3 miRNAs (mmu-miR-350-3p, mmu-miR-202-3p, 
and mmu-miR-100-5p) were significantly upregulated, and 
8 miRNAs (mmu-miR-711, mmu-miR-10a-3p, mmu-miR-
201-3p, mmu-miR-383-5p, mmu-let-7c-5p, mmu-let-7e-5p, 
mmu-miR-30c-1-3p, and mmu-miR-882) were significantly 
downregulated in mice with OIR. The heatmap revealed 
distinguishable miRNA expression profile between control 
and experimental group except for OIR1 (Figure 1B), which 
may be caused by individual difference. In order to avoid 
experimental errors, another group of OIR and control mice 
were used for validation of altered miRNA expression by qRT-
PCR. 
Validation of Altered miRNA Expressions by Quantitative 
Real-Time Reverse Transcription-Polymerase Chain 
Reaction  Four miRNAs including mmu-miR-350-3p, mmu-
miR-202-3p, mmu-miR-711 and mmu-miR-30c-1-3p were 
randomly selected to further validate by qRT-PCR. The relative 
expression level of mmu-miR-350-3p and mmu-miR-202-
3p were significantly increased to 1.518-fold and 3.731-fold 
in mice with OIR compared to control mice (P=0.0097 and 
P=0.0003, respectively; Figure 2), while that of mmu-miR-711 
and mmu-miR-30c-1-3p was significantly decreased to 0.537-
fold and 0.738-fold in mice with OIR compared to control 
mice (P=0.0006 and P=0.0121, respectively; Figure 2). 
Gene Ontology and Kyoto Encyclopedia of Genes and 
Genomes Enrichment Analysis of miRNA-Target Genes  
To gain insight into the possible roles of the altered miRNAs 
in OIR, we next predicted their potential target genes that 
may be involved in retinal neovascularization by 6 chosen 
miRNAs (mmu-miR-350-3p, mmu-miR-202-3p, mmu-
miR-711, mmu-miR-30c-1-3p, mmu-miR-201-3p and mmu-
miR-383-5p). Totally 1950 and 1030 target genes were 

identified, respectively, by using Targetscan7.1 and MirdbV5 
database. By overlapping two sets of identified genes (Figure 
3A), a total of 293 genes that shared in both databases were 
further identified. To illustrate the prediction of miRNA-gene 
interaction in a visualized form, miRNA-target gene network 
in mice with OIR was constructed (Figure 3B). The cross-
interacting network showed that most of altered miRNAs 
can connect with other miRNAs based on their co-regulating 
genes, except for mmu-miR-711.
The predicted target genes were subjected to GO classification 
and KEGG pathway enrichment analysis. Figure 4A 
demonstrates the top 10 enriched GO classifications in terms of 
biological process, cellular component and molecular function 
for identified target genes of altered miRNAs. The top 3 GO 
terms associated with biological process such as “cellular 
macromolecule metabolic process”, “regulation of biosynthetic 
process” and “nitrogen compound metabolic process”. The 
top 3 GO terms associated with cellular component include 

Table 1 miRNAs with significantly altered expression in retinas of 
mice with OIR identified by microarray

miRNA name Fold change P
mmu-miR-350-3p 1.514 0.043
mmu-miR-202-3p 1.759 0.020
mmu-miR-100-5p 3.729 0.043
mmu-miR-711 0.591 0.036
mmu-miR-10a-3p 0.630 0.019
mmu-miR-201-3p 0.501 0.016
mmu-miR-383-5p 0.478 0.039
mmu-let-7c-5p 0.303 0.024
mmu-let-7e-5p 0.409 0.017
mmu-miR-30c-1-3p 0.446 0.047
mmu-miR-882 0.465 0.036

Data were filtered by fold change 1.5-fold up and down, and P<0.05.

Figure 1 miRNA expression profiles were altered in the mouse retinas with OIR  A: The volcano plots illustrates the fold-change values and 
P-values of altered miRNA expressions in OIR compared with normal retinas. The vertical lines represent to 1.5-fold change of up- and down-
regulation, the horizontal line represents P=0.05. The red points represent the significantly altered miRNAs; B: The heatmap of altered miRNAs 
in the OIR and control groups. Red color represents high relative expression, and green color represents low relative expression.
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“intracellular”, “organelle” and “cell” part. The top 3 GO 
terms in molecular function are “binding”, “protein binding” 
and “catalytic activity”. As shown in Figure 4B, the KEGG 
pathways the predicted target genes indicate that the target 
genes regulated by those altered miRNAs mediate crosstalk 
between numerous pathways including Wnt signaling pathway, 
transcriptional misregulation in cancer, Mucin type O-glycan 
biosynthesis, and mitogen-activated protein kinase (MAPK) 
signaling pathway. 
DISCUSSION
The present study examined retinal miRNA expression profile 
in mice with OIR through microarray and identified several 
upregulated and downregulated miRNAs that might contribute 
to pathological process of retinal neovascularization. Similar 
studies also profiled retinal miRNA expression and identified a 
number of altered miRNAs in mice with OIR[27-29]. Interestingly, 
the present study showed different results with identification 
of several altered miRNAs that were not been reported, 
including mmu-miR-350-3p, mmu-miR-202-3p, mmu-
miR-711, and mmu-miR-30c-1-3p, etc. Besides, other studies 
demonstrated the roles played by miRNAs such as miR-218[32], 
miR-155[33], miR-184[34] and miR-17 family[35]. Differences 
in the altered miRNAs identified among studies may relate 
to methodological differences between the arrays such as 
different miRNA primer alignments. 
Macrophages  a re  ang iogen ic -e ffec te r s  in  re t ina l 
neovascularization[36], and miR-350 plays an important role 
in macrophage apoptosis via negative regulation of PIK3R3 
gene[37]. Our study showed that expression of miR-350-3p is 
significantly increased in mice with OIR, suggesting that miR-
350-3p is likely to regulate macrophages apoptosis in retinal 
angiogenesis.
Fibrosis is considered to be the later stage in retinal 
neovascularization[38] and miRNAs are involved in fibrosis[39-40]. 
A study have demonstrated that fibrosis is suppressed in 
scleroderma by miR-202-3p via inhibition of MMP1, a pro-
fibrotic gene[41]. We showed that miR-202-3p is significantly 
upregulated in mice with OIR, indicating that miR-202-3p 
might affect fibrosis in retinal neovascularization through 
regulating its target genes.
We also showed that several miRNAs, such as miR-711 and 
miR-30c-1-3p, were significantly downregulated in mice with 
OIR compared to room air controls. miR-711 was reported 
to inhibit angiopoietin-1, a well-known endothelial growth 
factor, through Akt pathway, and resulted in neuronal cell 
death[42]. Thus, miR-711 might be an inhibitor of retinal 
neovascularization through regulation of Akt pathway. miR-
30c-1-3p is a functional miRNA in oxidized low-density 
lipoprotein-stimulated macrophages[43]. It might target 
interleukin-1β, a pro-inflammatory cytokine in acute gouty 

Figure 2 Validation of differential miRNA expression by qRT-
PCR  Relative miRNA expression of mmu-miR-350-3p, mmu-miR-
202-3p, mmu-miR-711, and mmu-miR-30c-1-3p in the retina from 
OIR and control mice. As compared to control, n=4/each group. 
aP<0.05, bP<0.01, cP<0.001.

Figure 3 The miRNA-target gene summary and the network analysis  
A: The Venn plot of the miRNA-target gene summary showed each 
predicted gene number in Targetscan7.1 and MirdbV5 databases and 
the overlapping gene number among these two prediction tools; B: The 
miRNA-target gene cross-interacting network. The network showed 
the direct interaction among the miRNAs and the target genes that may 
response to hypoxia and angiogenesis in OIR.

miRNAs in mice with OIR
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arthritis[44]. miR-30c-1-3p might contribute to the macrophage 
polarization and cytokine production so that it might also take 
part in the pathogenesis of angiogenesis.
It has been reported that miRNAs play regulatory roles in 
regulation of VEGF expression. For instance, miRNA-181a 
attenuated ocular neovascularization through interfering 
with the expression of VEGF[45], and miRNA-16 regulated 
VEGF expression in retinal pigment epithelial cells[46]. 
Although VEGF has been proved to be essential in retinal 
neovascularization, other molecules and pathways might also 
be involved in the pathogenesis. In the present study, GO 
and KEGG enrichment analyses suggested that these target 
gene enriched in cellular macromolecule metabolic process, 
regulation of biosynthetic process, and nitrogen compound 
metabolic process, which showed that the basic approach of 
synthesis and metabolism were changed. The reason might be 
that hypoxia causes physiological dysfunction, and leads to 
pathological neovascularization. Some important target genes 
are involved in our indicated pathways. For example, our 
bioinformatic analysis revealed that mmu-miR-350-3p target 
gene DKK2, and mmu-miR-30c-1-3p target gene GSK3B is 
key effectors in Wnt signaling pathway. Moreover, mmu-miR-
30c-1-3p target genes IL1R1 and MAP3K3 are crucial factors 
in MAPK signaling pathway.
Our study also showed some limitations. Firstly, the data of 
microarray may not show all of the functional miRNAs. As 
a result, further effective detection methods such as Next-
generation Sequence are needed for those miRNAs which 
expressed lower than the detective limitation. Moreover, not 
all identified miRNA have been validated by qRT-PCR, and 
the possible mechanism and effects of important target genes 
regulated by the altered miRNA have not been clarified in 
our study. Thus in vivo and in vitro studies should be done to 

explicit potential mechanisms in the mice with OIR.
In conclusion, the study identified a number of altered miRNAs 
in mice with OIR and predicted the potential pathways and 
cellular function of those target genes of the miRNAs that 
involved in retinal neovascularization. Thus, identification of 
novel miRNAs or its target genes allows the revelation of the 
therapeutic targets and the potential approaches to therapies. 
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