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Abstract
● AIM: To explore the mRNA and pathways related to 
retinoblastoma (RB) genesis and development.
● METHODS: Microarray datasets GSE29683 (human) 
and GSE29685 (mouse) were downloaded from NCBI GEO 
database. Homologous genes between the two species 
were identified using WGCNA, followed by protein-protein 
interaction (PPI) network construction and gene enrichment 
analysis. Disease-related miRNAs and pathways were 
retrieved from miR2Disease database and Comparative 
Toxicogenomics Database (CTD), respectively.
● RESULTS: A total of 352 homologous genes were 
identified. Two pathways including “cell cycle” and “pathway 
in cancer” in CTD and enrichment analysis were identified 
and seven miRNAs (including hsa-miR-373, hsa-miR-34a, hsa-
miR-129, hsa-miR-494, hsa-miR-503, hsa-let-7 and hsa-
miR-518c) were associated with RB. miRNAs modulate “cell 
cycle” and “pathway in cancer” pathways via regulating 13 
genes (including CCND1, CDC25C, E2F2, CDKN2D and TGFB2).
● CONCLUSION: These results suggest that these 
miRNAs play crucial roles in RB genesis through “cell cycle” 
and “pathway in cancer” pathways by regulating their 
targets including CCND1, CDC25C, E2F2 and CDKN2D.
● KEYWORDS: Kyoto Encyclopedia of Genes and 
Genomes pathway; microRNA; retinoblastoma; weighted 
gene co-expression network analysis
DOI:10.18240/ijo.2020.04.02

Citation: Tian R, Zou H, Wang LF, Song MJ, Liu L, Zhang H. 
Identification of microRNA-mRNA regulatory networks and 
pathways related to retinoblastoma across human and mouse. Int J 
Ophthalmol 2020;13(4):535-544

INTRODUCTION

R etinoblastoma (RB) is a rare malignant retina tumor 
in children. It initiates during foetal stage and is often 

delay-diagnosed after birth or during the first few years 
after birth. The common signs of RB includes leukocoria, 
strabismus, glaucoma and inflammation[1-2]. The prognosis and 
survival of RB has been improved due to the improvement 
in diagnosis methods and treatment strategies, including 
chemotherapy regiments, magnetic resonance imaging and 
surgical therapy[1-3]. However, the etiology of RB is still now 
clear till now.
The pathogenesis of RB involves RB tumor suppressor 
gene biallelic mutation or inactivation and attendant loss of 
function of RB protein[1]. It is believed that the molecular 
features of a disease reflect its origin features and provide 
clues for treatment. With the development and application 
of bioinformatics technology, more and more molecular 
features have been identified to be involved in RB genesis and 
development. For instance, the knockdown/loss of p107, p130, 
p53, Cdkn2a and PTEN genes[4-7], and amplifications of Mdm2 
and Mycn[8-9] benefit to RB development in mouse. 
Animal models of cancer, especially mouse models, have 
attracted researchers’ attention long before in cancer 
field due to the high homologous and identity of human 
and mouse genome[10-11]. There are plenty and increasing 
evidences showing the crucial roles of employing mouse 
model in identifying key features related to human diseases 
and cancers, including RB[10-13]. Researches focusing on the 
similarity in molecular features of diseases between human 
and mouse confer the fast development in disease prognosis 
and treatment[11]. McEvoy et al[11] identified p53 pathway was 
suppressed in human RB cells and mouse RB model. It has 
been widely identified that RB gene is crucial for chromosomal 
rearrangement and deletion[14]. RB gene has been identified to 
be a direct target of various miRNAs[15-16]. The dysregulation 
of microRNAs (miRNAs), including miRNA 17-92 cluster, 
hsa-miR-34a, hsa-miR-373 and hsa-miR-518c are reported to 
be related with RB development[17-19]. However, the identity 
of miRNA-mRNA regulations between human and mouse RB 
had not been reported till now. 
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This study was performed to identify the co-expressed miRNA-
mRNA regulatory networks and developmental programs 
in RB between human and mouse. The GSE29683 and 
GSE29685 datasets were downloaded and homologous genes 
between human and mouse RB models were identified and 
analyzed using bioinformatics analyses. Our study would 
provide new insights into the molecular features in the genesis 
of RB.
MATERIALS AND METHODS
Microarray Data and Processing  Microarray dataset 
GSE29686 (including GSE29683 and GSE29685) were 
downloaded from the NCBI GEO database (https://www.
ncbi.nlm.nih.gov/). GSE29683 and GSE29685 is based 
on the GPL 570 platform (HG-U133_Plus_2; Affymetrix 
Human Genome U133 Plus 2.0 Array) and the GPL1261 
platform (Mouse430_2; Affymetrix Mouse Genome 430 2.0 
Array), respectively. CEL files were processed using the R 
Oligo software package (v3.4.1; http://www.bioconductor.
org/packages/release/bioc/html/oligo.html)[20]. GSE29683 is 
comprised of 62 RNA samples derived from 55 human RB 
specimens, 3 passaged xenografts and 4 human RB cell lines 
(Y79, Weri1, Rb-355, and Rb-13). GSE29685 consisted of 132 
primary RB tumor samples from mouse models (SCID mice 
with p107- and p130-knockout, Chx10-Cre, p53Lox/Lox, RbLox/Lox, 
MDMXTg, and p130Lox/Lox)[11]. 
Annotations of Homologous Genes Across Species  The 
homologous genes between human and mouse were converted 
using the online database mining tool Biomart (v2.3.6; https://
bioconductor.org/packages/release/bioc/html/biomaRt.html)[21-22]. 
Weighted Gene Co-Expression Network Analysis for Cross-
Species Genes  Weighted gene co-expression network analysis 
(WGCNA) is a bioinformatics algorithm for the identification 
of co-expressed network related to disease clinic traits[23-25]. 
Different WGCNA modules in GSE29683 and GSE29685 
subset were identified using WGCNA package (v1.61; https://
cran.r-project.org/web/packages/WGCNA/index.html)[26]. 
Cross-species comparisons of modules with high topological 
overlaps (TOs) were performed using fisher’s precise test with 

enrichment algorithm[27] as follows:
                                            

,

where N notes total gene number from human samples, M 
indicates gene counts in each WGCNA module of human, 
K notes gene number in each WGCNA module of mouse, P 
value of fisher’s precise test is based on the mini number of 
genes from human (x). TOs with P value <0.05 and fold >1 
were defined as significant. The homologous genes between 
modules with significant TOs were selected as candidate genes 
associated with RB. 
Enrichment Analysis  To investigate the biological process 
and pathways associated with genes, the online software 

DAVID (Database for Annotation, Visualization, and Integrated 
Discovery; v6.8; https://david.ncifcrf.gov/) was used. 
The Gene Ontology (GO) biological processes and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways with 
the P<0.05 and/or false discovery rate (FDR) <0.05 were 
defined as significant terms.
Protein-Protein Interaction Network  Interactions between 
the products of homologous genes between human and 
mouse were identified using Search Tool for the Retrieval of 
Interacting Genes (STRING, v10.0; http://string-db.org/)[28] 
with the default setting parameters (reliability threshold 0.4). 
The protein-protein interaction (PPI) network of homologous 
genes were visualized using Cytoscape software (v3.6.1; http://
www.cytoscape.org/)[29]. 
Identification and Analysis of RB-Related miRNAs  The 
miR2Disease database (http://www.mir2disease.org/) includes 
various disease-related miRNAs and the detail information of 
them (inclusing sources, disease, exaiminations and references)[30].
miRNAs related to RB were identified from miR2Disease 
database with the searching term “retinoblastoma”.
Construction of miRNA-mRNA and RB-Related Pathway 
Regulatory Network  The targets of miRNAs were predicted 
in starBase Version 2.0 database (http://starbase.sysu.edu.
cn/)[31], and targetScan, picTar, RNA22, PITA and miRanda. 
The miRNA-mRNA pairs were visualized using Cytoscape. 
Comparative Toxicogenomics Database (CTD, 2017 update; 
http://ctd.mdibl.org/) was interviewed to identify RB-related 
KEGG pathways. The searching keyword was “retinoblastoma”. 
The key KEGG pathways and genes related to RB were used 
to construct RB-related miRNA-mRNA-pathway network.
RESULTS
Identification of Homologous Genes Between Human 
and Mouse  Figure 1A, 1B shows the data processing for 
GSE29683 and GSE29685, respectively. After normalizing, 
13 680 homologous coding genes between human and mouse 
were identified using Biomart tool. Correlation analysis 
showed that the 13 680 homologous genes were highly 
correlated (cor=0.73 and P<1e-200) and connected (cor=0.31 
and P<1e-200; Figure 1C), suggesting the viability of 
comparative analysis using GSE29683 and GSE29685. 
Identification of WGCNA Modules Associated with RB 
Genesis  The 13 680 homologous genes were then used for 
WGCNA analysis. Figure 2 shows the correlation coefficient 
square (r2) of eigengenes=0.9 and the mean connectivity=1 
when the soft threshold power is 10. Accordingly, r2=0.9 
and soft threshold power=10 were set as the criteria for the 
identification of WGCNA modules. 
Following with the aforementioned criteria combined with 
cutHeight=0.95 and gene number ≥50, we identified 12 
modules (barring grey: HM1-HM14) in GSE29683 (human, 

miRNA and mRNA in retinoblastoma
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training dataset) and 13 modules (barring grey: MM1-MM14) 
in GSE29685 (mouse, validation dataset, respectively (Figure 

3A, 3B). The number of genes in each module are listed 
in Table 1. Three modules (black, brown, and turquoise) 
containing 352 homologous genes had high TO, as P<0.05 
and Fold >1. The 352 genes were selected as candidate genes 
associated with RB and used for the cross-species comparisons. 
Enrichment Analysis for 352 Homologous Genes  
Enrichment analysis in DAVID database showed that the 352 
homologous genes were associated with 16 GO biological 
processes including “immune response”, “cell cycle process”, 
“regulation of cell proliferation”, and “response to wounding”; 
and 10 KEGG pathways such as “Toll-like receptor signaling 
pathway”, “Cell cycle”, “NOD-like receptor signaling 
pathway”, “Chemokine signaling pathway”, and “B cell 
receptor signaling pathway” (Table 2). 
Protein-Protein Interaction Network Analysis  The PPI 
network based on the 352 genes consisted of 1403 interactions 
and 251 homologous genes with the threshold of interaction 
score >0.6 (Figure 4).

Figure 2 The network topology analysis for soft threshold power 
of adjacency matrix  Numbers in the boxes indicate the soft-
thresholding power corresponding to correlation coefficient square 
value (r2, y-axis). The higher the r2 value, the closer to scale-free topology.

Table 1 Modules and topological overlaps in GSE29683 (human) and GSE29685 (mouse) datasets

Module Human module Mouse module Overlap number Overlap P Overlap fold
Blacka HM1 MM1 h100(26)m154 3.49E-11 6.124
Blue HM2 MM2 h404(29)m385 5.49E-02 0.677
Browna HM3 MM3 h317(69)m332 1.89E-08 2.380
Green HM4 MM4 h111(3)m195 0.379 0.503
Viridity HM5 MM5 h45(1)m64 0.556 1.261
Grey HM6 MM6 h1767(768)m1300 0.000347 1.214
Magenta HM7 MM7 - - -
Pink HM8 MM8 h71(3)m131 0.744 1.171
Purple HM9 MM9 - - -
Red HM10 MM10 h102(3)m160 0.802 0.668
Orange HM11 MM11 - - -
Carnation HM- MM12 - - -
Turquoisea HM13 MM13 h426(257)m470 2.2E-16 4.659
Yellow HM14 MM14 - - -

HM: Weighted gene co-expression network analysis (WGCNA) modules in human GSE29683 dataset; MM: WGCNA modules in mouse 
GSE29685 dataset. aModules with significant topological overlap (P<0.05 and Fold >1).

Figure 1 Data normalization and gene correlation in GSE29683 
and GSE29685  A, B: The gene density distribution before (left) and after 
(right) data normalization for GSE29683 and GSE29685, respectively. 
C: The correlation analysis for expression (left) and co-expression 
connections of 13 680 homologous genes between the two datasets. 



538

MiRNA-mRNA Regulatory Network  Thirteen miRNAs 
were screened in miR2Disease database using seaching 
keyword “retinoblastoma”, including 2 downregulated miRNAs 
reported by Dalgard et al[18] in 2009 and 11 upregulated 
miRNAs reported by Zhao et al[19] in 2009 (Table 3). Targets 

of the 13 miRNAs were predicted and 107 out of the 352 
homologous genes between human and mouse were identified. 
The corresponding miRNA-mRNA regulatory network was 
comprised of 186 interactions (lines) and 118 nodes (11 
miRNAs and 107 homologous genes, Figure 5).

Figure 3 WGCNA analysis for microarray datasets  The WGCNA dendrogram for GSE29683 (human) and GSE29685 (mouse), respectively. 
HM: WGCNA modules in human GSE29683 dataset; MM: WGCNA modules in mouse GSE29685 dataset. 

Table 2 GO biological processes and pathways in Kyoto Encyclopedia of Genes and Genomes involved 
352 homologous genes between human and mouse

Term Count P FDR
Biological process

GO:0006955~immune response 55 1.77E-16 3.89E-13
GO:0000279~M phase 38 2.12E-16 3.89E-13
GO:0022403~cell cycle phase 41 2.66E-15 4.60E-12
GO:0007067~mitosis 30 8.18E-15 1.42E-11
GO:0000280~nuclear division 30 8.18E-15 1.42E-11
GO:0000087~M phase of mitotic cell cycle 30 1.32E-14 2.28E-11
GO:0048285~organelle fission 30 2.36E-14 4.06E-11
GO:0007049~cell cycle 55 3.21E-14 5.54E-11
GO:0022402~cell cycle process 46 5.35E-14 9.24E-11
GO:0006952~defense response 48 6.37E-14 1.10E-10
GO:0000278~mitotic cell cycle 36 3.21E-13 5.54E-10
GO:0006954~inflammatory response 33 1.20E-12 2.08E-09
GO:0009611~response to wounding 42 2.06E-12 3.56E-09
GO:0051301~cell division 29 7.98E-11 1.38E-07
GO:0042127~regulation of cell proliferation 43 9.21E-08 1.59E-04
GO:0001775~cell activation 21 6.03E-06 0.010

Pathways
hsa04610:Complement and coagulation cascades 10 6.55E-05
hsa04620:Toll-like receptor signaling pathway 11 2.71E-04
hsa04110:Cell cycle 12 3.79E-04
hsa04621:NOD-like receptor signaling pathway 7 5.29 E-03
hsa04062:Chemokine signaling pathway 12 9.34E-03
hsa04662:B cell receptor signaling pathway 7 1.32 E-02
hsa04623:Cytosolic DNA-sensing pathway 6 1.39 E-02
hsa04060:Cytokine-cytokine receptor interaction 14 1.88 E-02
hsa04670:Leukocyte transendothelial migration 8 3.41 E-02
hsa04510:Focal adhesion 11 3.68 E-02

FDR: False discovery rate; GO: Gene Ontology.

miRNA and mRNA in retinoblastoma
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Enrichment analysis showed these genes in the network 
were associated with 17 biological processes like “cell cycle 
phase”, “regulation of cell cycle”, “nuclear division”, “mitotic 
sister chromatid segregation” and “spindle organization” 
(P<0.05 and FDR<0.05); and 3 KEGG pathways including 
“Cell cycle”, “Pathways in cancer”, and “Complement and 
coagulation cascades” (P<0.05; Table 4).
RB-Related miRNA-mRNA-Pathway Network  Sixteen 
RB-related KEGG pathways were screened from CTD 
database with keyword “retinoblastoma” (Table 5), including 
two overlapped KEGG pathways between CTD and 
DAVID databases (“cell cycle” and “Pathways in cancer”). 
The miRNA-mRNA-pathway network consisted of 13 
genes and 7 miRNAs (Figure 6). Genes including E2F2, 

cyclin D1 (CCND1/PRAD-1), CDC25C, CDKN2D, and 
transforming growth factor-β2 (TGFB2) gene, baculoviral 
IAP repeat-containing protein (BIRC5)/surviving gene, bone 
morphogenetic protein 4 (BMP4) gene, Ras association 
domain family member 5 (RASSF5) gene /NORE1A, and 
interleukin-6 (IL-6) gene were involved (Figure 6). Three 
genes E2F2, CCND1/PRAD-1 and TGFB2 were involved 
in both pathways. Ten genes were assigned into WGCNA 
turquoise module and three genes (BMP4, BIRC3 and 
RASSF5) were in brown module, respectively. 
DISCUSSION
The application of WGCNA in biomedicine facilitates 
monitoring thousands of molecular features associated with 
disease pathogenesis, development and clinic traits[32-34]. Using 

Figure 4 The protein-protein interaction network of the homologous genes between human and mouse  Nodes: Products of homologous 
genes; Lines: Interactions between nodes.

Table 3 Thirteen reported miRNAs that relate to retinoblastoma in miR2Disease database

miRNA Disease Regulation Experiment Reference
hsa-miR-34a RB Down Northern blot, qRT-PCR etc. [18]
hsa-miR-34b RB Down Northern blot, qRT-PCR etc. [18]
hsa-miR-373 RB Up Microarray [19]
hsa-miR-492 RB Up Microarray [19]
hsa-miR-494 RB Up Microarray [19]
hsa-miR-498 RB Up Microarray [19]
hsa-miR-503 RB Up Microarray [19]
hsa-miR-513 RB Up Microarray [19]
hsa-miR-518c RB Up Microarray [19]
hsa-let-7e RB Up Microarray [19]
hsa-miR-198 RB Up Microarray [19]
hsa-miR-129 RB Up Microarray [19]
hsa-miR-320 RB Up Microarray [19]

RB: Retinoblastoma.
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Figure 5 The miRNA-mRNA regulatory network  Cycle notes the product of gene. Red triangle and green arrow notes up- and down-
regulated miRNA, respectively.

Figure 6 The miRNA-mRNA-KEGG pathway network  Box represents KEGG pathway. Cycle nodes the product of overlapped gene. Red 
triangle and green arrow notes up- and down-regulated miRNA, respectively. Black lines, miRNA-mRNA pairs. Green lines, mRNA-pathway pairs.

miRNA and mRNA in retinoblastoma



541

Int J Ophthalmol,    Vol. 13,    No. 4,  Apr.18,  2020         www.ijo.cn
Tel: 8629-82245172     8629-82210956      Email: ijopress@163.com

the WGCNA methods, we identified the co-expressed modules 
and hub genes related to RB genesis in human and mouse. A 
total of 352 homologous genes between human and mouse 
were identified as candidates for RB genesis. With WGCNA 

and bioinformatics analysis, we found that 10 homologous 
genes (CCND1, CDC25C, CDKN2D, TGFB2, E2F2, BUB1, 
CEBPA, TTK, ESPL1 and BIRC5) were clustered in turquoise 
module, and were involved in “pathways in cancer” and/or 
“cell cycle” pathways. The other three genes (BMP4, BIRC3 
and RASSF5) were clustered in WGCNA brown module 
and only associated with “pathways in cancer” pathway. 
These demonstrated that the genes clustered into the same 
co-expression modules had similar biological functions. The 
facts that BIRC3, CDC25C and CCKN2D were regulated by 
hsa-miR-129 and CCND1 was regulated by all 7 miRNAs 
suggested the crucial roles of these genes and miRNAs in RB 
genesis and development by interacting “pathways in cancer” 
and/or “cell cycle” pathways.
RB gene is a nuclear protein in retina cells and is crucial 
for mitosis, cell cycle, chromosomal rearrangement, and 
duplications[14]. Phosphorylated RB protein regulates cell 
cycle via binding to E2F family transcription factors[35-37]. E2F 
transcription factor play important roles in cell proliferation 
and growth in G1 phage by binding with RB protein and S 
phage by interacting with cyclin A and p107 protein, which 
have similar protein-binding properties and structures to RB 
protein[36]. CCND1 is an oncogene and its downregulation 
promotes cell cycle arrest in cancer cells[38]. CDC25C is a target 

Table 4 Biological processes and pathways that involve 107 targets of retinoblastoma-related miRNAs

Term Count P FDR
Biological processes
GO:0022403~cell cycle phase 25 5.73E-16 9.10E-13
GO:0000279~M phase 23 5.87E-16 9.10E-13
GO:0007049~cell cycle 32 5.92E-16 9.10E-13
GO:0022402~cell cycle process 28 8.66E-16 1.45E-12
GO:0007067~mitosis 19 1.15E-14 1.89E-11
GO:0000280~nuclear division 19 1.15E-14 1.89E-11
GO:0000087~M phase of mitotic cell cycle 19 1.59E-14 2.60E-11
GO:0048285~organelle fission 19 2.34E-14 3.84E-11
GO:0000278~mitotic cell cycle 22 8.22E-14 1.35E-10
GO:0051301~cell division 17 2.04E-10 3.35E-07
GO:0042127~regulation of cell proliferation 23 1.79E-08 2.94E-05
GO:0007059~chromosome segregation 9 9.27E-08 1.52E-04
GO:0051726~regulation of cell cycle 13 3.34E-06 5.48E-03
GO:0000070~mitotic sister chromatid segregation 6 4.87E-06 7.99 E-03
GO:0000819~sister chromatid segregation 6 5.60E-06 9.19 E-03
GO:0000226~microtubule cytoskeleton organization 9 8.79E-06 1.44 E-02
GO:0007051~spindle organization 6 1.50E-05 2.46 E-02

Pathways
hsa04110:Cell cycle 8 5.14E-05
hsa05200:Pathways in cancer 9 4.022E-03
hsa04610:Complement and coagulation cascades 4 1.76 E-02

GO: Gene ontology; FDR: False discovery rate.

Table 5 Retinoblastoma-related pathways in comparative 
toxicogenomics database

Disease ID Pathway Pathway ID
MESH:D012175 Endocrine resistance hsa01522

Cell cycle hsa04110
Hepatitis B hsa05161

HTLV-I infection hsa05166
Epstein-Barr virus infection hsa05169

Pathways in cancer hsa05200
Viral carcinogenesis hsa05203

Pancreatic cancer hsa05212
Glioma hsa05214

Prostate cancer hsa05215
Melanoma hsa05218

Bladder cancer hsa05219
Chronic myeloid leukemia hsa05220

Small cell lung cancer hsa05222
Non-small cell lung cancer hsa05223

Breast cancer hsa05224

Bold pathways are overlapped pathways with that in Table 4.
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of E2F1/E2F2[39] and CDC25C overexpression suppresses 
cancer cell proliferation through G2/M phage arrest[40-41]. 
Giono et al[41] reported that the suppression of MDM2 gene 
induced p53 and inhibited CDC25C, respectively. They found 
MDM2 interacted with CDC25C protein and facilitated 
CDC25C degradation thus delaying cell cycle via arresting 
cell cycle at G2/M phage. The upregulation of CDC25C in 
RB tumor tissues has been identified[42]. Our present study 
showed that CCND1, CDC25C and CDKN2D were direct 
targets of hsa-miR-129 and these factors were associated 
with “cell cycle” pathway. These results suggested that these 
genes play important roles in RB and might be crucial for the 
development of RB.
RB gene has reported to be a direct target of several miRNAs 
including miR-106b and miR-215[15-16]. Our study showed 
miRNAs including hsa-miR-373, hsa-miR-503, hsa-miR-129, 
hsa-miR-518c and hsa-miR-34a were RB-related miRNAs 
by interviewing miR2Disease database[18-19]. The broad roles 
of miRNAs in cancers have been reported by observing the 
functions of their targets. Elveated hsa-miR-373 and hsa-
miR-129 and decreased hsa-miR-34a has been reported in 
RB tissues in comparison with controls[18-19,43-44]. Studies had 
shown that the inhibition of miR-129 was associated with poor 
outcome of patients with bladder cancer[45]; elevated miR-
129 promoted apoptosis in colorectal cancer (CRC) cells[46]; 
hsa-miR-373 was downregulated in CRC tissues[47], and its 
expression suppressed gastric cancer metastasis[48]; miR-34a 
was downregulated in CRC[49] and breast cancer stem cells[50]; 
the expression of miR-34a blocked breast tumor growth[50]. 
We identified 7 miRNAs (including upregulated hsa-let-7e, 
hsa-miR-373, hsa-miR-494, hsa-miR-503 and hsa-miR-129, 
and downregualted hsa-miR-518c and hsa-miR-34a) were 
associated with RB genesis through “cell cycle” and “pathway 
in cancer” pathways by regulating their targets like CCND1, 
CDC25C, CDKN2D and E2F2. These results demonstrated the 
potential roles of these miRNAs in regulating RB genesis and 
development. 
In conclusion, we identified there were 352 homologous genes 
with high TOs between human and mouse. Bioinformatics 
analyses showed 7 miRNAs (like hsa-let-7e, hsa-miR-373, 
hsa-miR-494, hsa-miR-129, and hsa-miR-34a) and 13 
genes (including CCND1, CDC25C, CDKN2D, TGFB2 
and E2F2) were associated with RB pathogenesis via “cell 
cycle” and “pathway in cancer” pathways. In vivo and in vitro 
experimental should be performed to varify these insights. 
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