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Abstract
● Genome-wide association studies (GWAS) of myopia 
and refractive error have generated exciting results 
and identified novel risk-associated loci. However, the 
interpretation of the findings of GWAS of complex diseases 
is not straightforward and has remained challenging. This 
review provides a brief summary of the main focus on 
the advantages and limitations of GWAS of myopia, with 
potential strategies that may contribute to further insight 
into the genetics of myopia in the post-GWAS or omics era.
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INTRODUCTION

M yopia, also known as near-sightedness or short-
sightedness, is characterized by which the images of 

distant objects fail to be properly focused on the retina plane 
but rather in the front of the retina. Myopia is accepted as a 
multifactor disorder that involves in genetic (nature) and non-
genetic environmental or behavioral (nurture) risk factors plus 
their complex interaction, likely together with the effects of 
stochastic factors. Meanwhile, it is considered as a polygenic 
disease that involves a critical number of candidate genes 
joint action or more complex genetic mechanisms, rather than 
any of the simple Mendelian patterns of inheritance. There 
was a dramatic rise in myopia prevalence over the last 30y in 
many countries, especially among younger people in urban 

East Asia[1-3]. This phenomenon may be caused by increasing 
educational pressures or lifestyle changes and potentially gene-
environment interactions, suggesting the role of environmental 
exposures in myopia susceptibility. Despite epidemiological 
heterogeneity, however, the genetic basis of myopia has been 
established based on the molecular genetics studies and genetic 
epidemiological evidences of myopia in the early stage. 
Heritability estimates from family and twin studies for myopia 
ranging between 50% and 90%, continue to play a significant 
role in enhancing the interpretability of genetic evidences.
The advent of the genome-wide association study (GWAS) era 
is accompanied with the revolution of molecular technology 
and information. The unbiased nature of genome-wide 
measurements coupled with the statistical power of association 
studies have yield new insights into myopic pathogenesis 
without any prior knowledge of function. There are several 
popular instances such as the Meta-analyses that could 
promote power to reveal more loci by pooling information 
from multiple GWAS: the imputation that could extend 
appraisal of associations across the genome by inferring 
frequency based on neighboring variant frequencies, the 
permutation that could build an empirical estimation of the 
null distribution by conservatively multiple corrections. On 
the basis of the advantages, GWAS has rapidly become one of 
powerful and affordable tool to discover common risk variants 
of the complex diseases, and also has been successfully applied 
in ophthalmic field. Rather than giving an exhaustive review of 
all reported findings for myopia, this brief review will focus on 
recent work on GWAS and farther strategies in the post-GWAS 
era of myopia. 
IMPLICATIONS OF GWAS WITH REFERENCE TO 
MYOPIA
Initial Results and Further Findings  In the first place, 
Nakanishi et al[4] conducted a two-stage GWAS survey in 
Japanese by typing 411 777 single nucleotide polymorphism 
(SNP) markers, recruiting 830 pathological myopia cases 
and 1911 general population controls. This earliest GWAS of 
myopia reported the strongest but not genome-wide significant 
association at SNP rs577948 on chromosome 11q24.1 
(P=2.22×10-7). It was speculated that this associated locus 
located upstream of BLID gene was involved in mitochondrial-
led apoptosis and then prompted mitochondrial regulatory 
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mechanism of myopia. This initial finding, however, has failed 
to be replicated in follow-up studies. There are two possible 
reasons for this: on the one hand, replicated studies could 
demonstrate a false negative (type II error, reject qualified 
applicants) due to insufficient statistical power to detect 
small genetic effects; on the other hand, in most cases where 
confounder of population stratification and overestimation of 
effect size are involved, the initial finding likely represents 
a false positive (type I error, admit unqualified applicants) 
rather than true associations. In addition, GWAS requires very 
stringent significance levels, that is, P-values less than 5×108 
to remain significant after Bonferroni correction for the very 
large number of genetic markers tested. In the circumstance, 
a great sample size was needed in order to detect robustly 
modest genetic effects that are typical for complex disease. 
The paucity of causal variants identified has motivated action 
to expand sample size through empowering organizationally 
a number of international multicenter collaborative efforts. 
Two subsequent large-scale GWAS for common refractive 
error were performed concurrently each in a total of more 
than 15 000 European populations. These GWAS identified 
successfully and replicated mutually a number of genome-
wide significant association loci located on 15q14 (combined 
P=2.21×10-14)[5] and on 15q25 (combined P=2.07×10-9)[6], 
respectively. Since then both loci have been widely replicated 
with almost consistent results of the association with myopia 
at the 15q14 locus but not the 15q25 locus. One of the most 
comprehensive study came from a large Consortium of 
Refractive Error and Myopia (CREAM), which conducted 
a Meta-analysis of some polymorphisms observed at 15q14 
and 15q25 in 31 cohorts with a total of 55 177 individuals of 
Caucasian and Asian ancestry, and all fourteen of the SNPs on 
15q14 were significantly replicated (combined P=9.20×10-23) but 
none on 15q25[7]. Similar result has been obtained in a total of 
1571 individuals from Blue Mountains Eye Study as part of the 
Welcome Trust Case Control Consortium[8]. Several potential 
causes might include, for instance, allele frequencies variation, 
population stratification, false positive error and marginally 
statistical significance. GWAS findings have indeed implicated 
novel myopia genic genes, such as GJD2 and RASGRF1 on 
15q14, which have eluded both family linkage analysis and 
candidate gene association studies. 
In this period, with it the application of GWAS for myopia 
has enabled substantial progress in the identification of robust 
and replicable genetic associations and unveiled several 
important insights. Over a dozen GWAS for myopia or related 
phenotypes have been published and cataloged online by the 
National Human Genome Research Institute[9], providing 
valuable data for further analysis. These GWAS have identified 
over 150 SNPs associated with myopia. Note that GWAS 

significant variants seem generally to be of low frequency 
and/or small effect with the allelic odds ratio range from 1.10-
1.20[10]. However, it should be borne in mind that estimated 
of odds ratio is only a surrogate for the relative risk rather 
than the true genetic effect. Meanwhile, small effects can still 
uncover novel relevant insights into pathogenic mechanisms 
in a complex disease, due to natural selection, pleiotropic 
mutation, genetic drift and population history in evolution. 
Significant Progresses  Two of the heretofore largest GWAS 
of myopic refractive error were conducted independently 
and published successively by CREAM[11] and 23andMe 
company[12]. In addition to confirming previously reported 
loci[5-6], both two studies provided compelling results of 
additional associated loci linked to myopia and refractive 
error. The CREAM conducted a genome-wide Meta-analysis 
comprised of 32 across ancestry cohorts, and discovered 16 
novel quantitative trait loci (QTL) associated with refractive 
error in 37 382 individuals of European origin, of which 8 were 
shared with 8376 individuals of East Asians[11]. The 23andME 
group reported results from the largest genome-wide survival 
analysis in a European derived population. The Cox model 
survival analysis of 45 711 discover samples identified 20 
new loci, of which 10 were replicated in a separate cohort of 
8323 samples with early onset myopia before 10 years old[12]. 
The comparison of two investigations indicated that CREAM 
and 23andMe overlapped with each other to a startling 
extent, as well as associated loci had consistent direction of 
estimated effects. Not surprisingly, such robust results could be 
replicated again in a Japanese population[13]. These discoveries 
strengthened the existing viewpoint of signaling cascade from 
the retina triggered to the sclera remodeled and then ultimately 
leading to eye growth. More recently, Tedja et al[14] also further 
revealed that a light-dependent retina-to-sclera signaling 
cascade acted on refractive error by a GWAS in 160 420 
participants and replication in 95 505 participants.
These salient studies have provided additional information 
to explore the etiology and pathogenesis of myopia. As 
compared to CREAM conventional acquirement of phenotype 
information, 23andME utilized questionnaire data which 
may generate substantial misclassification errors because of 
lack of validation. Nevertheless, the Cox proportional hazard 
survival analysis produced an increasing statistical power, 
benefiting from distributional flexibility to study a wide variety 
of censored traits such as age of onset. Despite methodological 
biases, replication has a crucial role in showing associations 
that are identified reflect interesting biological processes. 
In addition, a linear relationship between hazard ratio of 
23andME and effect size of CREAM was established, where 
locus specific hazard ratio for myopia onset age would 
predict the degree of refractive error throughout life[15-16]. Such 
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initial attempt to predict risk has a limited role primarily 
due to the relatively small effect size of the significantly 
associated variants. Hence, risk prediction may not be a 
good recommendation before a larger proportion of the risk 
variants underlying the myopia have been identified. It is 
envisioned that the development of risk prediction algorithms, 
incorporating massive genetic markers and biomarkers with 
risk factors, will facilitate a promising clinical application to 
determine the exact individual risk of developing myopia.
The Related GWAS of Myopia  These GWAS also have 
demonstrated additional insights to shed light on the association 
of the two major determinants of refractive error, ocular 
axial length and corneal curvature, with myopia. A Meta-
analysis in 12 531 Europeans and 8 216 Asians identified 
nine genome-wide significant loci for axial length[17]; of 
which five associated with refraction (LAMA2, GJD2, CD55, 
ALPPL2, and ZC3H11B)[11-12] were replicated, and differential 
gene expression was further observed in myopic animal 
experiments. Another confirmation that linked the attractive 
phenotypes trait with myopia was showed in genome-wide 
significant associated variants (PDGFRA, MTOR, CMPK1 
and RBP3) for corneal curvature; particularly, a missense 
rs11204213 of RBP3 indicated larger effects on both corneal 
curvature and axial length compared with others[18]. Although 
these locus were not reported previously in myopia GWAS, 
homozygous nonsense mutations of the RBP3 gene was found 
to be associated with high myopia[19]. A large-scale GWAS 
(n=86 335) for corneal astigmatism identified four novel loci 
and one of which (NPLOC4) has previously demonstrated 
association with myopia, suggesting further support for the 
shared genetic susceptibility of myopia and astigmatism[20]. 
What’s more, Simpson et al[21] observed two genome-wide 
significant regions on 15q14 and 8q12 for hyperopia, which 
overlapped with previously reported loci of myopia age at 
onset, indicating GWAS also have provided evidences for 
myopia and hyperopia as dichotomous refractive error traits 
underlying the emmetropization mechanisms.
GWAS in human complex trait have already proven a resounding 
success, which have underpinned effectively the outcomes 
of genetic variants associated with myopia. This represents 
a key milestone in myopia genetics. A number of new 
loci have been implicated in myopia phenotype and, in 
sharp contrast with linkage and candidate studies, showing 
predominantly consensus among fellow-up studies. Albeit 
many variant loci proved robust, almost all of them did not 
capture causal associations but rather only tagged a causative 
event in a specific region of the human genome. Thus, those 
crucial events would still have to be elaborated. For the time 
being, GWAS discoveries have significantly broadened our 
knowledge of the genetic basis of common forms of myopia 

development but they have yet to demonstrate clinical 
implications. Given this, a great deal more work will be needed 
to further explore unexplained information and understand the 
underlying biologic mechanisms of these genetic variants. 
ROUTE TO FOLLOW IN POST-GWAS ERA
Seeking Heritability  Although GWAS have successfully 
proven in identifying multiple genetic variants that contribute 
to myopia phenotype, these variants together account for 
only a minority of the observed heritability[16]. The missing 
heritability may arise potentially from undiscovered common 
variants that are concealed by stringent significance thresholds 
of GWAS, rare variants that are ignored for GWAS approach 
on basic of common disease/common variant hypothesis, 
structural variations in the genome such as copy number 
variation (CNV) that escapes from current genotyping 
platforms. With the sequencing technologies advanced and cost 
decreased rapidly, it will be feasible to utilize whole genome 
sequencing in numerous populations to identify both common 
and rare variants with a modest effect underlying the myopia 
traits[22]. As an important source of human genome variability, 
CNV is being explored in the context of myopia. Yip et al[23] 
adopted a systematic strategy to investigate the role of CNVs 
in high myopia, and identified 22 significant CNVs which still 
are needed to further explored. One animal study showed that 
the CNV of muscarinic acetylcholine receptor genes (CHRM), 
especially CHRM3, were significantly different between 
control and myopia, even among various degrees of myopia[24]. 
Metlapally et al[25] reported that TEX28 gene CNV appeared to 
be associated with the MYP1 locus in X-linked high myopia 
phenotypes. Beleggia et al[26] performed an CNV analysis in 
two affected individuals from MACOM syndrome with severe 
myopia, and identified CRIM1 CNV as an important factor 
in eye development. Although CNV has been speculatively 
involved in susceptibility to various complex diseases in 
human, the effect of CNV in missing heritability for myopia 
remains largely undefined. 
While many variants surely remain to be found, phantom 
heri tabi l i ty  may be another  hypothesis  caused by 
huge overestimation with no consideration for genetic 
interactions[27-28]. Such the absence of heritability could be partly 
attributed to gene-environment, gene-gene or more specifically 
variant-variant interactions. A series of epidemiological 
studies investigated the interactions between the myopia 
genetic variants and the main environmental factors, and 
demonstrated that educational attainment and genetic effects 
had strong interactions. Fan et al[29-30] provides evidence of the 
interactions among education stratum and GWAS-associated 
loci such as ZMAT4 presented in both Asians and Europeans. 
Such education-environment interactions have also been 
implied for susceptibility variants in MMPs[31]. A joint Meta-
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analysis based on gene-environment-wide interaction study 
(GEWIS) demonstrated that several genome-wide significant 
loci (AREG, GABRR1 and PDE10A) interacted significantly 
with education by identifying SNP-education interaction 
effects on refractive error, and the interactions are more evident 
in Asians[32]. Tkatchenko et al[33] identified a low-frequency 
variant in APLP2 associated with the children exposed to 
large amounts of daily reading using a combination of GWAS, 
gene set enrichment analysis (GSEA) and functional analysis 
of animal model. An novel phenotypic-genotypic interaction 
between myopia and intelligence has been investigated 
recently[34]. However, despite the application of statistical 
and computational methods is conducive to identification of 
nonlinear epistatic interactions of genetic effects[35], it remains 
challenging to identify small-effect variants for complex traits 
and reduce the burden of multiple hypothesis-testing. The 
most promising route for identification of missing variants 
lies through combining biological functional evidence with 
statistical genetic evidence. 
Epigenetic Studies  Epigenetic modifications in the human 
genome serve as a genetic mechanism by which environmental 
exposures modulate disease risk, as well as play diverse 
roles in gene expression and function at different molecular 
levels[36]. The most well-known epigenetic modifications 
are the DNA methylations, histone modifications, and 
non-coding RNA activity so far. Methylation at cytosine-
phosphate-guanine (CpG) sites was one of major repressive 
epigenetic modification. It was recently revealed that hyper-
methylation of CpG in the COL1A1 gene promoter may 
underlie the reduction of sclera collagen synthesis and then the 
development of myopia[37]. The expression of COL1A1mRNA 
was decreased at the transcriptional level in myopic mice, 
corresponding to an increase in the frequency of CpG 
methylation. By means of large-scale MicroRNA (miRNA) 
expression profiling in a myopic mouse model, Tkatchenko 
et al[38] identified that a number of miRNAs were involved 
in the regulation of refractive eye development, and most of 
which were differentially upregulated in the myopic retina. Xie 
et al[39] reported that rs157907 polymorphism G allele of miR-
29a targeted gene COL1A1 was significantly associated with 
myopia as a protective factor, and speculated that rs157907 
might regulate miRNA expression and thereby affect collagen 
synthesis by binding specific mRNAs. On the other hand, the 
vast majority of GWAS associated variants were located on 
non-coding intergenic and intronic regions. The Encyclopedia 
of DNA Elements (ENCODE) and other projects have 
provided ample epigenomic data for functional annotation of 
non-coding variants, and discovered the majority of the GWAS 
associated SNPs in connection with epigenomic elements[40]. 
With these data, we thus tried to perform a functional 

annotation of index SNPs and proxy SNPs which aimed 
to prioritize potential regulatory variants and susceptibility 
genes[41]. Despite the challenges faced, these preliminary 
explorations will provide clues to data mining and integration 
toward further understanding of etiologies and treatments.
Integrative Pathway or Network Analysis   GWAS approach 
typically focused on single SNP-based association test 
suffering from low power if each tested marker is incomplete 
linkage disequilibrium with undefined quantitative trait loci. 
Nevertheless, the polygenic basis of complex traits implicated 
that epistasis and pleiotropy appeared to be inherent properties 
of biomolecular networks rather than isolated occurrences. 
This has motivated the interest in multi-locus-based systemic 
approach to integrate GWAS data and other data modalities 
to yield additional insight within a biological context[42]. 
Actually, pathway analysis has previously been performed 
within GWAS. The CREAM identified several novel pathways 
involved in myopia by considering all the genes identified 
in the text and using the Ingenuity Pathways Analysis (IPA) 
database and Disease Association Protein-Protein Link 
Evaluator (DAPPLE)[11]. The Wnt receptor signaling pathway 
was identified in a recent GWAS result for axial length from 
CREAM effort, further reinforced that the signaling pathway 
plays a prominent role in vertebrate eye development[18]. 
Some studies have integrated visually significant genotype-
phenotype associations with gene annotations databases to 
build pathways. The miRNA-mRNA interaction networks or 
functionally collaborative networks also have been conducted 
to identify the potential signaling pathways involved in form-
deprivation myopia models. For example, Tkatchenko et al[38] 
found that nine signaling pathways were involved in regulation 
of neurogenesis; Mei et al[43] discovered that the regulation of 
transcription, axon guidance and TGF-β signaling pathways 
were significantly enriched. Meanwhile, it was suggested 
that miRNAs may serve as key regulators of the signaling 
cascades related to the development of myopia. Reconstruction 
models of regulatory network, constituted by binding events 
of transcription factors, might help understand and interpret 
the roles of genetics and epigenetics in myopic mechanism on 
the other hand. Despite of so much inaccurate and incomplete, 
the dynamic context-specific nature (distinct combinations 
of factors bind at specific genomic locations) of regulatory 
network is beginning to take its role in dissecting the genetics 
pathogenesis. Pathway analysis will next be extended to 
examining rare variants, other omics and interaction data. 
Through long-term exploration and unremitting efforts, 
a framework for unraveling the genetic basis of complex 
traits has just been initially established. For myopia genetics 
research, the present achievements are only the first step in 
this process and, ever larger studies would undoubtedly result 
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in more genetic discoveries but smaller effects. One challenge 
is how to tackle the fine mapping and functional dissection 
of already-identified GWAS loci. Furthermore, increasing 
emphasis will be placed on biological understanding and 
personalized discovery of diagnostics and therapeutics 
in clinical settings. Even so, its phenotypic predictability 
remains very low. New methodologies and perspectives will 
be needed to fully tackle related problems. The promising 
route for identification of missing low-frequency and small-
effect variants lies through combining biological functional 
evidence with statistical genetic evidence. Identification of 
remaining trait variance will acquire additional discoveries, 
specially underlying rare variants and causal common variants 
and refined estimates of heritability. Functional validation, 
integrating the growing genetic and omics data, will produce 
omnibearing analysis of biological pathways, gene regulation 
networks and protein interaction maps. The improvement of 
molecular genetics combined with other methods is expected 
to become widespread medical application in humans in the end.
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