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Abstract 
● AIM: To predict final visual acuity and analyze significant 
factors influencing open globe injury prognosis.
● METHODS: Prediction models were built using a supervised 
classification algorithm from Microsoft Azure Machine 
Learning Studio. The best algorithm was selected to analyze 
the predicted final visual acuity. We retrospectively reviewed 
the data of 171 patients with open globe injury who visited 
the Pusan National University Hospital between January 
2010 and July 2020. We then applied cross-validation, 
the permutation feature importance method, and the 
synthetic minority over-sampling technique to enhance tool 
performance. 
● RESULTS: The two-class boosted decision tree model 
showed the best predictive performance. The accuracy, 
precision, recall, F1 score, and area under the receiver 
operating characteristic curve were 0.925, 0.962, 0.833, 
0.893, and 0.971, respectively. To increase the efficiency 
and efficacy of the prognostic tool, the top 14 features were 
finally selected using the permutation feature importance 
method: (listed in the order of importance) retinal 
detachment, location of laceration, initial visual acuity, iris 
damage, surgeon, past history, size of the scleral laceration, 
vitreous hemorrhage, trauma characteristics, age, 
corneal injury, primary diagnosis, wound location, and lid 
laceration.
● CONCLUSION: Here we devise a highly accurate model 
to predict the final visual acuity of patients with open globe 

injury. This tool is useful and easily accessible to doctors 
and patients, reducing the socioeconomic burden. With 
further multicenter verification using larger datasets and 
external validation, we expect this model to become useful 
worldwide.
● KEYWORDS: machine learning; ocular trauma; open 
globe injury; predictive model; vision preservation
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INTRODUCTION

H ere we developed predictive models for vision acuity 
using a machine learning algorithm for patients with 

ocular trauma, particularly open globe injury (OGI). OGI is a 
major cause of permanent visual impairment and blindness, 
regardless of the regional, social, and historical characteristics 
of trauma[1]. Vision preservation is the foremost goal of surgery 
for OGI. According to several studies, factors affecting the 
final visual acuity (VA) of patients with ocular trauma include 
patient age, presence/absence of relative afferent pupillary 
defects (RAPDs), mechanism of trauma, initial VA, length and 
location of the wound, hyphema, presence of an intraocular 
foreign body (IOFB), retinal detachment, vitreous hemorrhage, 
lens damage, and the Ocular Trauma Score (OTS)[2-7].
Prediction of the final VA of patients with OGI is essential 
for patient management, the decision-making related to 
treatment, determination of the quality of life, and reduction 
of the socioeconomic burden. Therefore, an objective visual 
prognosis prediction system is required. Several trials and 
studies have been aimed at predicting the final VA of patients 
with OGI, albeit with some limitations. Kuhn et al[5] developed 
the prognostic model OTS to predict the visual outcome of 
patients after ocular trauma. In 2004, the Birmingham Eye 
Trauma Terminology System (BETTS)[8] was applied to 
classify severe bulbar trauma. More recently, Schmidt et al[9] 
proposed a prognostic model, the classification and regression 
tree (CART), to predict visual outcomes in patients after OGI. 



1942

Among these, OTS is a widely established evaluation 
method[10]. The OTS is a scoring system that predicts the 
prognosis by summing the scores of six factors that possibly 
affect the prognosis of the final VA: initial VA, endophthalmitis, 
penetrating injury, retinal detachment, global rupture, and 
RAPDs[5]. There are several limitations to the OTS: it has been 
20y since it was first developed; the trauma patterns in each 
country are different; some factors are difficult to describe at an 
early stage of trauma, such as endophthalmitis or RAPDs; and 
it does not account for the influence of any factor not included 
in the score system. A Korean study reported that the positive 
predictive value of OTS in OGI was as low as 75.3%[1]. Unver 
et al[10] reported that OTS is slightly old for application in the 
current medical system. 
Many factors influence the prediction of the final VA, and it 
is practically difficult to combine and interpret them through 
conventional statistical methods. Therefore, we applied the 
machine learning (ML) algorithm to predict the final VA more 
accurately; a novel use of ML in the field of trauma.
ML, a subset of artificial intelligence, involves learning 
associations of predictive power from example data by 
computer programs, which then help with the decision-making 
process. ML relies on a broader set of statistical techniques 
than those typically used in medicine. Depending on the 
incorporation of outcomes, ML algorithms can be divided into 
two or three major categories: unsupervised, supervised, and 
reinforcement learning. We applied supervised learning under 
which computer programs learn associations between input and 
output data through analyses of outputs of interest defined by a 
supervisor (typically a human). Once the analysis is performed, 
the results can be used to predict the outcome in other 
examples. The supervised learning algorithm is used to create 
a model that can make predictions based on new input values 
along with known outcomes[11]. It is suitable for utilization 
with big and complicated medical data[12-14]. Programming 
languages are difficult for general medical practitioners to 
learn; however, the recent availability of various easy-to-use 
computing platforms for ML, such as a graphic user interface, 
has enabled the use of artificial intelligence, particularly ML, 
in the field of trauma and other medical fields[15]. 
We applied the ML algorithm to predict the final VA and 
analyzed significant factors affecting OGI using a machine 
learning graphic user interface platform, Microsoft Azure 
Machine Learning Studio (MAMLS; Microsoft Corporation, 
USA), an open-source data visualization, ML, and a data-
mining toolkit[15]. A web-based prediction tool for public use 
in daily practice was also devised. This study is the first to 
apply artificial intelligence, particularly ML, in trauma. Based 
on this study, further research can be conducted to formulate 
an evaluation tool for patients with other types of trauma and 

disease in addition to patients with ocular trauma. This study 
could also serve as a leading model for research in various 
medical fields.
SUBJECTS AND METHODS
Ethical Approval  This retrospective study was conducted 
in accordance with the tenets of the Declaration of Helsinki 
and approved by the Institutional Review Board of the Pusan 
National University Hospital (approval No: 2011-006-096). 
Informed consent for publication was obtained from respective 
institution, Pusan National University Hospital, and we had an 
approval of the research protocol from the Institutional Review 
Board. While the retrospective study, the data were kept 
anonymously.
Clinical Dataset  We performed a retrospective chart review 
of 190 patients with OGI who had undergone surgery from 
January 2010 to July 2020 at the Pusan National University 
Hospital in Busan. All patients with OGI were referred 
to the Ophthalmology Department and provided with 
specialized eye care services by ophthalmology residents 
and underwent surgery performed by staff ophthalmologists. 
A staff ophthalmologist thoroughly reviewed the electronic 
medical records. Nineteen cases were excluded from the 
analysis because of incomplete electronic medical data, and 
171 cases were finally included in the study. Data preparation 
and analysis with ML were performed by another staff 
ophthalmologist. 
Input Variables and an Output Variable  We used the 
following 36 input variables (features) as prognostic factors: 
age, past history, history of glaucoma or vitreoretinal operation, 
direction of the damaged eye, primary diagnosis (1: rupture; 
2: laceration; 3: IOFB), lens status (1: phakic; 2: pseudo-
phakic; 3: aphakic), location of wound (1: anterior sclera; 2: 
posterior sclera; 3: both; 4: no scleral damage), location of 
laceration (1: zone 1, from the cornea to the limbus; 2: zone 
2, from the limbus to a length of 5 mm; 3: zone 3, 5-mm 
pole; 4: zone 1+zone 2; 5: zone 1+zone 3; 6: zone 2+zone 3; 
7: zone 1+zone 2+zone 3), presence of double perforation, 
location of corneal injury (1: visual axis; 2: periphery; 3: no 
damage; 4: 1+2), IOFB, limbus involvement, conjunctival 
laceration, laceration size in the sclera (1: 0-90°; 2: 90°-180°; 
3: >180°; 4: no scleral laceration), vitreous hemorrhage, retinal 
detachment, iris damage, hyphema, lens damage, trauma 
characteristics (1: blunt; 2: dirty, compound, stellate; 3: clear, 
simple, linear), trauma location (1: outside; 2: inside), time 
from trauma to hospitalization in hours, time from emergency 
room admission to operation, time from trauma to operation in 
hours, operation time in hours, operator (1: fellow; 2: 2nd year 
fellow; 3: professor), OTS, lid laceration, initial VA, and final 
VA (success or failure). We selected these prognostic factors 
based on previous reports on the prediction of VA in OGI and 
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factors associated with the prognosis of patients with ocular 
trauma[4-6,10,16-17]. 
To develop a web-based prognostic tool, we focused on the 
most correlated variables according to the significance that 
influenced the results, and 14 independent variables (input 
variables or features) were finally included. The final VA was 
defined as the output variable: VA<0.1 was defined as a failure 
and VA≥0.1 was defined as success.
Machine Learning  We built a supervised ML classification 
model with the following steps: 1) select columns in the 
dataset; 2) clean any missing data; 3) edit the metadata; 
4) convert to indicator values; 5) synthetic minority over-
sampling technique (SMOTE); 6) normalize data; 7) split 
data; 8) train the model; 9) score the model; and 10) evaluate 
the model. The SMOTE increases the number of under-
presented cases in a dataset. It generates new examples that 
combine features of the target case with those of its neighbors 
and overcome bias[18]. The SMOTE percentage was set as 
150. We also applied a filter-based feature selection to identify 
the input dataset columns with predictive power[19]. Cross-
validation was used to prevent overfitting the dataset and 
check the sensitivity of the model and its susceptibility to 
variations in data. Finally, to build the best predictive model, 
the permutation feature importance module was applied in the 
best-scored model, and the importance of each input variable 
was evaluated[20-21]. 
Algorithms for the Prediction of Final Visual Acuity  Azure 
Machine Learning (Azure ML; Microsoft, Redmond, WA, 
USA) is a cloud-based computing platform that enables the 
execution of ML processes; MAMLS (Microsoft, Redmond, 
WA, USA) is also available as a workspace to help users build 
and test predictive models. The core concepts of Azure ML 
are creating ML experiments quickly, evaluating them for 

accuracy, and then “fail fast” to shorten the cycles to produce a 
usable prediction model. 
The main aim of this study was to predict the final VA and 
identify whether the final VA is success or not. This can 
be achieved by classification methods involving two-class 
(binary) classification algorithms, that comprise the supervised 
learning category. 
Every two-class classification algorithm operates in a different 
analytic way. We determined the evaluation and comparison 
of the statistical measures and results of each algorithm. The 
following classification models were compared: averaged 
perceptron, boosted decision tree (BDT), Bayes point machine, 
decision forest, decision jungle, locally deep support vector 
machine, Logistic regression, neural network, and support 
vector machine. We used 70% of the dataset for training the 
model and 30% of the dataset for testing the chosen model. 
Cross-validation was performed to assess the variability and 
reliability of each model. Cross-validation is a training-and-model 
evaluation technique that splits the data into several partitions, 
defaults to 10 folds, and trains multiple algorithms on these 
partitions. It is useful in data-constrained environments and 
can train models with a smaller dataset (Figure 1).
Significance of Input Variables (Features)  To identify 
irrelevant attributes and filter out redundant features from 
our model, we used the filter-based feature selection module, 
which calculates a score for each feature and ranks all 
features accordingly. With this method, we analyzed the most 
significant input variables associated with the final VA and 
chose more relevant features to improve the accuracy and 
efficiency of the classification. For feature scoring, we used the 
following established statistical methods: Pearson correlation, 
mutual information, Kendall correlation, Spearman’s 
correlation, Chi-squared test, and Fisher score. 

Figure 1 Flowchart of the two-class algorithm by applying the cross-validated model with Azure built-in modules  The overall structure of 
the comparison experiment involving the cross-validation of each algorithm is shown. 
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To develop a more accurate and efficient model, we used the 
permutation feature importance module to compute feature 
importance scores from the final predictive model and test 
data. The permutation feature importance module provides 
an ordered list of feature variables and their corresponding 
importance scores. We evaluated the first gap in scores and 
then built another final model using the top variables above the 
first gap. Using the same method, we built another model by 
finding the next gap with a larger subset of features and then 
compared them. 
With these two key processes, we eventually devised a final 
prediction model and deployed the web model that could be 
accessed for free by every ophthalmologist and doctor in the 
emergency room. We named it the “Post Ocular Trauma Scale” 
(POTS). 
Implementation of the Machine Learning Algorithm in 
the Web Application  MAMLS provides a quick and easy 
way to test a new web service with a developed algorithm 
interactively. After developing the most accurate predictive 
model using an ML studio, the predictive model was accessed 
and set up as a web service directly from MAMLS. The 
prognostic tool for the final VA of patients with OGI can be 
accessed on the Microsoft Azure cloud service. 
RESULTS
Patient Characteristics  Table 1 shows the characteristics 
and demographics of patients. A total of 171 patients with OGI 
were analyzed, including 158 (92.4%) men and 13 (7.6%) 
women, with a mean age of 47.7±16.2y. The diagnoses were 
eyeball rupture, eyeball laceration, and IOFB, according to 
the BETTS in 45, 116, and 10 patients, respectively[8]. Most 
patients (95%) had phakic eyes. As for wound location, anterior 
and posterior scleral wounds were found in 58 (34%) and 2 
(1.2%) patients, respectively. More than 50% of patients had 
no scleral damage. Of 171 patients, the injuries were limited to 
zones 1, 2, and 3 in 88 (51%), 17 (9.9%), and 2 (1.2%) patients, 
respectively. There were 34 (20%), 49 (29%), 61 (36%), and 
28 (16%) injuries with visual axis of the cornea involvement, 
peripheral involvement,  combined, and no corneal 
involvement, respectively. Scleral laceration was within 0°-90°, 
within 90°-180°, and above 180° in 44 (26%), 28 (16%), and 8 
(4.7%) patients, respectively. Vitreous hemorrhage and retinal 
detachment were seen in 52 (30%) patients, and iris damage, 
hyphema, and lens damage were found in 129, 83, and 130 
patients, respectively. Blunt trauma, dirty, compound, stellate 
pattern laceration, and clean and linear laceration were found in 
68 (40%), 60 (35%), and 43 (25%) patients, respectively. Trauma 
was occurred during outside activities in 139 (81%) patients. 
Table 1 describes the time from trauma to hospitalization and 
operation and operating time. An ophthalmology fellow and a 
professor of ophthalmology performed 92 (54%) and 57 (33%) 

Table 1 Characteristics of patients with open globe injuries   n (%)

Parameters Total (n=171)
Age (y)

Range 4-84
Mean±SD 47.7±16.2

Sex (n)
Male 158 (92.4)
Female 13 (7.6)

Past history (DM, HTN, or cardiovascular diseases)
Yes 46 (27)
No 125 (73)

Eye (right/left) 85 (50)/86 (50)
Glaucoma operation (yes/no) 2 (1.2)/169 (98.8)
Vitreoretinal operation (yes/no) 3 (1.8)/168 (98.2)
Main diagnosis

Rupture 45 (26)
Laceration 116 (68)
IOFB 10 (5.8)

Lens status
Phakic 162 (95)
Pseudo-phakic 6 (3.5)
Aphakic 3 (1.8)

Location of wound
Anterior sclera 58 (34)
Posterior sclera 2 (1.2)
Anterior and posterior sclera 22 (13)
No scleral wound 89 (52)

Location of laceration
Zone 1 (cornea to limbus) 88 (51)
Zone 2 (limbus to posterior 5 mm) 17 (9.9)
Zone 3 (5 mm to posterior pole) 2 (1.2)
Zone 1+2 40 (23)
Zone 1+3 0
Zone 2+3 14 (8.2)
Zone 1+2+3 10 (5.8)

Double perforation (yes/no) 1 (0.58)/170 (99.42)
Vitreous prolapse (yes/no) 54 (32)/117 (68)
IOFB (yes/no) 34 (20)/137 (80)
Limbus involvement (yes/no) 66 (39)/105 (61)
Cornea involvement

Visual axis 34 (20)
Periphery 49 (29)
No 28 (16)
Visual axis+periphery 61 (36)

Conjunctival laceration (yes/no) 83 (49)/88 (51)
Size of scleral laceration

0-90° 44 (26)
90°-180° 28 (16)
Over 180° 8 (4.7)
No scleral laceration 91 (53)

Vitreous hemorrhage  (yes/no) 52 (30)/119 (70)

Post ocular trauma scale



1945

Int J Ophthalmol,    Vol. 14,    No. 12,  Dec.18,  2021       www.ijo.cn
Tel: 8629-82245172     8629-82210956      Email: ijopress@163.com

of the operations, respectively. The mean OTS was 51.8±23.4, 
and initial VA was 0.13±0.25. After surgery, the final VA had 
increased to 0.35±0.38. The final VA showed success and 
failure in 62% and 38% of patients, respectively. 
Feature Importance Analysis  Features have been tested 
with the filter-based feature selection module using the 
following criteria: Pearson correlation, mutual information, 
Kendall correlation, Spearman’s correlation, Chi-squared test, 

and Fisher score. Table 2 presents the scoring dataset that 
correlated with the prediction of the final VA. Based on the 
feature selection analysis, the dataset was evaluated by each 
multiple feature selection algorithm. It presented the five most 
correlated columns in this dataset with the most significant 
predictive power. 
With this method, the OTS, initial VA, retinal detachment, 
operating time, main diagnosis, and vitreous prolapse 
were correlated with the final VA. OTS had the greatest 
overall predictive power, followed by the initial VA, retinal 
detachment, and operating time. Vitreous prolapse showed 
some correlation when analyzed with three algorithms, and the 
main diagnosis had some predictive power. 
Comparison of Performance Among the Nine Classification 
Algorithms  Various classification algorithms in MAMLS 
are used to categorize data to predict one or more discrete 
variables based on the features in the dataset. We applied nine 
two-class classification models to create a binary classifier 
as failure or success for the final VA. Each algorithm could 
be interpreted differently, but for comparison purposes, 
accuracy, precision, recall, F1 score (the weighted average of 
precision and recall), and area under the receiver operating 
characteristic curve (AUC) were focused on (Table 3). The 
cross-validation module was accepted on each algorithm and 
analyzed by partitioning the data into 10 folds. In general, 
all nine methods performed well in predicting the final VA 
of patients with OGI. Among these models, BDT, decision 
forest, and two-class neural network (TCNN) suited better than 
other algorithms. BDT showed the highest values in accuracy, 
precision, F1 score, and AUC but not in the recall. The highest 
recall was found for TCNN, followed by BDT. Figure 2 
shows the receiving operating characteristic curves of the 
two aforementioned models. Finally, the BDT algorithm was 
chosen as the prediction algorithm in our prediction system.
Post Ocular Trauma Scale and Final Features: Applying 
the Permutation Feature Importance Method  The trained 
dataset comprised many features that influenced the results. We 
evaluated their effects on the selected algorithm by applying 
the permutation feature importance method. To increase the 
overall prediction performance and the efficiency and efficacy 
of the prognostic tool, only the top 14 features (listed in the 
order of importance: retinal detachment, location of laceration, 
initial VA, iris damage, operator, past history, size of the scleral 
laceration, vitreous hemorrhage, trauma characteristics, age, 
corneal injury, primary diagnosis, wound location, and lid 
laceration) and sex were selected through this process. We 
devised the final model with these top 14 features to analyze 
the final VA in the BDT algorithm model. Figure 3 shows 
the results of the final model, which has been deployed on 
the website such that it is freely accessible to everyone. The 

Table 1 Characteristics of patients with open globe injuries (continued)
                                                                                                         n (%)

Parameters Total (n=171)
Retinal detachment (yes/no) 52 (30)/119 (70)
Iris damage (yes/no) 129 (75)/42 (25)
Hyphema (yes/no) 83 (49)/88 (51)
Lens damage (yes/no) 130 (76)/41 (24)
Trauma characteristics

Blunt 68 (40)
Dirty, compound, stellate laceration 60 (35)
Clean, simple, linear laceration 43 (25)

Trauma location (outside/inside) 139 (81)/32 (19)
Time from trauma to hospitalization (h)

Range 1-168
Mean±SD 8.9±17.8

Time from ER admission to operation (h)
Range 2-45
Mean±SD 6.9±4.9

Time from trauma to operation (h)
Range 4-181
Mean±SD 15.8±18.4

Operating time (h)
Range 1-7
Mean±SD 2.6±1.3

Primary closure
Fellow 92 (54)
2nd year fellow 22 (13)
Professor 57 (33)

Lid laceration (yes/no) 19 (11)/152 (89)
OTS (mean±SD) 51.8±23.4
Initial VA range NLP-1.0

Mean±SD 0.13±0.25
Final VA

Range NLP-1.0
Mean±SD 0.35±0.38

Final VA
Success (≥0.1) 106 (62)
Failure (<0.1) 65 (38)

SD: Standard deviation; DM: Diabetes mellitus; HTN: Hypertension; 
IOFB: Intraocular foreign body; ER: Emergency room; OTS: Ocular 
Trauma Score; VA: Visual acuity; NLP: No light perception. All data 
were analyzed using Microsoft Azure Machine Learning Studio. 
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accuracy, precision, recall, F1 score, and AUC were 0.925, 
0.962, 0.833, 0.893, and 0.971, respectively. The positive 
predictive value was 83.3%, and the negative predictive value 
was 98% with the tested dataset. The link for the machine-
learning model in web gallery is as follows: https://gallery.

azure.ai/Experiment/Prognostic-tool-to-predict-visual-acuity-
on-Open-Globe-Injury-Patients-Final-VA-version-Capture. 
DISCUSSION
The principal goal of this study was to confirm the feasibility 
of applying the ML algorithm in predicting the final VA of 

Figure 2 Comparison of the receiver operating characteristic curves of the best two-trained model  A: The boosted decision tree model; B: 
The two-class neural network model. The AUC of the boosted decision tree and two-class neural network models are 0.971 and 0.898, respectively.

Table 2 Scored features according to various criteria

Criteria Scored features

Chi-squared
Final VA OTS Initial VA RD Operating time Main diagnosis

1 73.752 66.089 52.878 45.089 41.865
Fisher Score Final VA OTS RD Operating time Vitreous prolapse Main diagnosis

1 0.609 0.447 0.316 0.297 0.286
Kendall correlation Final VA RD OTS Initial VA Vitreous prolapse Main diagnosis

1 0.556 0.522 0.513 0.478 0.471
Mutual information Final VA OTS Initial VA RD Operating time Main diagnosis

1 0.192 0.175 0.150 0.122 0.113
Pearson correlation Final VA OTS RD Operating time Vitreous prolapse Main diagnosis

1 0.615 0.556 0.541 0.497 0.471
Spearman correlation Final VA OTS Initial VA RD Operating time Main diagnosis

1 0.614 0.54 0.556 0.499 0.482

VA: Visual acuity; OTS: Ocular Trauma Score; RD: Retinal detachment.

Table 3 Comparison among classification algorithms 

Model Accuracy Precision Recall F-Score AUC
Support vector machine 0.831 0.856 0.915 0.884 0.867
Averaged perceptron 0.850 0.881 0.910 0.894 0.891
Boosted decision treea 0.899 0.916 0.944 0.929 0.971
Bayes point machine 0.855 0.878 0.930 0.902 0.902
Decision forest 0.885 0.914 0.925 0.919 0.947
Decision jungle 0.880 0.912 0.922 0.916 0.936
Locally deep support Vector machine 0.852 0.867 0.937 0.899 0.887
Logistic regression 0.841 0.865 0.922 0.892 0.893
Neural networkb 0.844 0.848 0.948 0.895 0.898

The performances of different predictive models are presented with a focus on accuracy, precision, recall, F-score, and area under the receiver 
operating characteristic curve. The best three models are the boosted decision tree, decision forest, and decision jungle models. The neural 
network model shows the highest recall of 0.948. aDecision tree with a boosting method. Boosting is one of several classic technique for creating 
ensemble models; bArtificial neural networks are subset of machine learning, and they mimicking the way of biological neurons signal to one 
another.
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patients with ocular trauma. We devised and proposed the web-
based prediction system POTS utilizing ML. The proposed 
approach sends entered patient information through the web 
to the server, analyzes the information through ML on the 
server, and provides the final VA via the web. Thus, the final 
VA can be obtained easily and quickly anywhere, and the 
system has the substantial advantages of intuitiveness and easy 
accessibility. In addition, doctors can be changing the final VA 
by changing modifiable features such as operator. For features 
affecting the final VA that cannot be changed, such as laceration 
size and location, we provide intensive treatment according to 
influencing factor such as scleral laceration. In other words, we 
can provide intensive targeted treatment to patients with OGI. 
Further, the process of entering and learning data is nearly the 
same, simplifying the expansion into the web-based prediction 
system for various diseases and fields. We are also preparing to 
publish a follow-up study on predicting the maintenance of the 
eyeball structure through ML. 
As previously mentioned, the advantage of this system is the 
wide accessibility on the web, with the ability to immediately 
describe the information and store the data on the 14 features 
above. More data increase the accuracy and performance 
of ML[15], and accordingly, if additional data are collected 
and delivered to the server, the performance of POTS will 
converge to AUC 1.000 with a 100% accuracy. The existing 
conventional trauma evaluation tools, such as OTS, CART, and 
BETTS, only score or classify patients and provide a rough 
prediction. In contrast, the POTS is a system with the potential 
to heighten in performance as more patients are evaluated, and 
continuous feedback from doctors is received. 

MAMLS provides seven feature selection metrics for assessing 
the information value in each column. We applied five 
feature selection metrics that are appropriate to our target 
variable of failure or success: Pearson correlation, mutual 
information, Kendall correlation, Spearman’s correlation, 
chi-squared test, and Fisher score. Filter methods assess the 
relevance of features as scores based on the properties of 
data, separately from the ML algorithm. The filter uses the 
general characteristics of data itself, and each filter uses the 
statistical correlation between a set of features and the target 
feature, which is the final VA[17]. Based on our study, some 
features can be proposed as factors associated with the final 
VA. The OTS, initial VA, retinal detachment, operating time, 
primary diagnosis (rupture, laceration, or IOFB), and vitreous 
prolapse were suggested as associated factors by filter-based 
feature selection methods. A comparison with factors selected 
using classical statistical methods would be meaningful. 
Previous reports have revealed age, initial VA, mechanism 
of injury, location and size of the wound, RAPDs, adnexal 
trauma, vitreous prolapse, and ocular tissue damage as factors 
associated with the final VA[4-6,8-10,17]. Considering that retinal 
detachment is involved in the OTS, only operating time is a 
newly proposed factor that was found to be correlated with 
the final VA of patients with OGI. However, in ML, features 
proposed by the filter-based feature selection method should 
not be considered as high-quality data strongly associated with 
prediction of the target variable (final VA) using the learning 
algorithm because the filter method works separately from the 
algorithm and does not depend on classifiers[22]. 
The algorithm with the best performance, which was verified 
through the cross-validation technique, was two-class BDT. 
The algorithm showed the following average values: 0.899, 
accuracy; 0.916, precision; 0.944, recall; 0.929, F-score; 
and 0.971, AUC. Cross-validation is a popular strategy for 
selecting algorithms and is often used to assess both the 
variability of a dataset and the reliability of any model trained 
using data. It avoids overfitting of data by splitting data, once 
or several times, for estimating the risk of each algorithm[15]. 
In MAMLS, the cross-validated model module can be used to 
perform cross-validation. It randomly divides the training data 
into several partitions and defaults to 10 folds, which we used. 
The advantages of a CV are that it uses more test data and 
evaluates the dataset and the model. Before we perform a CV, 
we normalize the dataset to optimize practice[21]. 
The BDT is an ensemble learning method in which the second 
tree corrects the errors of the first tree, followed by the third 
tree correcting the errors of the first and second trees, and 
so on[23]. It is generally an easy method for achieving good 
performance for ML tasks, but if the dataset is too large 
to handle, the BDT might not be able to process the data 

Figure 3 Overall performance of the boosted decision tree model  
The boosted decision tree model showed the best performance 
with the following values: 0.925, accuracy; 0.962, precision; 0.833, 
recall; 0.893, F1 score; and 0.971, area under the receiver operating 
characteristic curve. The positive predictive value is 83.3%, and the 
negative predictive value is 98% in the tested dataset.
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appropriately[23-24]. In addition, the purpose of this study was 
to set up a web-based prognostic tool, which has to be easily 
accessible as well as intuitive and simple; thus, we had to 
focus on reducing the number of evaluation factors and on 
simultaneously increasing accuracy. Therefore, we applied the 
method of permutation feature importance, which computes 
importance scores for each feature variable of a dataset. An 
importance score quantifies the contribution of a certain feature 
to the performance of a model[25]. After using the permutation 
feature importance method, the selected features were as 
follows: retinal detachment, location of laceration, initial VA, 
iris damage, surgeon, history, size of the scleral laceration, 
vitreous hemorrhage, trauma characteristics, age, corneal 
injury, primary diagnosis, wound location, and lid laceration. 
On a closer look, these are slightly different from the features 
proposed through the filter-based feature selection method. 
The newly proposed features with importance for predicting 
the study outcome were iris damage, surgeon, positive history, 
size of the scleral laceration, vitreous hemorrhage, trauma 
characteristics, location of corneal injury, and wound location. 
Due to the nature of ML, although the classifier built by 
MAMLS was successful in making predictions, we did not 
interpret or fully understand how these algorithms actually 
work. This problem is in relation to intelligibility, explicability, 
transparency, or interpretability[26]. However, we could extract 
information about what features are important as well as how 
features interact to create powerful information by ML. Using 
MAMLS, we eventually developed easy and immediate results 
with the web-based prognostic tool POTS. A limitation is that 
our tool was trained with a limited number of cases from a 
single tertiary hospital, therefore, it is not infallible (positive 
prediction value, 83.3%; overfitting issue). To further develop 
the web-based prognostic tool POTS, a multicenter setting 
should be adopted to enlarge the dataset and improve tool 
performance. Accordingly, feedback from multicenter users 
of this tool would help improve the model, and we hope that 
this tool would be re-trained with sufficient data for obtaining 
better predictions. 
In conclusion, the use of ML, a subset of artificial intelligence, 
is useful for efficiently predicting the final VA of patients with 
OGI. Pertinent feature selection techniques were applied in 
our web-based tool, which proposed important features related 
to the final VA as well as to the prediction of the final VA. We 
hope that this web-based tool will minimize the socioeconomic 
burden and enhance decision-making in the treatment of 
patients with OGI. We aim to improve the applicability of this 
tool, applying the ML technique for patients with various diseases.
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