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Abstract
● N6-methyladenosine (m6A) modification is a reversible 
process promoted by “writers”, inhibited by “erasers”, and 
processed by “readers”. During the last decade, increasing 
emphasis has been placed on the underlying roles of m6A 
modification owing to their great importance in biological 
significance. The abnormal regulation of m6A modification 
will lead to aberrant cellular behavior and various diseases. 
Recently, studies have demonstrated that m6A modification 
is closely associated with the genesis and progression of 
ocular surface diseases (OSDs). This review focus on the 
role of m6A modification and research progress in OSDs 
including fungal keratitis, herpes simplex keratitis, immune-
related keratoconjunctival diseases, pterygium, ocular chemical 
burns, and Graves’ ophthalmopathy, which may provide 
new insights into and prospective applications for OSDs.
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INTRODUCTION

O cular surface diseases (OSDs) comprise a spectrum of 
disorders that are characterized by abnormalities in the 

structure and function of the conjunctiva, cornea, and glandular 
network[1]. Traumatic, chemical, surgical and inflammatory 
damage can cause a variety of pathological changes, such 
as corneal conjunctivalization, neovascularization, limbal 
stem cell deficiency, dry eye disease, and subsequent visual 
dysfunction[2].

Epigenetics involves a phenomenon that modulates heritable 
gene expression without altering the sequence of DNA. RNA 
methylation is a widely prevalent epigenetic modification, 
as well as DNA methylation, histone modification, non-
coding RNA modification, and chromatin remodeling[3]. 
Several crucial modifications of messenger RNA (mRNA) 
that maintain its stability include N6-methyladenosine 
(m6A), N1-methyladenosine, and 5-methylcytosine[4]. m6A, 
the most prevalent epigenetic modification of mRNAs, 
is widely distributed in various forms of RNAs, such as 
rRNAs, circRNAs, snRNAs, miRNAs, and lncRNAs[5]. m6A 
modification is a dynamic and reversible process whose 
regulation is accomplished by three categories of proteins: 
“writers”, “erasers”, and “readers”.
m6A has been directly linked to a variety of diseases, and early 
research has mostly focused on its biological role in embryonic 
development and tumorigenesis[6-8]. Over the last several years, 
growing numbers of scientists have begun to emphasize the 
significance of m6A modification in OSDs. Here, we present 
a review of the biological process of m6A modification and 
summarize the latest research progress of m6A modification 
in OSDs, including fungal keratitis (FK), herpes simplex 
keratitis (HSK), immune-related keratoconjunctival diseases 
[e.g., systemic lupus erythematosus (SLE) and rheumatoid 
arthritis (RA)], pterygium, ocular chemical burns, and Graves’ 
ophthalmopathy (GO). 
M6A MODIFICATION
m6A is a methylation modification that occurs on the sixth 
nitrogen (N) atom of adenine (A) in RNA[9]. At present, 
the biological significance of m6A modification has been 
identified, which is linked to virtually all aspects of mRNA 
activity and metabolism, such as biogenesis, alternative 
splicing, 3’-end processing, nuclear export, translation, 
localization, and decay[10]. The aberrant m6A modification 
disrupts these RNA metabolic processes, which influence the 
hematological, neurological, respiratory, gastrointestinal, and 
gynecological systems[11].
Evidence indicates that m6A modification may play a critical 
role in the regulation of several immune-related processes, 
including proliferation, differentiation, and activation of 
immune cells[12]. Considering these findings, m6A is possibly 
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involved in the occurrence, progression, and outcome of 
immune-related disorders, including viral infections, cancers, 
and inflammatory and autoimmune disorders. Meanwhile, 
m6A modification acts as a double-edged sword in cancer and 
participates in the promotion and inhibition of tumorigenesis: 
it promotes tumorigenesis in certain cancers and inhibits tumor 
progression in others through its dual-directional modulatory 
functions[13].
Writers  The m6A writers are multi-subunit methyltransferase 
complexes that direct the installation of m6A at specific 
locations in target mRNAs. Methyltransferase-like 3 protein 
(METTL3), also known as MT-A70, is considered the primary 
critical methyltransferase for m6A methylation. It is located in 
splicing facto r-rich nuclear speckles, in which it contributes 
directly to mRNA splicing[14-15]. Methyltransferase-like 14 
protein (METTL14) is a homologue of METTL3 and shares 
almost 43% sequence homology with METTL3[16]. METTL3 
and METTL14 are two core subunits of the writer complex 
that display independent catalytic activity and exert synergistic 
effects through the formation of stable heterodimers[17]. Wilm’s 
tumor-1-associated protein (WTAP) interacts with these 
heterodimers and subsequently localizes them into nuclear 
speckles to affect cellular m6A deposition[18]. Numerous 
auxiliary subunits are necessary for the efficient installation of 
the m6A modification and determine the specific types of the 
writers, including METTL16, METTL5, Cbl proto-oncogene-
like 1, Vir-like m6A methyltransferase-associated, zinc finger 
CCCH-type containing 13, and RNA-binding motif protein 
15[11].
Erasers  m6A erasers are a group of proteins that can exert 
demethylation activity, which removes m6A modifications. 
Fat mass and obesity-associated protein (FTO), the originally 
discovered eraser, belongs to the non-heme Fe(II)- and α-KG-
dependent dioxygenase AlkB family, which catalyzes a wide 
range of biological oxidative demethylation of m6A[19]. FTO 
is predominantly localized in the nucleus, and it is responsible 
for demethylating mRNA at m6A sites by approximately 5% 
to 10%, as well as being detected in cytoplasm[19-20]. 
ALKB homolog 5 (ALKBH5) is the second eraser identified 
to date. Its demethylation activity profoundly influences 
nuclear mRNA export, RNA metabolism, and the assembly 
of mRNA processing factors in nuclear speckles[21]. Recently, 
flavin mononucleotide has been reported to be a novel artificial 
small-molecule demethylase that mediates the photochemical 
demethylation of m6A residues in RNA[22].
Readers  The identification and characterization of m6A 
readers have contributed to a deeper understanding of 
the precise regulation of m6A biological functions. The 
readers consist of YTH domain-containing family proteins 
(YTHDF1/2/3 and YTHDC1/2), the heterogeneous nuclear 

ribonucleoprotein (HNRNPA2B1, HNRNPC, and HNRNPG), 
insulin-like growth factor 2 mRNA binding protein 1/2/3, and 
eukaryotic initiation factor 3, which collaboratively regulate 
the process of RNA export, translation, and degradation[14,23]. 
Because m6A modification requires readers to carry out their 
biological functions, the same modification will produce 
reverse biological effects when binding to different readers. 
Consequently, each group of readers can alter mRNA 
transcription differently, and these groups jointly influence 
the cellular functions to produce alterations in physiological 
conditions[13]. Once regulation is mismanaged, various diseases 
can occur.
M6A MODIFICATION IN OCULAR SURFACE 
DISEASES 
Fungal Keratitis  FK is a form of serious microbial keratitis 
caused by opportunistic pathogenic fungi and can result in 
visual impairment and even blindness[24]. Among the infectious 
keratitis cases in China, over 60% of cases are due to fungal 
sources, with Fusarium being the most common pathogen[25]. 
According to recently obtained high-throughput sequencing 
results, FK markedly alters not only the levels of both mRNA 
and miRNA but m6A levels as well[26-27].
A study conducted by Hu and Lin[28] investigated the role 
of m6A modification in experimental FK. By inoculating 
mice with Fusarium solani (F. solani), they created a murine 
model of FK and found that, in the F. solani-treated group, 
the overall m6A levels in corneal tissue were increased in 
comparison with those in the controls. An analysis of Western 
blots and immunofluorescence staining demonstrated a notable 
increase in the expression of METTL3 in mice with F. solani. 
However, the expression levels of FTO, ALKBH5, WTAP, 
and KIAA1429 were not significantly different between 
the two groups. Additionally, 1137 mRNAs were examined 
for differences in m6A modifications, 780 of which were 
hypermethylated and 357 were hypomethylated. Based on 
Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
Western blot, FK is associated with enriched m6A-methylated 
mRNAs in the PI3K-Akt pathway, along with elevated 
phosphorylation levels of Akt and PI3K. As expected, the 
knockdown of METTL3 inactivated PI3K/AKT pathway and 
inhibited the expression of multiple inflammatory cytokines[29]. 
Thus, METTL3 is shown to be a pro-inflammatory protein in 
Fusarium solani-infected corneal tissue, and it has the potential 
to be a diagnostic and therapeutic target for FK in the future. 
Herpes Simplex Keratitis  HSK is a blinding disease 
characteristic of recurrent infections in the cornea that is 
mainly caused by herpes simplex virus type 1 (HSV-1). After 
the primary infection, HSV tends to establish a latent infection 
in the trigeminal ganglion. The reactivation of HSV could 
be triggered by stress, fever, ultraviolet light exposure, and 
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long-term local use of topical corticosteroids, resulting in a 
recurrence of HSK[30]. Recurrent HSK manifests a variety 
of clinical symptoms, among which are epithelial keratitis, 
stromal keratitis, endothelial keratitis, and neurotrophic 
keratopathy[31]. It is generally accepted that topical antivirals 
are effective at reducing the disease severity and temporal 
courses of recurrent HSK, while some cases of poor treatment 
outcomes continue to be reported.
The interaction between virus and host is regulated by m6A 
modification[32]. In the 1970s, Moss et al[33] first reported that 
HSV-1 mRNAs were modified by m6A. Recently, a number 
of studies on DNA and RNA viruses have revealed the 
significance of m6A modifications in regulating alternative 
RNA splicing[34] and host antiviral responses[35]. Srinivas 
et al[36] found that, in human fibroblasts, HSV-1 facilitated 
a remarkable redistribution of the nuclear m6A machinery 
as it proceeded through the infection cycle. METTL3 and 
METTL14 were distributed in the cytoplasm, while WTAP 
was retained within the nucleus. Other methyltransferase 
complex subunits, as well as YTHDC1 and ALKBH5, were 
redistributed in the same manner. In order to accomplish these 
changes, the HSV-1 IE protein ICP27 is required, which is 
an essential viral regulator of host mRNA that facilitates the 
transport of intron-less viral mRNAs. These results suggested 
that HSV-1 infection strongly antagonizes the activity of m6A 
modification, thereby favoring viral replication efficiency.
Wang et al[37] found that, upon HSV-1 virus infection, 
HNRNPA2B1 combines with viral DNA in the nucleus 
to form a homodimer and translocates to the cytoplasm, 
where it triggers the TBK1-IRF3 pathway and initiates an 
immune response. In addition, through the inhibitory effect 
of hnRNPA2B1 on FTO demethylation, CGAS, IFI16 and 
STING mRNAs exhibit enhanced m6A modification and 
nucleoplasmic transport. Therefore, hnRNPA2B1 promotes 
further enhancement of the host’s antiviral innate immunity. 
Although there is no direct evidence to support that m6A 
modification is associated with the pathogenesis, progression, 
or prognosis of HSK, it can be concluded from the above 
studies that m6A likely plays a significant role in HSK.
Immune-Related Keratoconjunctival Diseases  Immune-
related keratitis is categorized into primary immune keratitis 
and keratitis mediated by systemic autoimmune diseases. 
Primary immune keratitis comprises Mooren’s ulcer[38], 
interstitial keratitis[39], and vernal keratoconjunctivitis[40] as 
well as keratoconjunctivitis sicca[41]. A Meta-analysis reported 
that ocular involvement was prevalent in 18% of cases of RA 
and 31% of SLE cases[42]. The common systemic autoimmune 
diseases that manifest in the ocular surface include RA, SLE, 
connective tissue disorders (Sjögren’s syndrome, scleroderma, 
and relapsing polychondritis), and vasculitis (giant cell arteritis, 

granulomatosis with polyangiitis, and Behcet’s disease)[43-44]. 
Patients with ocular involvement of autoimmune disorders 
most commonly have keratoconjunctivitis that can result in 
corneal infections and ulcerations[45]. Rarely, the autoimmune 
inflammatory mediators can also directly attack the peripheral 
corneal stroma, leading to peripheral ulcerative keratitis, which 
is a non-infectious ulcer associated with epithelial defects[46]. 
Until now, little has been known about the exact cellular and 
molecular mechanisms in immune-related keratoconjunctival 
disorders. It is widely accepted that epigenetic pathways play 
fundamental roles in both the innate and adaptive immune 
systems. Wang et al[47] reported that m6A tightly controls 
the maturation, activation and function of immune cells by 
enhancing the translation of specific leucocyte differentiation 
antigens, suggesting that m6A modification may be involved 
in regulating the pathogenesis of autoimmune diseases.
RA, a chronic autoimmune disorder with high levels of disability, 
involves reduplicated small joint destruction, particularly in 
the hands and feet. The underlying etiological factors of RA 
remain unclear, but they are probably associated with genetic 
susceptibility, environmental factors, and epigenetics[48]. 
Various cytokines, including tumor necrosis factor (TNF)-α, 
interleukin (IL)-6, and IL-17, are involved in the processes 
of inflammation, joint destruction, and certain comorbidities 
in RA progression[49]. Recent investigations have revealed 
the critical importance that m6A plays in RA pathological 
process. Wang et al[50] conducted a study to elucidate the 
function and potential mechanism of METTL3 in RA 
pathogenesis. They found that METTL3 expression in 
peripheral blood mononuclear cells isolated from RA patients 
was positively correlated with biochemical indicators, such 
as C-reactive protein and erythrocyte sedimentation rate, 
two commonly used metrics to assess the activity of RA. In 
addition, lipopolysaccharide-induced inflammation of pTHP-1 
macrophages could contribute to METTL3 activation and biological 
functions, whereas METTL3 overexpression effectively 
inhibits inflammatory mediators by lipopolysaccharide 
stimulation through the transcriptional factor nuclear factor 
(NF)-κB. These findings revealed that METTL3 may be a 
novel biomarker for RA diagnosis and treatment. 
Another study by Shi et al[51] focused on the functions that 
METTL3 performed in the process of inflammation and cell 
viability, proliferation, invasion, and migration of fibroblast-
like synoviocytes (FLSs). In synovial tissues from RA patients, 
METTL3 expression was significantly up-regulated, and its 
overexpression led to the release of massive inflammatory 
mediators in FLSs. Additionally, METTL3 was shown to 
facilitate activation and inflammatory reactions in FLSs by the 
NF-κB signaling pathway, which accelerated the progression 
and outcome of RA. 
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SLE is a relapsing chronic multisystemic autoimmune disease 
mediated by autoantibodies that adversely affects vital 
organs, including the skin, brain, kidneys, eyes, and joints. In 
recent years, m6A modification has been proven to function 
critically in the progression of SLE. Studies conducted by Luo 
et al[52-53] demonstrated that, in peripheral blood isolated from 
SLE patients, the levels of mRNA for METTL14, ALKBH5 
and YTHDF2 were significantly decreased by quantitative 
real-time polymerase chain reaction (qRT-PCR). This low 
expression was associated with elevated C-reactive protein 
and declined complement 3, which suggested a correlation 
with disease activity in SLE. Moreover, ALKBH5 mRNA 
levels were inversely associated with anti-dsDNA levels and 
positively correlated with white blood cell count. Importantly, 
the results of the logistic regression analysis demonstrated that 
low expression of ALKBH5 and YTHDF2 in peripheral blood 
was associated with the development of SLE, which can be used 
as a biomarker to assess SLE activity and confirm diagnosis. 
Although there are rare reports of research on m6A 
modification in immune-related keratoconjunctival diseases, 
based on the findings of the studies described above, there are 
plentiful applications for further research. 
Pterygium  Pterygium is a wing-shaped, superficial external 
fibrovascular conjunctival tissue that generally grows toward 
the cornea surface and is usually situated on the nasal side, 
which can lead to astigmatism and even vision loss[54]. The 
pathogenesis of pterygium has not been completely elucidated. 
In histopathology, pterygium specimens are classified 
by squamous metaplasia of the conjunctival epithelium, 
goblet cell hyperplasia, disruption of Bowman’s layer, and 
degeneration of subconjunctival collagen and elastin fibers[55]. 
Jiang et al[56] explored the potential relationship between 
m6A modifications and pterygium-related genes. Based on a 
comprehensive data and bioinformatical analysis of the m6A-
modified RNA sequence, pterygium and normal conjunctiva 
were compared for differences in expression of m6A 
methylation. It was observed that 458 m6A peaks were down-
regulated and 1301 peaks were up-regulated in the mRNA 
of pterygium compared to normal conjunctival tissues. This 
appears to be predominantly caused by METTL3, which acts 
as a crucial regulator in pterygium. KEGG pathway analysis 
indicated that the genes up-regulated in m6A modification were 
linked to the Hippo signal transduction pathway, while the 
down-regulated genes were associated with the Notch signal 
transduction pathway. By regulating the Hippo and Notch 
signaling pathways, m6A modification can influence important 
biological phenomena, including cell proliferation, migration, 
apoptosis, and cell cycle, thus leading to pathological changes 
in the conjunctival tissue. Additionally, five genes (DSP, 
MXRA5, ARHGAP35, TMEM43, and OLFML2A) have been 

identified from comprehensive analysis of RNA sequence 
results as being closely correlated with the progression of pterygium. 
However, it remains to be discovered and further clarified what 
the specific functions of m6A-related genes are in pterygium.
Ocular Chemical Burns  Approximately 22% of ocular 
injuries result from chemical burns. Two-thirds of chemical 
burns are caused by alkalis, while the rest are caused by acids 
and alcohols[57]. Alkaline agents, in general, penetrate more 
deeply than acids. Once the epithelium is compromised, 
alkaline solutions induce cellular membrane lysis with 
penetration into the deep tissue layers, causing tissue ischemia 
and necrosis. Conversely, proteins are denatured in acidic 
solutions, which causes coagulative necrosis and builds barriers 
that prevent deeper penetration of tissues[58]. In the late stages 
of severe cases, ocular alkali injuries can trigger a cascade of 
events leading to blindness, including corneal opacity, ulcer 
perforation, neovascularization, pseudopterygium growth, and 
symblepharon[59]. 
In the acute phase of alkaline injuries, over 50% of corneal 
limbal ischemia is an influential contributor to the dysfunction 
of the limbal stem cells[60]. Dai et al[61] created a limbal stem 
cell-specific METTL3 knockout (cKO) mouse model and 
investigated the function of m6A in repairing corneal injury 
after alkali burns. On days 7 and 14 after alkali burns, the 
METTL3 cKO mice had more complete corneal epithelium 
and less stromal layer neovascularization compared to wild-
type mice, suggesting that METTL3 knockdown inhibited 
pathological vascularization and promoted corneal injury 
repair. Immunofluorescence results for Ki67 indicated that 
depletion of METTL3 can promote the proliferation, self-
renewal, differentiation, and migration of corneal limbal 
stem cells, thereby accelerating the corneal epithelial repair 
after alkali injuries. Furthermore, METTL3 was also found 
to affect the growth and metabolism of corneal limbal stem 
cells by regulating AHNAK and DDIT4 expression, which 
strengthened the role of m6A in the repair of corneal alkali 
damage. In summary, modulating METTL3 and m6A 
modification pathways may provide a method for treating 
corneal diseases. Yao et al[62] examined the mechanisms of 
action and effects of METTL3 and m6A modification during 
pathological neovascularization by using METTL3-ecKO 
mice. Immunofluorescence staining exposed a smaller area 
of corneal neovascularization in METTL3 cKO mice than in 
the controls, indicating that METTL3 gene silencing has an 
anti-angiogenic effect on corneal alkali injury. Essentially, 
the promotion of angiogenesis is governed by abnormal Wnt 
signaling activated by METTL3. These studies suggested 
that pathological angiogenesis and damage repair are strictly 
regulated by m6A modification subsequent to corneal chemical 
burns. 
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Graves’ Ophthalmopathy  GO, also called thyroid-associated 
ophthalmopathy, is an orbital disorder of autoimmune 
pathology that predominantly attacks extraocular muscles 
(EOMs) and is the most common extrathyroidal symptom of 
Graves’ disease[63]. The clinical features of GO are complicated, 
including double vision, exophthalmos, eyelid retraction, 
diplopia, restrictive strabismus, exposure keratopathy, and 
optic neuropathy[64-65]. Relevant evidence suggests that 
epigenetic modifications contribute to the pathogenesis of GO. 
Zhu et al[66] investigated the role of m6A RNA modification in 
the pathogenesis of GO. They assessed the data on differential 
expression of m6A methylation collected from RNA sequence 
datasets and bioinformatics analyses in EOMs from seven GO 
patients and five non-GO patients. They found that overall 
m6A levels as well as the expression of WTAP, YTHDF2, 
and YTHDC2 were significantly up-regulated in the EOMs 
of GO patients compared to those of patients without GO. 
KEGG pathway analysis identified 12 out of 19 differentially 
expressed mRNA-related biological pathways that were 
related to inflammatory and immune responses. In addition, 
a significant up-regulation of genes associated with IL-
1, IL-6, IL-8, IL-10, IL-17, interferon (IFN)-γ, and TNF-α 
was observed in EOMs from patients with GO. Therefore, it 
can be speculated that m6A-related factors detected in EOM 
specimens may be involved in GO inflammatory regulatory 
processes by targeting mRNAs for inflammatory genes. These 
results suggested a possible relationship between aberrant m6A 
RNA methylation and the expression of inflammation-related 
genes as well as relevant signaling pathway activity in GO 
patients.
CONCLUSION
In this article, we reviewed the underlying mechanisms and 
biological functions of m6A modification and provided updates 
on the progress of m6A research in OSDs. m6A modification 
emerges as a vital epigenetic mechanism of gene transcriptional 
regulation and relies on the post-transcriptional modification 
of RNA, which plays a pivotal role in many physiological and 
pathological processes. Currently, with the development of 
various antibody-independent detection methods, differential 
m6A levels can be distinguished in individual RNA regions 
with high resolution, overcoming the limitations of traditional 
m6A detection approaches and providing us with a range of 
options[67-68]. To date, accumulating evidence has revealed 
the effects of m6A modification on tumors and neurological 
and cardiovascular diseases, while little research has been 
conducted regarding the study of m6A modification in ocular 
surface diseases. Our work expounds upon the regulatory 
role of m6A, primarily in terms of keratitis, immune-related 
keratoconjunctival diseases, pterygium, ocular chemical 
burns, and GO, while it remains unclear whether it contributes 

to other OSDs. Furthermore, most of the existing evidence 
has concentrated on the crucial m6A modifying enzymes 
METTL3, WTAP, ALKBH5, and YTHDF2, whereas the 
potential connections and profound mechanisms of other 
enzymes with these OSDs are not fully understood. 
According to recent research, m6A modification is critical 
for the progression of multiple cancers, and targeting 
dysfunctional m6A is an appealing strategy for cancer therapy, 
suggesting that m6A modification may also serve as a potential 
therapeutic target for OSDs. Moreover, inhibitors that target 
writers, erasers, or readers could be helpful in controlling 
the disease process. With in-depth insight into the specific 
functions and potential pathways, m6A modification provides 
a novel perspective for the guidance of diagnosis and therapy 
in ocular surface diseases.
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