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Scleral remodeling in myopia development
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Abstract
● With the increasing prevalence in recent years, myopia 
has become an essential global health concern. In most 
instances, an increased axial length of the eye is the 
structural cause of nearsightedness. The scleral remodeling, 
primarily dependent on the scleral extracellular matrix 
(ECM) changes, is significantly linked to eye lengthening. 
Scleral remodeling plays a critical function in the incidence 
and progression of myopia. This mini-review will focus on 
recent research progress of scleral remodeling in the hope 
of providing new ideas for the prophylaxis and treatment of 
myopia. 
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INTRODUCTION

M yopia is one of the most prevalent ophthalmic illness 
in the world[1]. It can not only cause vision loss, 

but also lead to severe complications and even blindness[2]. 
Based on evidence from epidemiology, the prevalence of 
myopia is increasing with each passing year, especially in 
Asian populations[3]. According to the prediction, in 2050, 
there will be 938 million people with high myopia (9.8% of 
the worldwide population) in the world[1]. Myopia has been 
considered to be a significant public health problem now. 
Due to the excessive cornea or lens curvature and eye 
lengthening, images are focused in front of the retina in 
patients with myopia[4]. Although there are some measures 

to control the development of myopia, such as rigid gas 
permeable (RGP), atropine, outdoor activities and so on, the 
pathogenesis and cure of myopia remains ambiguous[5]. In 
recent years, research has focused on scleral remodeling in 
myopia development. It is considered that scleral remodeling 
plays an essential role in the incidence and progression of 
myopia. This mini-review will describe the research progress 
of the scleral remodeling so far.
ROLE OF SCLERAL REMODELING IN MYOPIA
An excessive increase in axial length is the significant 
structural change in myopia[6]. The sclera, especially at the 
posterior pole, is thinning in this process[7]. According to the 
mammalian models of high myopia, scleral remodelling, 
which depends on the changes in the constitution of the 
scleral extracellular matrix (ECM), plays a significant part in 
the thinness of the sclera[8-9]. Scleral collagen accumulation 
diminishes as myopia progresses, while breakdown rises[10]. 
Apart from scleral collagen changes, sclera proteoglycan 
formation is also decreased[11]. In consequence, scleral fibril 
assembly is disorganized, and the biomechanics of the sclera 
is getting weaker[12]. What is said above suggests that the 
explanations for changes in the prolongation of the eyes are 
scleral ECM remodeling.
RECENT STUDY ON SCLERAL REMODELING
The mechanism of scleral remodeling has not yet been fully 
explored. Researches mainly focus on the cytokines and signal 
transduction pathways related to the scleral remodeling.
Matrix Metalloproteinases and Tissue Inhibitors of 
Metalloproteinases  Matrix metalloproteinases (MMPs) are a 
group of zinc-dependent endopeptidases involved in degrading 
various proteins, including collagen and elastin, in the ECM[13]. 
Therefore, the balance of MMPs activation and inhibition is 
the key to scleral remodeling. MMP-2 levels were elevated 
in high-myopia patients’ aqueous humor, and tissue inhibitors 
of metalloproteinases (TIMP)-1, -2, and -3 levels were 
positively linked with MMP-2 levels and axial length[14-16]. 
In the inform deprived myopia study of tree shrews, active 
scleral MMP-2 levels were similarly higher in myopic eyes, 
and the up-regulation of MMP-2 levels causes scleral structure 
reorganization and ECM remodeling[17-18]. In tree shrew scleral 
fibroblasts, a low dose of recombinant TIMP-2 can stimulate 
MMP-2 activation in a dose-dependent manner, while a high 
dose of recombinant TIMP-2 can prevent MMP-2 activation. 
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In the circumstances, collagen degradation was significantly 
reduced, and axial lengths were significantly shortened[19]. 
Besides, in the animal models of chicks[20-21], guinea pigs[22], 
and mice[23] increases in MMP-2 and decreases in TIMP-2 
activity also contribute to mediating scleral remodeling. Recent 
studies show that MMP-2 also participate in the formation 
of nearsightedness as a downstream molecule in some signal 
transduction pathways. Liu and Sun[24] demonstrated that the 
expressions of insulin-like growth factor-1 (IGF-1), signal 
transducers and activators of transcription (STAT3), and 
MMP-2 are increased progressively over time in the sclera in 
the guinea pig form-deprivation myopia model. The results 
reveal that through modulation of the expression of MMP-2, 
the IGF-1/STAT3 pathway in the sclera may play an essential 
role in sclera remodeling[24-25]. Chen et al[26] showed that by 
injecting Shh amino-terminal peptide (Shh-N) into the vitreous 
body, the level of MMP-2 and axial elongation were enhanced. 
The outcomes suggested that MMP-2 might be a downstream 
molecule of the sonic hedgehog signaling pathway (SHH). In 
conclusion, the balance between MMPs and TIMPs plays a 
key part in scleral remodeling. 
Hypoxia-inducible Factor-1α Signaling  Hypoxia-inducible 
factor-1α (HIF-1α) is a transcription factor in the hypoxia-
inducible factors (HIF) family that reacts to declines in 
cellular oxygenation[27]. Wu et al[28] found that the hypoxia-
signaling, the eukaryotic initiation factor 2 signaling (eIF2), 
and mammalian target of rapamycin signaling (mTOR) 
pathways were activated in the murine myopic sclera. In 
human scleral fibroblasts, hypoxia exposure contributes 
to myofibroblast trans differentiation by lowering type I 
collagen (COLI) levels. Reduced HIF-1α expression in 
guinea pigs, as well as eIF2α and mTOR levels, can inhibit 
experimental myopia development without impacting the 
growth of normal eyes. Meanwhile, their team verified that 
the HIF-1α signaling pathway is a main regulator of the 
Kyoto Encyclopedia of Genes and Genomes-protein protein 
interaction (KEGG-PPI) networks, which meant KEGG-
PPI networks might be important in regulating interactions 
between gene and microenvironmental oxygen supply during 
the development of myopia[29]. Based on the above research, 
increased choroidal blood perfusion (ChBP) attenuates scleral 
hypoxia, and thereby inhibits myopia development in guinea 
pigs. Zhou et al[30] discovered that the antagonistic effect of 
peroxisome proliferators-activated receptors (PPARγ) reduces 
both choroidal thickness (ChT) and ChBP, nevertheless the 
expression of HIF-1α increases. As a result, scleral COL1 
expression decreases lead to the development of myopia. 
PPARγ agonism, on the other hand, can prevent the increases 
in scleral HIF-1α expression levels, FD-induced ChT thinning, 
and ChBP decreases so that COL1 expression levels will not 

decline[31]. Further, in guinea pigs, scleral cAMP regulation 
mediated by the prostanoid receptor has an effect on myopia 
development via an interaction between PPARα and HIF-1α 
signaling[32]. According to the above, HIF-1α is a new target 
for scleral remodeling. There is still much work to be done.
GROWTH FACTOR
Transforming Growth Factor-β  Transforming growth 
factor-β (TGF-β) family members are pluripotent cytokines 
that play a role in cell proliferation and differentiation, 
ECM remodeling, organ development, tissue repairment, 
and immune modulation[33]. TGF-β2 levels in high-myopia 
patients’ aqueous humor, were shown to be higher in the eyes 
with excessive elongation of axial length and were positively 
linked to the MMP-2 levels[34-35]. Gentle et al[10] showed that 
TGF-β regulated scleral collagen synthesis and affected scleral 
remodeling in tree shrews. Reduced TGF-β led to a large drop 
in collagen synthesis in form-deprivation myopia (FDM) eyes 
in vitro experiments with sclera fibroblasts, indicating that 
TGF-β is a pivotal mediator to collagen loss[36]. TGF-β has also 
been linked to modifications in proteoglycans in sclera and has 
been discovered to influence glycosaminoglycans. Decreased 
TGF-β in FDM eyes resulted in reduced glycosaminoglycan 
synthesis[8]. In vitro experiment in guinea pig, the Wnt3/
β-catenin signaling pathway was activated in scleral 
fibroblasts. TGF-β1 expression of COLI was blocked by this 
pathway which led to scleral remodeling in the development of 
myopia[37]. 
Bone Morphogenetic Protein  The biggest subfamily of 
TGF-β is bone morphogenetic proteins (BMPs). In the guinea 
pig, a reduction of BMP-2 and BMP-5 levels during myopia 
induction is linked to sclera remodeling[38-39]. In vitro human 
scleral fibroblasts (HSF) experiment, increased BMP-2
resulted in increased expression of collagen Ⅰ, collagen Ⅲ, 
glycosaminoglycan, proteoglycan, and phosphorylated 
Smad1/5/8, which enhanced cell proliferation and raised the 
number of cells that differentiated into myofibroblasts[40]. 
Basic Fibroblast Growth Factor  Basic fibroblast growth 
factor (b-FGF) is a fibroblast growth factor that regulates cell 
growth and apoptosis. The b-FGF level in the scleral tissue 
of lens-induced guinea pigs showed a general decline during 
the progression of myopia[41]. Tian et al[42] demonstrated that 
by increasing the expressions of COLI, α2 integrin, and β1 
integrin, b-FGF might inhibit the occurrence and progression 
of defocus myopia.
LYSYL OXIDASE
The lysyl oxidase (LOX) family is an essential ECM enzyme. 
Through oxidizing lysine residues to aldehydes, LOX can 
stimulate the covalent crosslinking of collagen and elastin. 
Collagen crosslinking activity, which leads to collagen 
combining into insoluble collagen fibrils, is assisted by 



512

LOX[43]. In the guinea pig, the expression of scleral COLI, 
formation of collagen fibril, and biomechanical properties were 
all reduced when LOX expression was inhibited. Adversely, 
what is said above also increased through upregulating LOX 
expression. These results suggest that modulating LOX 
expression in the sclera as a possible therapeutic option for 
myopia might be investigated[44]. 
RETINOIC ACID
Retinoic acid (RA) can modulate cell proliferation and 
differentiation in a variety of cells types. In addition, it can also 
influence ECM metabolism[45]. There is evidence to suggest that 
the visual modulation and scleral remodeling of the chick sclera 
are influenced by RA, which is considered a potent inhibitor 
of scleral glycosaminoglycan production[46]. In addition, the 
observed decrease in scleral galactosaminogalactan formation 
rates might be due to the rise in the rate of RA production in 
primates’ eyes[47]. It has been reported that retinoic acid can up-
regulate the Fibulin-1 level in cultured guinea pig and human 
sclera fibroblasts, and this effect is dose-dependent[48]. Fibulin-1 
is associated with aggrecan. Aggrecan levels and distribution 
might manipulate the progression of scleral remodeling.
miRNAs EXPRESSION
The study of microRNAs (miRNAs) in scleral remodeling 
has gained popularity in recent years. Ravikanth suggested 
that microRNA expression was discovered in human sclera. 
Besides, in the fetal sclera, the expression of mir-214, let-7c, 
let-7e, mir-103, mir-107, and mir-98 was upregulated[49]. Chen 
et al[50] found that microRNA-328 may affect the progression 
of myopia by regulating the PAX6 gene, of which the effect is 
to decrease the expression of collagen I and integrin β1 while 
upregulating the level of MMP-2 in scleral cells. However, 
another research reported that even though the miR-328 
expression was increased in the myopia group compared 
to the control group in high myopic eyes’ aqueous humour, 
the difference between the two groups was not statistically 
significant[51]. MicroRNAs of the let-7 class were shown to be 
upregulated in eyes exposed to form deprivation in mouse[52]. 
Mei et al[53] screened out eight significantly upregulated 
miRNAs in FDM, including miR-294, miR-16-1, miR- 466h-
5p, miR-466j, miR-15a, miR-466c-5p, miR-669e and miR-
468. Zhang et al[54] demonstrated that in cells transfected with 
the miR-29a mimics, MMP-2 secretion by scleral fibroblasts 
and RPE cells was significantly reduced. miRNAs are expected 
to be a new drug to control the progress of myopia in the 
future. 
ATROPINE
Atropine is a non-selective muscarinic antagonist that was 
considered beneficial in inhibiting myopia progression and 
decreasing axial length[55]. In the animal model of mice, 
atropine receptor blockage can regulate the expression of 

muscarinic receptor (mAChRs) which lead to the growth of 
scleral fibroblasts, therefore promoting scleral remodeling[56]. 
In vitro experiment, treatment with atropine attenuated 
the increase of regulator Of G protein signaling 2 (RGS2) 
expression and recovered the expression of COLI in FDM 
sclera[57]. Besides, Hsiao et al. used next-generation sequencing 
and bioinformatics approaches to find differentially expressed 
genes and microRNAs in atropine-treated scleral fibroblasts. 
They found that mechanisms which prevented melatonin 
breakdown during the night might play a part in decreasing 
scleral remodeling. In scleral fibroblasts, the interactions 
between miR-2682-5p-PRLR and miR-2682-5p-KNCJ5 
provided a scientific foundation for assessing the involvement 
of low-dose atropine therapy[58]. 
CONCLUSIONS AND FUTURE DIRECTIONS
In conclusion, scleral remodeling plays an important role 
in the occurrence and development of myopia. This review 
focus on the key cytokines and signal pathway associated 
with scleral ECM remodeling and myopia development. It is 
hoped that it can contribute to the in-depth understanding of 
the pathogenesis of myopia and provide candidate intervention 
targets for the precise treatment of myopia. At present, the 
mechanisms of myopic scleral ECM remodeling are not 
precise yet. Therefore, further experimental studies on scleral 
ECM remodeling and new drug development should be 
conducted in the future.
METHODOLOGY
A literature search was conducted in PubMed from the date of 
inception until 10 March 2021 without language restrictions. 
The intention was to review recent advances with respect 
to scleral remodeling in myopia development. The search 
strategy was developed around the key terms: myopia, OR 
scleral, OR scleral remodeling, OR cytokines, OR signal 
transduction pathways, OR miRNAs, OR scleral ECM, OR 
ocular elongation. Only researches published in English were 
reviewed. Studies were excluded if they did not present a 
reasonable new or improved opinion for scleral modeling in 
myopia development.
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