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Abstract
● According to the recent report, there are 870 million 
people suffer from ocular diseases worldwide. The present 
approaches for diagnosis are morphological examination, 
imaging examination and immunological examination, 
regrettably, they lack of sensitivity and difficult to make a 
definite diagnosis in the early stage. Systemic biology as 
an effective method has been used in clinical diagnosis 
and treatment for diseases, especially metabolomics 
which is more attractive with high sensitivity and accuracy. 
Although previous researches had been confirmed that 
endogenous metabolites in the ocular matrix play a crucial 
role in the progress of diseases related diseases, the 
standard protocols and systematic summary about the 
biomarker researches based on ocular matrix has not been 
established. This review article highlights the pretreatment 
for ocular matrix and the new biomarkers expressed by 
the eye diseases, expected to promote the application of 
biomarkers in the diagnosis and treatment of eye diseases. 
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INTRODUCTION

E ye is a complex sensory organ that can be divided into 
anterior part composed of cornea, conjunctiva, aqueous 

humor, iris, ciliary body and lens, the posterior part composed 
of sclera, choroid, retina and vitreous humor (VH). It is able 
to receive light and convert it into electrical impulses which 
are transmitted to the brain through the optic nerve for visual 
perception[1]. Various injuries in the above ocular matrices will 
result in different ocular diseases companied with impaired 
vision function, moreover, systemic diseases such as diabetes[2], 
Alzheimer’s disease[3] and inflammatory bowel disease[4] may 
also cause damages in ocular matrix. Morphological, imaging, 
and immunological examination are the major diagnosis 
approaches for ocular diseases. However, when there is a 
significant change in the structure and function of the eye, the 
diseases have progressed to an irreversible stage. What’s more, 
affected individuals experience different clinical appearance 
and progression of the diseases[5]. Given the difficulty in 
diagnosis and treatment for ocular diseases, there is an urgent 
need to develop an effective tool.
With the rapid development of analytical technology and 
bioinformatics and the concept of precision medicine rooted 
deeply in the people’s mind, systems biology which consist 
of genomics, proteomics, transcriptomics and metabolomics 
offers a powerful tool to simulate metabolic reactions in the 
biological system. Metabolomics is a rapidly evolving field 
of biochemical research following genomics, transcriptomics 
and proteomics, was defined as global analysis of the small-
molecule metabolites present within the internal environment 
in an identified and quantified manner[6]. Endogenous 
metabolites as products or substrates in the process of in vivo 
metabolism, are jointly influenced by gene, environment and 
daily diet habits and involved in the organism homeostasis 
that can act as biomarkers to indicate the normal biological 
processes, pathogenic processes or pharmacologic responses 
to a therapeutic intervention[7]. In other words, biomarker is 
conducive to more deeply understand the in vivo abnormal 
mechanism and can be used to evaluate the course of 
disease[8-10]. At present, biomarker has been applied in 
prevention, diagnosis and treatment of cancer and diabetes[11-12].
Over the last years, increasing number of metabolomics 
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analysis in ocular matrix have performed, and gained a pivotal 
role in comprehending and explaining ocular diseases and 
systemic diseases. Nevertheless, it still remains problems 
in research procedure standardization and the clinical 
conversion of the achievement. Herein, this article will provide 
an overview of the pretreatment of ocular matrix and the 
biomarkers related to ocular diseases and systemic diseases, 
with a view to further study and application of ocular matrix. 
Sample Collection and Pretreatment A workflow of 
metabolomics analysis in ocular matrix is shown in Figure 1. Sample 
pretreatment is a chief step of any bioanalytical workflow and 
a good sample preparation is considered as a starting point 
of successful metabolome analysis[13]. Sample preparation 
includes all procedures and operations applied to the sample 
prior to analysis. The existing pretreatment methods for ocular 
matrix fit to different analysis techniques are summarized in 
Table 1. 
Sampling involved collected equipment and materials, which 
depends on samples status. Ocular matrix can be divided into 
two status, which includes solid and liquid. Collection of solid 
samples is usually done by operation while collection of liquid 
samples should be selected based on their location. Schirmer 
band and capillary are the more procedures for collection 
of tears, and anterior chamber puncture is utilized to collect 
aqueous humor (AH), while VH can be taken with 27G needle 
and surgery.
Owing to the presence of enzymes, metabolites have rapid 
turnover, and storage environment influence the composition 
of origin biological samples hugely. For ocular matrix, 
several studies had proved that cryo-preservation as the most 
frequently used method can stabilize metabolite composition 
well. Back in 1998, Sitaramma et al[14] reported that the 
collected tears stored at -80℃ for 1mo with the smallest 
change in metabolites. In 2013, Kryczka et al[15] also stated that 
after storing the obtained cornea at -80℃ for 8d, metabolites 
without significantly change.
An ideal sample pretreatment method should be as far as 
possible to keep the original metabolite composition and 
determined by the character of the target metabolite and 
the platform selected. Separating the analytes from protein 
is the vital procedure for sample pretreatment, generally 
methanol, ethanol, chloroform, water and their mixtures with 
different proportion were used in ocular matrix, take retina for 
example[16-17]. Subsequently, liquid-liquid extraction (LLE) and 
solid phase extraction (SPE)[18] can be employed to extract the 
targeted metabolites. Up to now, SPE has not been reported in 
the studies of endogenous metabolites from ocular matrix but 
applied in exogenous metabolites[19-20].
In detection platform, nuclear magnetic resonance (NMR), 
liquid chromatograph-mass spectrometer (LC-MS) and gas 

chromatograph-mass spectrometer (GC-MS) are the prevalent 
techniques. 
In the early stage, NMR is the major technology for the 
researches of ocular matrix. There are some key advantages 
of NMR such as relative ease sample preparation, high 
reproducibility and inherently nondestructive. Furthermore, 
NMR is particularly suited to characterize highly polar 
compounds such as sugars, organic acids, alcohols, polyols 
and unique classes of metabolites such as protein-bound 
metabolites and ions[21]. For ocular matrix, before analysis, 
the free-protein supernatant was often lyophilized and then 
reconstituted with D2O containing TSP[22] or DSS[23]. In recent 
years, a number of emerging NMR technologies are being 
used to strengthen its utility in metabolomic applications 
such as solid-state NMR (ssNMR) and magic-angle sample 
spinning (MAS-NMR) which can offer broader possibilities 
for detecting intact tissues, organs, and other solid or semisolid 
samples[21]. 
Since the robust, reproducible, selectivity and recently 
increasing number of well-established metabolite libraries 
as well as new types of GC column, GC-MS is an efficient 
and well used analytical platform suited for metabolomics. 
Non-volatile metabolites containing carboxylic acids 
(-COOH), alcohols (-OH), amines (-NH2), and thiols (-SH) that 
can be derivatized, low molecular weight compounds (ca. 50-
600 Da), and volatile metabolites are amenable to separating 
and identifying with GC-MS[24]. Yet present metabolomics 
studies in ocular matrix, GC-MS just applied in AH and retina. 
Before injecting to detect, endogenous metabolites often 
should be derivatized to render them volatile. Derivatized 
will be processed followed with lyophilizing the free-protein 
supernatant, and the mainstay method is methy-lsilylation used 
MSTFA and BSA[25-27].
Not only LC-MS as the complementary to NMR and GC-MS, 
but also has particular features to allow it become a powerful 
metabolomic tool that could be adapted to nearly all kind of 
compounds and provide rich structure information. Ultra-high 
performance liquid chromatography (UHPLC) can annotation 
metabolites within the short spans and possible to analyze a 
completely different set of metabolites by simply changing 
the chromatographic column and mobile phase[28]. For LC-
MS, following with protein precipitation, either direct injection 
analysis using protein-removed supernatant, or resolve after 
lyophilizing in the mobile phase or water[29].
Biomarkers in Ocular Diseases Current metabolomics 
studies involved almost all ocular matrices such as tear, AH, 
VH, cornea, lens and retina. Biomarkers of diseases found in 
metabolomics based on ocular matrix are listed in Table 2.
Tear Tear is extracellular biofluid covers the anterior surface 
of the eyeball, which provide lubrication, protection and 

Metabolomics biomarkers in ocular diseases 
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Figure 1 The workflow in metabolomics analysis based on ocular matrix.
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Table 1 Pretreatment for ocular matrix

Sample Method Pretreatment Ref.
Tear LC-MS Vortex mixing Schirmer’s strips in 9:1 MeOH/H2O; centrifuge and collect supernatant; dry; 

reconstitute
[30]

Tear sample were centrifuged (14000 g, 10min, 4℃) in ice-cold 80% MeOH; supernatants were 
incubated on dry ice; evaporated; reconstitute

[38]

AH LC-MS Vortex-mixing for 1min equal volumes on the AH sample and freeze cold (-20℃) methanol/ethanol 
(1:1) mixture; stored on ice for 10min; centrifuge; collect supernatant and filter for analysis

[55]

One volume AH mix with four volumes 100% ethanol; centrifuge; collect supernatant; lyophilization; 
reconstitute with aqueous solution

[23]

One volume AH mix with five volumes ultrapure water; centrifuge; collect supernatant; analysis [48]
GC-MS One volume AH mix with seven volumes 75% MeOH; vortex; centrifuge; collect supernatant and 

derivatize for analysis
[49]

NMR One volume AH mix with four volumes 100% ethanol; centrifuge; collect supernatant; lyophilization; 
reconstitute with DSS.

[23]

VH LC-MS One volume VH mix with four volumes acetone; store at -20℃ overnight; centrifuge; collect 
supernatant; precipitation extract used 80% methanol and merge supernatant; freeze-drying; 
reconstitute with acetonitrile:methanol:isopropanol (4:4:1); sonic; centrifuge; collect supernatant and 
analysis

[92]

One volume VH mix with four volumes 100% ethanol; centrifuge; collect supernatant; add 1/2 
chloroform and same volume water; centrifuge; lyophilization; reconstitute with water

[23]

NMR One volume VH mix with four volumes 100% ethanol; centrifuge; collect supernatant; add 1/2 
chloroform and same volume water; centrifuge; lyophilization; reconstitute with D2O containing DSS 
and phosphate buffer

[23]

Cornea LC-MS Samples were rinsed in 1×PBS and lysed with ice-cold 80% methanol; incubated on dry ice for 15min 
and homogenized; centrifuged; collect supernatant; analysis

[80]

NMR The proteins in cornea samples were precipitated by EtOH; the lipids were removed from the 
protein-free cornea extracts using the chloroform/EtOH/water mixture; centrifuged; lyophilization; 
reconstitute with D2O containing DSS and phosphate buffer

[67]

Lens LC-MS Lens homogenate with pre-cooled EtOH; centrifuged; collect supernatant; pellet extracted again; 
merge supernatant; dry; reconstitute with water

[72]

Lens homogenate with pre-cooled EtOH; centrifuged; collect supernatant; pellet extracted again; 
merge supernatant; to remove lipids from the extract, H2O and CHCl3 was added to the combined 
supernatant, shaken, then H2O was added; centrifuged; collect supernatant; lyophilized; re-dissolved 
in aqueous solution

[71-72]

NMR Lens homogenate with pre-cooled EtOH; centrifuged; collect supernatant; pellet extracted again; 
merge supernatant; dry; reconstitute

[72]

Lens homogenate with pre-cooled EtOH; centrifuged; collect supernatant; pellet extracted again; 
merge supernatant; to remove lipids from the extract; H2O and CHCl3 was added to the combined 
supernatant, shaken, then H2O was added; centrifuged; collect supernatant; lyophilized; re-dissolved 
in D2O containing DSS and phosphate buffer

[71-72]

Retina LC-MS Retina homogenate with 80% MeOH; incubate on ice; centrifuge; collect supernatant; lyophilized; 
reconstitute with mobile phase (A:B=4:6)

[26]

Add 800 µL of chloroform:methanol (50:50, pre-cooled to -20℃) to retina samples; homogenate; 
400 µL of water was added to the mixture; centrifuge; collect bottom lipophilic layer; lyophilized; 
reconstituted in 200 µL 50:50

[27]

Retina homogenization with 40 µL water; centrifuged; 5 µL of the supernatant were transferred 
for protein quantitation and 140 µL of methanol were added; homogenize; centrifugate; collect 
supernatant and spin-dried for 24h; reconstitute with water

[17]

Add 140 µL extraction buffer [methanol:chloroform:H2O (700:200:50)] to the retina sample; 
homogenize; centrifuge; collect supernatant; spin-dry; suspended in 100 µL of mobile phase (40% of 
A and 60% of B) with vortex for 10s

[16]

GC-MS Retina homogenate with 80% MeOH; incubate on ice; centrifuge; collect supernatant; lyophilized; 
derivatize

[26]

Add 800 µL of chloroform:methanol (50:50, pre-cooled to -20℃) to retina samples; homogenate; 400 µL 
of water was added to the mixture; centrifuge; collect top hydrophilic layer; lyophilized; derivatize

[27]

LC-MS: Liquid chromatograph-mass spectrometer; GC-MS: Gas chromatograph-mass spectrometer; NMR: Nuclear magnetic resonance; AH: 
Aqueous humor; VH: Vitreous humor.

Metabolomics biomarkers in ocular diseases 
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nutrition for the eye and is also the carrier to remove local 
waste, metabolic drugs and inflammatory mediators generated 
in eye diseases. It has been proven that tear contains thousands 
of molecules, including amino acids, amino ketones, amino 
alcohols, aromatic acids, carbohydrates, acylcarnitine, 
nucleotides[30].
Dry eye disease (DED)[31] is a multifactorial disorder of 
the ocular surface with the main feature of imbalance of 
tear film homeostasis and the instability of extra lacrimal 
lipids. A research applied HPLC-MS to correlate DED to 
tear steroid levels[32], the results showed that the content 
of cortisol (CORT), 4-Androstene-3,17-dione (ADIONE), 
17-α-hydroxyprogesterone (17-OHP) in DED patients is 
decreased. Ocular inflammation is the factor responsible 
for DED. Cell-based studies have found that cortisol can 

exert its biological role through several different molecular 
mechanisms, thereby reducing the production of eicosane-
like substances and inhibiting various white blood cell-related 
inflammations[33-34]. In addition, due to cortisol (CORT) is one 
of the products derived from 17-α-hydroxyprogesterone (17-
OHP), the decrease in 17-OHP levels and the CORT levels is 
interconnected. ADIONE is a precursor of synthetic androgen, 
and previous literatures have reported that reduced androgen 
levels may cause structural dysfunction of the glands and 
meibomian glands[35-37]. The research made it possible to study 
steroid profiling directly in tear for diagnose of DED.
Keratoconus (KC) is a non-inflammatory disease companied 
with progressive, asymmetric corneal ectasia. The mechanism 
of KC is complicated and still remain mystery so that the 
discovery of the differences in the metabolic composition of 

Table 2 Biomarkers in ocular matrix

Sample Diseases
Regulation

Up Down
Tear Dry eye disease - Cortisol, 4-Androstene-3,17-dione, 

17-α-hydroxyprogesterone
KC Isocitrate, aconitate, malate, acetyl-phosphate, 

ornithine, aspartate, lactate
GSH

AH Glaucoma Alanine, glutamic, glutamine, H-L-proline, lysine, 
valine, very-low-density lipoproteins

Glucose

Myopia Amino-caprylic, arginine, citrulline, sphingine, 
amino-decanoic, cis-phytol, thymine, oxalic acid, 

glutamine

-

Cataract - Methyl-tetrahydrofolate, taurine, 
nicotinamide, xanthine, uric acid

Retinoblastoma Uric acid -
DR Asparagine, histidine, glutamine, threonine, 

dimethylamine, isoleucine
Lactic acid, succinic acid, 

2-hydroxybutyric acid, ascorbic 
acid, formic acid

VH PDR Arginine, ornithine, proline, citrulline -
RRD Tyrosine, urea ascorbic acid -
DR Lactate, glucose Galactitol, ascorbic acid

RRDCD Succinic acid, lactic acid, phenylpyruvate, L-carnitine Sphingosine, sphingosine, dihydro-
sphingosine, arachidonic acid

Cornea DM Glucosamine, piperonic acid, spermidine, betaine, 
sphingosine, 2-hydrosphingosine, Indole-3-carboxylic 

acid, aminoadipic acid

Pyruvate, glyceraldehyde-3-
phosphate

KC Acetate, citrate GSH
Lens Age-related-cataract Alanine, arginine, asparagine, glutamic acid, 

isoleucine, proline, threonine, carnitine, 
glycerophosphate, AMP, ADP, inositol, GSSG

Choline

Retina Myopia Mannose, glucose Tyrosine, threonine, valine, 
isoleucine, aminobutyric acid

Glaucoma Hypo-taurine, urea, choline phosphate, sorbitol, 
fructose, N-acylethanolamines

-

Hypoxic ischemic encephalopathy CDP-choline -

KC: Keratoconus; DR: Diabetic retinopathy; RRD: Rhegmatogenous retinal detachment; RRDCD: Choroidal detached rhegmatogenous retinal 
detachment; DM: Diabetes mellitus; PDR: Proliferative diabetic retinopathy; GSH: Reduces glutathione; GSSG: Oxidative glutathione; ATP: 
Adenosine triphosphate; ADP: Adenosine diphosphate. -: Not be detected.
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KC is of great significance. Karamichos et al[38] used LC-MS 
to identify biomarker between KC patients and normal people, 
as a result, a total of 296 endogenous polar metabolites were 
detected of which more than 40 were significantly changes 
in KC patients. The metabolites involved in glycolysis 
and gluconeogenesis such as 1,3-glycerophosphate and 
3-phosphoglycerate increased significantly in the tear of KC 
and induced the up-regulated in isocitrate, aconitate, malate, 
and acetyl-phosphate involved in citric acid cycle (TCA). 
What’s more, ornithine and aspartate were accumulated which 
indicated that urea cycle was affected. In terms of oxidative 
stress, the ratio of reduces glutathione (GSH) to oxidative 
glutathione (GSSG) was decreased while the ratio of lactate 
to pyruvate was increased. Previous researches reported that 
the ratio of lactate to pyruvate is positively correlated with 
oxidative stress while the ratio of reduces GSH to GSSG 
is adverse[39]. Notably, the metabolites that associated with 
inflammation was not found, which is in line with the nature 
of the disease. Overall, the results suggested that KC may alter 
the metabolites related to urea cycle, TCA cycle and oxidative 
stress.
Aqueous humor AH is a transparent liquid with a complex 
mixture of electrolytes, organics, growth factors, cytokines and 
proteins[40]. The circulating AH nourishes the cornea and lens 
and removes the metabolic waste from the avascular tissues. 
The major types of metabolite contains lipids, amino acids, 
carnitines, alkaloids, nucleotides, carbohydrates[41], involved 
in variety of metabolic pathways and related to some kinds of 
ophthalmopathy. 
Glaucoma is a chronic irreversible disease and the leading 
cause of blindness in human characterized by increased 
intraocular pressure (IOP), degeneration of retinal ganglion 
cells (RGC) and optic nerve fibers (ONF)[42]. It is manifested 
by progressive changes in retinal sensitivity and visual field 
performance. Mayordomo-Febrer et al[22] analyzed the rat 
AH in glaucoma model established by injection of sodium 
hyaluronate solution used NMR spectra. The results indicated 
the accumulation of alanine, glutamic, glutamine, H-L-
proline, lysine, valine and very-low-density lipoproteins 
(VLDLs) while a significant decreased in glucose on the side 
of sodium hyaluronate injection. Degeneration of RGC is one 
of the major mechanisms for the progression of glaucoma. 
Excessively accumulation of glutamic will lead to the over-
expression of N-methyl-D-aspartate (NMDA) receptor and 
consequently decrease the expression of retinal anti-apoptotic 
factor Bcl-2 which will reduce pro-apoptotic factor Bax and 
enzyme caspase-3 related to RGC apoptosis[43]. Abnormal IOP 
represents the primary risk factor for developing glaucoma 
and ATP is involved in regulating IOP. The reduction of 
glucose may elevate IOP by decreasing the generation of 

ATP and in turn the elevated IOP will lead to less ATP into 
the capillaries[44]. The changes in VLDLs is also linked with 
the pathogenesis of glaucoma. According to the previous 
researches, VLDLs can prompt the expression of fibronectin, 
laminin and collagen type IV which contributes to reduce 
cell adhesion to the basement membrane of the trabecular 
meshwork[45-46]. The identified metabolites in this study could 
enhance our knowledge of glaucoma biomarkers and new 
biotherapy.
Myopia[47] is a public health problem, moreover the severe 
myopia (high degree myopia) has more likely to develop 
into eye disorders overtime. Barbas-Bernardos et al[48] had 
investigated on the AH in myopia by LC-MS suggesting that 
higher abundant metabolites, which include amino-caprylic, 
arginine, citrulline and sphinganine, occurred in highly myopic 
person. Arginine and citrulline are contacted by the citrulline 
cycle that jointly regulated by the concentrations of arginine 
and citrulline. The high concentration of these amino acid will 
compete for the enzyme center to inhibit NO production and 
impaired blood flow, ultimately chronic ischemic injury of 
optic nerve. Surprisingly, the study found that amino-decanoic 
in AH showed a significant difference between high myopia 
and low myopia, but did not appear in the metabolic profile 
of normal human aqueous humor. It suggested that amino-
decanoic acid plays a vital role in the progression of myopia. 
Another study in AH based on GC-MS in 2017 identified four 
metabolites discriminated normal and myopia groups, cis-
phytol, thymine, oxalic acid and glutamine respectively[49]. As 
reported, thymidine[50] is related to the phenotype of the eye, 
and oxalic acid[51] concentration is associated with the content 
of calcium ion. Additionally, altered in glutamine[52] indicated 
that high myopia may cause changes in active oxygen 
concentration. These works provided potential biomarkers for 
the diagnosis of myopia and a new insight into the underlying 
mechanisms of the high myopia formation.
Cataract mainly caused by crosslinking, aggregation and 
deposition of proteins in crystalline bodies, is a leading cause 
to blindness[53]. Epidemiological studies revealed that people 
with diabetes have five times the risk of cataracts than normal 
and the incidence increase with age[54]. A metabolomics 
study of AH in diabetic and non-diabetic cataract patients 
based on LC-MS was conducted[55] and several antioxidants 
(methyl-tetrahydrofolic acid, taurine, niacinamide, xanthine, 
and uric acid) were found decreased in AH of diabetics. It 
has been found in animal models that taurine can prevent 
diabetic cataract caused by tetraoxopyrimidine[56-57]. 
Nicotinamide[58] has been reported as an effective inhibitor of 
protein glycosylation and subsequent advanced glycation end 
products. Xanthine[59] and uric acid are regulated by xanthine 
oxidoreductase, catalyzing the oxidation of hypoxanthine to 

Metabolomics biomarkers in ocular diseases 
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xanthine, xanthine to uric acid, and the reduction of NAD+ or 
molecular oxygen. The differences in antioxidants observed 
indicated that increased oxidative stress may be contributed to 
earlier cataract onset in diabetic patients. 
Retinoblastoma (Rb) is a primary intraocular cancer in 
children with high rate of recurrence, tissue metastasis and 
fatality rate, which is difficult to diagnose[60]. As early as 
1998[61], it was reported that the uric acid in the aqueous humor 
of patients with retinoblastoma was increased. During cell 
replacement, nucleic acids and nucleotides are degraded to 
form xanthine and uric acid. Increased uric acid levels in body 
fluids are associated with many malignancies and also with the 
rapid destruction of malignant tissues after chemotherapy or 
radiotherapy. Uric acid in AH has a potential to be a biomarker 
for retinoblastoma.
Vitreous humor VH is a transparent liquid located at the back 
of the eyeball which the major composition of metabolites are 
amino acids, sugars, alkaloids, sphingosine and others, able to 
separates the lens from the retina[62]. 
Rhegmatogenous retinal detachment (RRD)[63] is a serious 
eye disease. It had been reported the occurrence of the up-
regulated of tyrosine, urea and ascorbic acid in the VH 
of people with RRD. With development of disease, RRD 
can complicated with choroidal detachment which named 
choroidal detached rhegmatogenous retinal detachment 
(RRDCD)[64]. LC-Q-TOF/MS technology was used in research 
by Wu[65] on VH. After multiple data analysis, 24 differential 
metabolites were identified. According to the comparison, in 
RRDCD patients, the expression levels of succinic acid, lactic 
acid, and phenylpyruvate that are directly involved in energy 
metabolism were significantly increased, which indicated that 
the progression of RRDCD has a greater demand for energy 
than RRD. In contrast, the concentration of sphingosine, 
sphingosine, and dihydro-sphingosine were reduced. The most 
common product in sphingolipid metabolism is ceramide, 
which play an important role in cell apoptosis and proliferation. 
Decreasing the concentration of these three compounds may 
lead to cell proliferation. What’s more, arachidonic acid was 
decreased while L-carnitine was increased in the RRDCD group 
suggesting a severe inflammatory response in RRDCD patients.
Cornea  Cornea is the outermost structure of the eye without 
vascular tissue so that the main nutrients are supplied by the 
aqueous humor. Lipids, amino acids, fatty acids, purines are 
the major metabolites of cornea[25].
KC is a non-inflammatory disease and had been confirmed 
that the occurrence of KC is closely related to the process 
of oxidative stress[66]. Snytnikova et al[67] applied 1H-NMR 
and LC-MS to perform a quantitative study which aim at 
comparing the metabolomic compositions of cornea taken 
from KC patients and normal. The results showed that the 

metabolomics of the cornea in KC patients was characterized 
by an increase in acetate and citrate concentrations and a 
decrease in the ratio of GSH to GSSG which are indicated the 
enhanced oxidative stress in KC and it is an important angle 
for the intervention of KC.
Lens  Lens is a transparent tissue that can transmit and 
focus incident light onto the retina to provide clear vision[68]. 
There is no vascular system to scatter light and with a lack 
of nucleus and organelles in the fibrous cells. Based on 
the special structure, the main energy and nutrition of the 
lens comes from the VH. Lens plays an important role in 
maintaining the balance of the intraocular environment[69]. The 
metabolites in lens mainly include amino acids, nucleotides 
and sphingolipids[70].
The main lesion of lens is cataract, which is divided into age-
related cataract and diabetic cataract. Increasing number 
of studies showed that the oxidative stress caused by 
hyperglycemia in diabetic will increase the risk of cataract[71].
Yanshole et al[72] performed a series of metabolomic studies on 
the lens. In 2014, they performed quantitative metabolomics 
study on rat lens for the first time that combined LC-MS 
and NMR. More than 40 low molecular weight compounds 
were found and quantified in the lens. Among them, the 
most abundant metabolites in the three-month-old of rat lens 
are correlated with oxidative stress include taurine, hypo-
taurine, lactic acid, choline phosphate, and GSH. The study 
also performed that with age, alanine and arginine decreased 
by 300% while asparagine, glutamic acid, isoleucine, 
proline, threonine, glycine, carnitine, and glycerol phosphate 
decreased by 100%. What’s more, the experiment reported 
that the statistically significant difference in the OXYS lens 
is higher concentration of tryptophan, tyrosine, carnitine, 
glycerophosphate, GSH and GSSG and lower concentration 
of choline, point out the imbalance of the kynurenine pathway 
and the compensatory response of the OXYS rat lens to 
oxidative stress. Afterwards, two other researches seem to 
be more helpful in understanding the effect of age on the 
cataracts. The results displayed that the most pronounced 
difference is observed for compounds playing a key role in the 
lens cell protection and metabolic activity such as AMP, ADP, 
inositol, creatine, carnitine and UV filters[73-74]. Results from 
above studies consistently elucidated the influence of age on 
the metabolic in lens and provided new intervention idea for 
age-related cataract.
Retina  Retina as a tissue that can receive light stimulation, 
transform light into pulses of neurons and reach the brain 
through visual pathways which plays a vital role in the process 
of forming vision. Metabolites in the retina mainly include 
amino acids, glucose, purine peptides and lipids, which were 
involved in multiple metabolic pathways[75].
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Yang et al[76] applied the form deprivation myopia animal 
model and GC-TOF-MS platform to observe how retinal 
metabolomic changes during the myopia development. 
The results showed that mannose and glucose levels in the 
retina are elevated, which suggested that aerobic glycolysis 
is reduced during the development of myopia. Additionally, 
seven intermediates that involved in lipid metabolism were 
decreased indicated fatty acid biosynthesis inhibition. The 
study also found in amino acid pathway, tyrosine, threonine, 
valine, isoleucine and aminobutyric acid showed a decrease 
trend during the progression of myopia. Such changes provided 
new idea to identify possible drug targets to suppress myopia 
development.
Optic nerve cell damage and axon degenerative changes 
leading to vision degradation are the main mechanisms of 
glaucoma[77-78]. A study[79] analyzed the changes of metabolites 
in retina after optic nerve injury 24h and 14d, which represents 
two stages after injury and finally identified 9, 19, and 32 
regulated metabolites respectively when comparison of 24h 
versus control, 14d versus control samples, and 24h versus 
14d. The metabolites which change significantly in 24h are 
involved in (L)-proline metabolism and phosphatidylcholine 
pathway. After 14d, it found that the content of hypo-taurine, 
urea, choline-phosphate, sorbitol and fructose were significant 
increased. In addition, at 24h and 14d, an inverse regulation 
of N-acylethanolamines (NAEs) was observed. NAEs are 
endogenous lipids that are synthesized and accumulated in 
response to tissue injury and considered as neuroprotectants[80]. 
These metabolites showed a clear difference between the early 
and late stages of degeneration and may have potential to act 
as prognostic factors or therapeutic target molecules during 
retinal or neuronal degeneration.
Ocular Biomarkers Indicating Systemic Diseases Systemic 
diseases such as diabetes mellitus (DM), multiple sclerosis 
(MuS), hypoxic brain damage and Alzheimer’s disease have 
been proven that will induce ocular manifestations. Therefore, 
exploring biomarkers based on the ocular matrix may also be 
important for understanding systemic diseases.
Diabetes mellitus  Sustained hyperglycemia in DM will 
lead to microvascular complications and eye is the major 
organ affected by DM. There are many reports on metabolic 
behaviors of DM complication. 
In diabetic patients, hyperglycemia may change the corneal 
epithelium basement membrane before more serious lesions[81]. 
Glucose metabolism disorder in diabetic patients is observed 
in corneal metabolites. In the glucose metabolism of diabetic 
patients, the highest concentrations of metabolites were 
glucosamine, piperonic acid, spermidine and betaine, but the 
content of glycolysis-related metabolites such as pyruvate and 
glyceraldehyde-3-phosphate were reduced. Lipidomics found 

that the levels of sphingosine and 2-hydrosphingosine were 
significantly increased, which is consistent with the increase in 
ceramide and sphingomyelin reported in previous research[82]. 
Additionally, Indole-3-carboxylic acid as a derivative of 
tryptophan increased significantly in the cornea of patients 
with type 2 diabetes. Reporter speculated the phenomenon is 
linked with oxidative stress induced by high glucose status. 
Due to tryptophan is a vital metabolite that is regulated by 
the kynurenine pathway and is used to produce NAD, which 
is the basic substrate for NADH in the glycolysis and citric 
acid cycle. Another metabolite with significant change is 
aminoadipic acid, which has been detected in the plasma and 
skin of diabetic patients[11,83]. Since aminoadipic acid is derived 
from lysine metabolism that unlike the easily metabolized 
glucose derivative, it is considered as a biomarker in cornea.
Diabetic retinopathy (DR) is the most common microvascular 
complication of DM. This metabolic disorder is a chronic 
inflammatory state that damages both the photoreceptors and 
the blood vessels of the retina[84]. One study conducted with 
1H-NMR compared the AH between people with DR, DM 
and age-related cataract[85]. The results illustrated the lower 
level of lactic acid, succinic acid, and 2-hydroxybutyric acid in 
patients with DR than those in patients with DM alone, while 
higher level of asparagine, histidine, glutamine, threonine 
and dimethylamine. Compared with age-related cataract 
patients, it showed that lactic acid, succinic acid, ascorbic 
acid, and formic acid were reduced in DR, and asparagine 
and isoleucine were increased. Lactic acid and succinic 
acid are the intermediate products of the tricarboxylic acid 
cycle[86]. Hyperglycemia induces mitochondrial dysfunction 
will cause cell division and decreased cellular which explains 
the decrease in lactic acid and succinic acid content in DR 
patients. Additionally, hyperglycemia also induces oxidative 
stress pathways and promotes the consumption of NADPH that 
contribute to the pathogenesis of DR. This process increases 
the levels of NADH and NADH/NAD, reduces the TCA 
cycle of patients with DR, thereby reducing catabolism and 
increasing asparagine, glutamine, histidine and threonine[87-88]. 
In this study, ascorbic acid was reported significantly different 
between DR and senile cataract patients, while DR and DM 
with no differentiate. Another study used VH demonstrated that 
the main metabolic fingerprints of vitreous fluid are the higher 
abundance of lactate and glucose and the significant deficiency 
of galactitol and ascorbic acid[89]. To our knowledge, ascorbic 
acid can inhibit angiogenesis[90], the modulation of ascorbic 
acid may be considered as a therapeutic option in DR.
During the process of DR, proliferative retinopathy is severe 
blinding stages. It has been proven that arginine metabolism 
shows severe disturbances in the VH of both human and 
mice during the early DR phase[91-92]. Based on the LC-MS 
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method, Paris et al[93] generated and validated two separate 
patient sample sets and explored the metabolomic features of 
vitreous samples from the eyes of oxygen-induced-retinopathy 
(OIR) mouse models. Common imbalance in human and 
mice revealed by the research are arginine metabolism and 
urea metabolism. The levels of arginine, ornithine, proline, 
and citrulline in the VH of PDR patients were significantly 
increased. In order to metabolize arginine, there are two ways 
balanced with each other in retina, the first way is the arginase 
pathway that produces ornithine and urea and the production 
of citrulline, and the second way is the nitric oxide synthase 
pathway which produce nitric oxide synthase (NOS). Current 
knowledge suggests that pathological features of the retina 
in diabetic rodent models are caused by excessive activity 
of arginase II[94]. Once arginase pathway is overexpressed, 
the NOS pathway will be inhibited, which can result in the 
accumulation of peroxynitrite, polyamines and prolines 
that may cause cell proliferation and fibrosis. Furthermore, 
overexpression of the arginase pathway not only leads 
to hyperoxia-induced retinal neurodegeneration through 
upregulation of polyamine synthesis, but also induces retinal 
microvascular edema by increasing oxidative stress[92]. 
Multiple sclerosis Multiple sclerosis (MuS) is an autoimmune 
demyelinating disease. Lipids have been reported to play a 
role in autoimmune processes and new evidence suggested 
that lipid metabolism alters the central nervous system (CNS) 
in MuS subjects. Currently, eye is considered as an extension 
of nervous system and tear is considered as a substitution for 
cerebrospinal fluid, which was widely applied in the researches 
of MuS[95-96]. Cicalini et al[97] combined metabolomics and 
lipid-omics to study tears in patients with multiple sclerosis. 
Lipid-omics showed that 30 phospholipids were significantly 
regulated, especially many sphingomyelin, which were 
significantly reduced in MuS patients. This will open a new 
path for the diagnosis and treatment of patients with multiple 
sclerosis. 
Hypoxic ischemic encephalopathy Perinatal asphyxia is a 
worldwide problem and the subsequent hypoxic ischemic 
encephalopathy is a leading cause of neurodevelopmental 
disorders and death in infants. In view of the special 
vasculature lead to an extraordinarily high oxygen demand of 
retina and retina is considered as an oxygen sensitive tissue[98], 
hypoxia will induce adaptive responses in the retina[99]. Solberg 
et al[100] carried out an experiment to investigate the effects of 
hypoxia on retinal metabolism in newborn piglets after birth and 
highlights CDP-choline as a candidate biomarker for hypoxic-
induced brain damage. CDP-choline is a restricted intermediate 
compound in the main pathway of phosphatidylcholine 
biosynthesis. It had been reported that under normal oxygen 
conditions, due to the interaction of CDP-choline and 

diacylglycerol, phosphatidylcholine and monoglycerides are 
produced; under hypoxic conditions, the normal reaction is 
reversed due to the increase of monoglycerides[101]. Results 
from this study could improve the prognosis and therapeutic 
strategies in hypoxic ischemic encephalopathy caused by 
perinatal asphyxia.
CONCLUSION
Ocular diseases may be caused by multi-factor and still 
remain huge problems for diagnose and treatment worldwide. 
With the continuous development of precision medicine and 
technology, metabolomics has been widely used in the study 
of ocular matrix. With literature reviewed, we discovered 
that metabolites associated with oxidative stress, energy 
and inflammation may represent a new hope for diagnosis 
in ocular diseases and systemic diseases. However, there 
are some challenges remain to be addressed in such studies. 
Firstly, compared with the common samples such as plasm, 
urea, feces and other tissues, trace metabolites in ocular matrix 
is the inherent limitation for pretreatment, detection and 
analysis. Therefore, continuous researches should be done to 
develop a standard research protocol. Secondly, in terms of 
metabolites level, the association and mutual metastasis of 
ocular diseases and other systemic diseases will be an arduous 
but deserved challenge. Finally, the majority of current data 
comes from animal experiment and the cohort of individuals, 
in order to transform the biomarkers from laboratory to clinic, 
it is necessary to plan future studies in the condition of large 
sample, multicenter, blindness and randomization. 
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