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Abstract
● AIM: To predict best-corrected visual acuity (BCVA) by 
machine learning in patients with ocular trauma who were 
treated for at least 6mo. 
● METHODS: The internal dataset consisted of 850 
patients with 1589 eyes and an average age of 44.29y. 
The initial visual acuity was 0.99 logMAR. The test dataset 
consisted of 60 patients with 100 eyes collected while 
the model was optimized. Four different machine-learning 
algorithms (Extreme Gradient Boosting, support vector 
regression, Bayesian ridge, and random forest regressor) 
were used to predict BCVA, and four algorithms (Extreme 
Gradient Boosting, support vector machine, logistic 
regression, and random forest classifier) were used to 
classify BCVA in patients with ocular trauma after treatment 
for 6mo or longer. Clinical features were obtained from 
outpatient records, and ocular parameters were extracted 
from optical coherence tomography images and fundus 

photographs. These features were put into different 
machine-learning models, and the obtained predicted 
values were compared with the actual BCVA values. The 
best-performing model and the best variable selected were 
further evaluated in the test dataset.
● RESULTS: There was a significant correlation between 
the predicted and actual values [all Pearson correlation 
coefficient (PCC)>0.6]. Considering only the data from the 
traumatic group (group A) into account, the lowest mean 
absolute error (MAE) and root mean square error (RMSE) 
were 0.30 and 0.40 logMAR, respectively. In the traumatic 
and healthy groups (group B), the lowest MAE and RMSE 
were 0.20 and 0.33 logMAR, respectively. The sensitivity 
was always higher than the specificity in group A, in contrast 
to the results in group B. The classification accuracy and 
precision were above 0.80 in both groups. The MAE, RMSE, 
and PCC of the test dataset were 0.20, 0.29, and 0.96, 
respectively. The sensitivity, precision, specificity, and 
accuracy of the test dataset were 0.83, 0.92, 0.95, and 
0.90, respectively.
● CONCLUSION: Predicting BCVA using machine-learning 
models in patients with treated ocular trauma is accurate 
and helpful in the identification of visual dysfunction.
● KEYWORDS: ocular trauma; predicting visiual acuity; best-
corrected visual acuity; visual dysfunction; machine learning
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INTRODUCTION

O cular trauma is the leading cause of blindness in 
young adults and children[1]. Approximately 19 million 

people worldwide are visually impaired or even blind on 
account of ocular trauma[2]. Owing to the complexity and 
diversity of ocular trauma and the great difference in post-
treatment recovery, clinicians and forensic doctors often pay 
great attention to the recovery of post-traumatic visual acuity 
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(VA). To better understand visual recovery after surgery or 
trauma, many researchers have investigated the relationship 
between macular[3-4], retinal[5-6], and vireteal[7] injuries caused 
by diseases or trauma. Hou et al[8] found that macular injury 
involving the fovea or a thin optic nerve fiber layer results in 
severe vision loss. Phillips et al[9] found that in the lens and 
anterior chamber, timely treatment and effective control can 
effectively help the recovery of VA. Liang et al[10] found that 
postoperative VA was positively correlated with cube volume 
and cube average thickness (CAT).
With the advent of electrophysiology, new progress has been 
made in the examination of visual functional conductivity. 
Studies have found that VA can be assessed by the amplitude 
waveform and latency period of the pattern visual evoked 
potential (PVEP) in the scope of vision[11]. However, in 
forensic medicine, the actual VA cannot be determined when 
performing visual function tests because of the patient’s lack of 
cooperation. Various methods have been proposed to address 
this problem. At present, the most common are methods of the 
fogging test, distance transformation, and electrophysiology, 
but there are many subjective influencing factors of the first 
two. The waveform of PVEP can be affected by several factors, 
such as unstable resistance, misalignment of the eye when the 
patient annotates the stimulus screen, and poor cooperation. 
Therefore, the results of the image visual evoked potentials 
therefore need to be combined with the findings of the ocular 
examination, the site of the ocular injury and the magnitude 
of the acting forces. During literature review period, it is 
found that the ocular trauma score (OTS) takes full account of 
structural changes to the eye, and has been used to predict VA 
in patients with ocular injuries since the year of 2002[12]. Some 
researchers argue that OTS can provide objective, real, and 
effective information for the prognosis of ocular trauma, which 
is also found to be closely related to the severity of ocular 
trauma and prognosis[13-14]. Xiang et al[15] found that OTS 
helped identify situations that disguise or exaggerate VA loss 
in patients with ocular trauma.
Interdisciplinary cross-collaboration has become a new trend, 
and research on the application of artificial intelligence to 
ophthalmology is maturing. Chen et al[16] used an artificial 
neural network-based machine-learning algorithm to 
automatically predict VA after ranibizumab treatment for 
diabetic macular edema. Huang et al[17] predicted VA and best-
corrected visual acuity (BCVA) using a feed-forward artificial 
neural networks (ANN) and an error back-propagation 
learning algorithm in patients with retinopathy of prematurity. 
Rohm et al[18] used five different machine-learning algorithms 
to predict VA in patients with neovascular age-related 
macular degeneration after ranibizumab injections. Wei et 
al[19] developed a deep learning algorithm based on optical 

coherence tomography (OCT), to predict VA after cataract 
surgery in highly myopic eyes. Murphy et al[20] developed a 
fully automated three-dimensional image analysis method for 
measuring the minimum linear diameter of macular holes and 
derived an inferred formula to predict postoperative VA in 
idiopathic macular holes.
However, most of the above studies are restricted to single-
disease studies and no information has been reported so far 
in relation to the assessment of VA after ocular trauma. This 
study utilized the relationship between eyeball structure and 
vision, extracted features from ophthalmology examination, 
and introduces OTS scores combined with machine-learning 
techniques to develop a model for predicting BCVA. In 
addition, the weight of each feature in the model was 
visualized using a (Shapley additive exPlanations) map to 
explore the importance of the above features in the task of 
BCVA prediction.
MATERIALS AND METHODS
Ethical Approval  As this study was a retrospective analysis 
experiment, our ethics committee ruled that approval was 
not required for this study, and the requirement for individual 
consent for this study was waived.
Materials  All internal experimental data were obtained from 
the Key Laboratory of the Academy of Forensic Science, 
Shanghai, China. The cases were reviewed to evaluate 
eligibility based on clinical data, OCT images (Heidelberg, 
Germany; Carl Zeiss, Goeschwitzer Strasse, Germany), 
and fundus photographs (Carl Zeiss, Goeschwitzer Strasse, 
Germany). As of October 2021, the datasets comprised 1589 
eyes, including 986 traumatic eyes and 603 healthy eyes. 
Our inclusion criteria were as follows: 1) differing degrees of 
ocular trauma; 2) the time between injury was at least 6mo; 3) 
the therapy records were complete; 4) the BCVA after recovery 
was proven to be real. Patients with ocular or other systemic 
diseases that likely affected the VA and poor cooperation were 
excluded. The test dataset was collected while these models 
training and validating, was also obtained from the Key 
Laboratory of the Academy of Forensic Science (Shanghai, 
China) using the same inclusion and exclusion criteria. From 
January 2022 to April 2023, the test dataset comprised 100 
eyes, including 71 traumatic eyes and 29 healthy eyes, after 
removing the cases that do not meet the inclusion criteria.
Optical Coherence Tomography Images  OCT images of 
the internal dataset were obtained via two different devices: 
Heidelberg and Zeiss. Because the OCT images were obtained 
from two machines, and to avoid the effect of fusion of data 
from two different machines, we divided the data into group I 
(data from Zeiss), group II (data from Heidelberg), and group 
III (data from Zeiss and Heidelberg, namely all data). Each 
group was further divided into a traumatic group (group A) 
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and a healthy and traumatic group (group B). For example, 
ⅠA represented the traumatic group of Zeiss, ⅡB represented 
the traumatic and healthy eye group of Heidelberg, and ⅢA 
represented the traumatic eyes of all data.
OCT images of the test dataset were also obtained via the Zeiss 
and Heidelberg device, which consisted of 100 eyes.
Feature Extraction  We obtained 17 variables (Figure 1), 
which consisted of six variables from clinical data, eight 
extracted from OCT images, and three extracted from fundus 
photos. Table 1 shows the OTS scoring and grading process[12]. 
BCVA was obtained using a projector-eye chart (NIDEK; 
Aichi magistrate, Japan). For the convenience of statistical 
analysis, we converted the decimal VA to logarithm of minimal 
angle of resolution (logMAR) VA[21]. To extract variables 
from fundus photographs, we used the fundus photo reader 
software RadiAnt DICOM Viewer (Medixant, Poznan, Poland) 
to measure the area or length that we needed. To decrease the 
error, the data were measured by the same person, and the 
average value of the two measurements was taken. The main 
variable extraction process is shown in Figure 2. 
Vision Acuity Conversion  The VA was converted to its 
logMAR equivalent, with counting fingers being assigned a 
value of 1.9, hand motion 2.3, light perception 2.7, and no light 
perception 3.0[19,21].
Overview of Machine-Learning Analytic Systems  We 
proposed a BCVA analysis system based on machine-learning 
methods, including the prediction and grading of BCVA using 
the Extreme Gradient Boosting (XGB) model, and combined 
it with the method of model post-hoc interpretation, namely 
SHAP, to analyze the importance of input features of the model.

A flowchart of the experiment is shown in Figure 3. First, to 
determine the importance of each feature, all available features 
were used to predict BCVA using the XGB model and SHAP 
method, and then features were filtered by combining the 
least absolute shrinkage selection operator (LASSO) with an 
independent sample t-test.
Second, to complete the regression and classification task 
the features obtained after screening were randomly divided 
into the training dataset and the validation dataset by a five-
fold cross-validation method using the four models. Then, 
we performed ablation experiments on screened features and 
investigated the role of each feature in the corresponding task 

Figure 1 Process of sample selection and source of the variables  OCT: Optical coherence tomography; UVA: Uncorrected visual acuity; GOTS: 

Grading of ocular trauma score; COTS: Classification of ocular trauma score; IVA: Initial vision acuity; CAT: Cube average thickness; CST: Cube 

subfield thickness; RNFL: The average thickness of retinal never fiber layer; RNFL-S: Superior RNFL; RNFL-I: Inferior RNFL; RNFL-N: Nasal RNFL; 

RNFL-T: Temporal RNFL; ASV-ANM: Areas the specific value of abnormal and normal macula; CDR: Cup to disc ratio.

Figure 2 Process of variable extraction from fundus photos  Area 

1 is the abnormal area of the macula, 2 is the normal area of the 

macula, and 1/2 is areas the specific value of abnormal and normal 

macula (ASV-ANM). Area 3 denotes abnormal areas of the optic disk, 

4 denotes normal areas of the optic disk, and 3/4 denotes Comus. 

Area 6 denotes the vertical diameter of the optic cup, 5 denotes the 

vertical diameter of the optic disc, and 6/5 denotes the cup to disc 

ratio (CDR).
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Table 1 The input variables’ statistics

Variable IA IB IIA IIB IIIA IIIB Test dataset

No. of left eyes 345 (53.1%) 508 (49.8%) 182 (54.2%) 279 (49.0%) 527 (54.4%) 787 (49.5%) 49 (49.0%)

No. of right eyes 305 (46.9%) 512 (50.2%) 154 (45.8%) 290 (51.0%) 459 (45.6%) 802 (50.5%) 51 (51.0%)

Age (y, x1) 44.59±15.49 44.06±15.10 44.82±13.20 44.70±13.65 44.67±14.74 44.29±14.60 42.29±15.35

Male (gender, x2) 519 (79.8%) 821 (80.5%) 261 (77.7%) 456 (80.1%) 780 (79%) 1277 (80.4%) 79 (709.0%)

Female (gender, x2) 131 (20.2%) 199 (19.5%) 75 (22.3%) 113 (19.9%) 206 (21%) 312 (19.6%) 22 (22.0%)

IVA (logMAR, x3) 1.45±1.02 0.95±1.06 1.34±1.02 0.84±1.02 1.47±0.96 0.99±0.99 1.14±1.26

UVA (logMAR, x4) 1.28±1.01 0.87±0.99 1.04±0.98 0.67±0.91 1.22±0.99 0.82±0.96 0.97±1.08

GOTS (x5) 3.34±1.06 3.89±1.15 3.50±1.06 4.05±1.09 78.49±17.02 86.11±16.82 4.24±1.17

COTS (x6) 77.49±17.35 85.19±17.41 80.45±16.21 87.76±15.58 3.39±1.06 3.95±1.13 86.89±17.15

CST (x7) 251.67±18.58 249.44±93.91 247.85±94.22 238.64±75.43 248.49±111.49 226.72±106.20 247.02±55.81

Cube volume (x8) 9.83±1.10 10.04±3.22 - - 9.83±1.10 10.04±3.22 9.59±1.40

CAT (x9) 273.09±30.66 275.68±26.07 - - 273.09±30.66 275.68±26.07 217.52±125.43

RNFL (x10) 88.81±23.55 92.16±20.63 93.73±26.06 97.46±23.02 89.94±25.47 93.59±22.61 91.91±24.50

RNFL-S (x11) 108.04±35.94 115.62±45.42 113.03±36.35 119.12±32.89 107.97±38.45 116.28±42.10 112.26±32.10

RNFL-I (x12) 110.00±35.90 116.19±32.07 117.39±37.35 125.62±55.34 110.70±38.96 118.97±42.93 112.32±29.54

RNFL-N (x13) 65.99±17.74 66.82±16.27 64.95±29.52 67.02±26.31 64.57±23.79 66.55±20.94 69.66±30.85

RNFL-T (x14) 72.53±35.48 71.71±29.23 80.34±30.03 80.35±25.41 74.74±34.31 74.45±28.69 71.79±27.95

Comus (x15) 0.39±0.25 0.42±0.34 0.42±0.24 0.39±0.23 0.39±0.23 0.28±0.24 0.33±0.21

ASV-ANM (x16) 0.79±0.32 0.73±0.37 0.66±0.38 0.68±0.37 0.79±0.34 0.75±0.34 0.27±0.09

CDR (x17) 0.44±0.22 0.42±0.19 0.42±0.23 0.41±0.19 0.44±0.23 0.41±0.19 0.43±0.17

BCVA (logMAR, y) 0.86±1.05 0.55±0.94 0.74±0.98 0.44±0.83 0.90±0.98 0.57±0.88 0.96±1.51

xi is considered the input variable to the model and y is the output of the model. Due to the logMAR value being lower represents the vision 

acuity higher, and is sometimes shown as negative values, the standard deviation values may be higher than the mean values. IVA: Initial vision 

acuity; UVA: Uncorrected visual acuity; GOTS: Grading of ocular trauma score; COTS: Classification of ocular trauma score; CST: Cube subfield 

thickness; CAT: Cube average thickness; RNFL: The average thickness of retinal never fiber layer; RNFL-S: Superior RNFL; RNFL-I: Inferior RNFL; 

RNFL-N: Nasal RNFL; RNFL-T: Temporal RNFL; ASV-ANM: Areas the specific value of abnormal and normal macula; CDR: Cup to disc ratio; BCVA: 

Best-corrected visual acuity; logMAR: Logarithm of the minimum angle of resolution.

Figure 3 The flowchart of our experiment  UVA: Uncorrected visual acuity; GOTS: Grading of ocular trauma score; COTS: Classification of ocular 

trauma score; IVA: Initial vision acuity; CAT: Cube average thickness; CST: Cube subfield thickness; RNFL: The average thickness of retinal never 

fiber layer; RNFL-S: Superior RNFL; RNFL-I: Inferior RNFL; RNFL-N: Nasal RNFL; RNFL-T: Temporal RNFL; ASV-ANM: Areas the specific value of 

abnormal and normal macula; CDR: Cup to disc ratio; BCVA: Best-corrected visual acuity; SVR: Support vector regression; RFR: Random forest 

regressor; BYR: Bayesian ridge; XGB: Extreme gradient boosting; SVM: Support vector machine; LR: Logistic regression; RFC: Random forest 

classifier; MAE: Mean absolute error; RMSE: Root mean square error.

Predicting visual acuity in ocular trauma patients



1009

Int J Ophthalmol,    Vol. 16,    No. 7,  Jul.18,  2023         www.ijo.cn
Tel: 8629-82245172     8629-82210956      Email: ijopress@163.com

using SHAP. Finally, the eligible test dataset was used further 
validate the best-performing model and best variables.
Feature Selection  The optimal combination of features was 
selected using the SHAP method combined with the LASSO 
and an independent sample t-test. SHAP is an additively 
explanatory model inspired by cooperative game theory, in 
which all features are considered “contributors” to the model. 
The model generates a contribution value, the Shapley value, 
for each predicted sample, which is the value assigned to each 
feature in the sample (i.e., the importance of each feature in 
the model). The LASSO method is widely used in model 
improvement and selection, and it makes the non-importance 
coefficient of features parallel to zero to select features by 
compressing the coefficient of the features and selecting the 
punishment function. However, the independent sample t-test 
is a common method in statistical analysis that can be used to 
test whether the difference between the means of the two types 
of samples is significant.
The specific methods were 1) inputting all features of group 
III into the model to predict BCVA and the Shapley value of 
this model corresponding to all features was calculated by the 
SHAP method and ranked. 2) Input all features of group III 
into the model, and the feature that is screened by the LASSO 
method is viewed as group L. 3) Divide group III data into two 
groups with logMAR of 0.3 as the critical value, and perform 
an independent sample t-test on all features of these two 
groups, and the feature with a significant difference as group T. 
4) The intersection of groups L and T was determined, and the 
feature with too small a Shapley value was derived as the final 
feature. 
Extreme Gradient Boosting  Extreme Gradient Boosting 
(XGB) is a tree-integrated model widely used in Kaggle 
competitions and many other machine-learning competitions 
with good results. This inference was computed based on 
the residuals of the upper model. XGB is an optimized 
gradient tree boosting system that improves computational 
speed through algorithmic innovations, such as parallel and 
distributed computation and approximates greedy search, 
which is controlled by adding regularization coefficients and 
residual learning to the loss function. In addition, XGB can 
learn sparse data and has good generalization ability.
Regression and Classification Model  The features used in 
this experiment were extracted based on small samples of 
clinical variables, using OCT images. Considering the high 
applicability of machine learning to small sample sets, we 
selected XGB, support vector regression (SVR), Bayesian 
ridge (BYR), and random forest regressor (RFR) regression 
models using the filtered features as model inputs and a 
grid search approach to find the optimal hyperparameters to 
predict BCVA for each of the three data sets. For the BCVA 

classification task, we classified the BCVA of all patients into 
two categories using logMAR equal to 0.3 as the threshold 
value. For patients with logMAR less than or equal to 0.3, we 
assigned label 1, and for patients with logMAR greater than 
0.3, we assigned label 0. For this binary classification task, we 
also used four machine-learning models: XGB, Support Vector 
Machine (SVM), Logistic Regression Classifier (LRC), and 
Random Forest Classifier (RFC), to filter the features as input, 
and grid search hyperparameters to complete the classification 
of BCVA.
Evaluation Standards  For the three experimental datasets, 
we used a five-fold cross-validation method to separate the 
training and test sets. For the prediction of corrected VA, we 
used Pearson correlation coefficient (PCC), Mean absolute 
error (MAE), and root mean square error (RMSE) to measure 
the accuracy of model prediction, where yi is the true value 
of corrected VA, ŷi is the predicted corrected VA, and n is the 
number of samples.

                                                                                    

(1)

For the classification of corrected VA classes, we used 
accuracy, sensitivity, specificity, and precision as evaluation 
metrics, TP, TN, FP, and FN denote the numbers of true 
positives, true negatives, false positives, and false negatives, 
respectively, and samples with logMAR >0.30 represent 
positive samples.
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using a commercially available statistical software package 
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all data. Continuous variables of group A were compared with 
those of group B using the independent samples t-test method. 
The consistency between the predicted and actual values was 
verified using the Bland-Altman diagram. PCC was used to 
analyze the correlation between the predicted and actual values. 
RESULTS
The characteristics of the input variables are listed in Table 
1. The average age of all the groups was close to 44y. The 
number of men was higher than that of women in each group. 
The optimal variables for predicting BCVA include uncorrected 
VA (UVA), grading of ocular trauma score (GOTS), cube 
subfield thickness (CST), the average thickness of retinal 
never fiber layer (RNFL), superior RNFL (RNFL-S), Comus, 
areas the specific value of abnormal and normal macula (ASV-
ANM), and cup to disc ratio (CDR) were obtained after feature 
selection.
Best-Corrected Visual Acuity Prediction Performance 
Analysis  In Tables 2 and 3, we compare the performance 
of the four machine-learning algorithms after using five-

fold cross-validation when classifying the dataset into three 
groups. XGB obtained better results in Groups IA, IIA, and 
IIIA, with MAEs of 0.32±0.03, 0.30±0.04, and 0.32±0.02, 
respectively, and RMSEs of 0.45±0.05, 0.40±0.05 and 
0.42±0.03, respectively. The best results were obtained for the 
random forest model in three data groups, IB, IIB, and IIIB, 
with MAEs of 0.20±0.01, 0.20±0.01, 0.20±0.02, and RMSEs 
0.24±0.03, 0.33±0.02, 0.33±0.03, respectively. 
Figure 4 shows a Bland-Altman plot assessing the agreement 
between the model predictions and the ground truth. The 95% 
confidence intervals and mean deviations for the consistency 
of predictions for group III are presented separately. The 95% 
confidence intervals for groups IIIA and IIIB are -0.47 to 
0.89 logMAR and -0.49 to 1.04, with mean deviations of 0.21 
and 0.28 respectively. 
Best-Corrected Visual Acuity Grade Classification 
Performance Analysis  The experimental results were 
evaluated using five-fold cross-validation and a grid search 
approach to determine the best parameters for the model. 

Figure 4 Consistency of BCVAs between prediction and ground truth  Agreement assessed using Bland-Altman for the predicted value of BCVA 

and the gold standard in groups A (A) and B (B). In the plots, the solid lines represent the actual mean difference (bias), and dotted lines show 

95% limits of agreement. BCVA: Best-corrected visual acuity.

Table 2 The performance predicted in four models

Groups
XGB model SVR model

PCC MAE RMSE PCC MAE RMSE
Group IA 0.88±0.04 0.32±0.03 0.45±0.05 0.77±0.07 0.34±0.03 0.47±0.04
Group IB 0.91±0.02 0.22±0.02 0.34±0.02 0.90±0.02 0.23±0.02 0.36±0.04
Group IIA 0.90±0.02 0.30±0.04 0.40±0.05 0.84±0.05 0.32±0.05 0.46±0.08
Group IIB 0.92±0.02 0.20±0.02 0.32±0.03 0.88±0.05 0.23±0.03 0.38±0.1
Group IIIA 0.84±0.02 0.31±0.02 0.42±0.03 0.87±0.06 0.31±0.03 0.47±0.11
Group IIIB 0.92±0.01 0.21±0.01 0.32±0.02 0.88±0.07 0.22±0.01 0.40±0.11

XGB: Extreme gradient boosting; SVR: Support vector regression; PCC: Pearson correlation coefficient; MAE: Mean absolute error; RMSE: Root 

mean square error.

Table 3 The performance predicted in four models

Groups
BYR model RFR model

PCC MAE RMSE PCC MAE RMSE
Group IA 0.76±0.05 0.36±0.05 0.49±0.07 0.84±0.03 0.30±0.04 0.41±0.03
Group IB 0.88±0.02 0.28±0.01 0.39±0.01 0.91±0.03 0.20±0.01 0.34±0.03
Group IIA 0.76±0.12 0.40±0.04 0.58±0.17 0.86±0.04 0.30±0.03 0.42±0.06
Group IIB 0.84±0.07 0.29±0.03 0.45±0.10 0.90±0.05 0.20±0.01 0.33±0.02
Group IIIA 0.83±0.07 0.38±0.01 0.53±0.09 0.89±0.01 0.29±0.02 0.43±0.03
Group IIIB 0.87±0.02 0.28±0.01 0.41±0.05 0.91±0.03 0.20±0.02 0.33±0.03

BYR: Bayesian ridge; RFR: Random forest regressor; PCC: Pearson correlation coefficient; MAE: Mean absolute error; RMSE: Root mean square error.

Predicting visual acuity in ocular trauma patients
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The qualitative results shown in Tables 4 and 5 indicate 
that XGB obtained better results for all groups using the 
same combination of features than the other three methods. 
Sensitivity, precision, specificity, and accuracy for group 
IIIA classification were 0.92±0.02, 0.86±0.03, 0.71±0.07, 
and 0.85±0.03, respectively, and in group IIIB 0.82±0.03, 
0.82±0.04, 0.90±0.02, and 0.87±0.01, respectively. The 
sensitivity of group A was higher than the specificity in all 
three datasets, indicating that the prediction accuracy of BCVA 
≤0.3 (logMAR) was higher than the prediction accuracy of 
BCVA>0.3 (logMAR).
Test Dataset  Since the XGB model has the most optimal 
performance for the performing the regression and classification 
tasks, the test dataset was used to determine the prediction 
performance and the accurate classification performance of the 
XGB model. As shown in Tables 6 and 7, the XGB model 
demonstrated stable promising results with an MAE of 0.20, 
RMSE of 0.29, and PCC of 0.96. The sensitivity, precision, 
specificity, and accuracy were 0.83, 0.92, 0.95, and 0.90, 
respectively. The Figure 5 shown the confusion matrixes of 
XGB modle in group ⅢB of internal dataset and test dataset.
To understand the role of each feature in the model, we 
visualized the importance of the XGB model features that 
obtained the best results using SHAP, where importance refers 
to the extent to which each feature contributes to the model’s 
predicted results. As shown in Figures 6 and 7, the UVA 

played a key role in both the XGB prediction and classification 
models, and the importance of the remaining features varied in 
both tasks, with GOTS, RNFL-S, and CST showing a greater 
contribution to the models in both tasks.
DISCUSSION
To ensure judicial justice, we should clarify the cause of visual 
injury and confirm that the BCVA obtained by ophthalmology 
examination is reliable. In China, VA decline caused by 
accidental or intentional injury can obtain compensation 

Table 6 The result of regression between the internal dataset and 

test dataset

XGB model PCC MAE RMSE

Internal dataset (group IIIB) 0.92±0.01 0.21±0.01 0.32±0.02

Test dataset 0.96 0.20 0.29

XGB: Extreme gradient boosting; PCC: Person correlation coefficient; 

MAE: Mean absolute error; RMSE: Root mean square error. Group 

IIIB represents the all samples in internal dataset. 

Table 7 The result of classification between the internal dataset and 

test dataset

XGB model Sensitivity Precision Specificity Accuracy

Internal dataset 
(group IIIB) 0.82±0.03 0.82±0.04 0.90±0.02 0.87±0.01

Test dataset 0.83 0.92 0.95 0.90

XGB: Extreme gradient boosting; Group IIIB represents the all 

samples in internal dataset.

Table 4 The performance of the classified model

Groups
XGB model SVM model

Sensitivity Precision Specificity Accuracy Sensitivity Precision Specificity Accuracy
Group IA 0.91±0.05 0.86±0.05 0.69±0.11 0.84±0.03 0.84±0.07 0.85±0.08 0.70±0.15 0.79±0.07
Group IB 0.82±0.06 0.80±0.02 0.89±0.02 0.86±0.03 0.74±0.04 0.81±0.04 0.90±0.03 0.84±0.02
Group IIA 0.93±0.01 0.86±0.06 0.76±0.09 0.86±0.04 0.87±0.02 0.87±0.06 0.80±0.08 0.84±0.04
Group IIB 0.84±0.03 0.82±0.04 0.90±0.03 0.88±0.02 0.74±0.11 0.87±0.06 0.94±0.03 0.86±0.05
Group IIIA 0.92±0.02 0.86±0.03 0.71±0.07 0.85±0.03 0.88±0.04 0.86±0.03 0.72±0.06 0.82±0.02
Group IIIB 0.82±0.03 0.82±0.04 0.90±0.02 0.87±0.01 0.73±0.02 0.86±0.04 0.93±0.02 0.86±0.01

XGB: Extreme Gradient Boosting; SVM: Suport vector machine. Sensitivity: Number of correctly predicted eyes with BCVA≤0.3 logMAR / total 

number of eyes with actual BCVA≤0.3 logMAR. Precision: The number of correctly predicted eyes with BCVA≤0.3 logMAR / total number of 

predicted eyes with BCVA≤0.3 logMAR. Specificity: The number of correctly predicted eyes with BCVA>0.3 logMAR / total number of eyes with 

actual BCVA>0.3 logMAR. Accuracy: The total number of correctly predicted eyes / total number of eyes.

Table 5 The performance of the classified model

Groups
LR model RFC model

Sensitivity Precision Specificity Accuracy Sensitivity Precision Specificity Accuracy

Group IA 0.87±0.06 0.85±0.04 0.67±0.12 0.81±0.03 0.86±0.02 0.86±0.05 0.71±0.07 0.82±0.03
Group IB 0.75±0.07 0.83±0.07 0.92±0.03 0.86±0.03 0.73±0.05 0.86±0.04 0.94±0.02 0.86±0.02
Group IIA 0.88±0.03 0.88±0.02 0.79±0.05 0.85±0.03 0.89±0.04 0.86±0.03 0.76±0.04 0.84±0.03
Group IIB 0.77±0.06 0.83±0.07 0.92±0.03 0.86±0.03 0.74±0.02 0.81±0.04 0.90±0.02 0.84±0.02
Group IIIA 0.87±0.02 0.86±0.01 0.74±0.04 0.82±0.01 0.89±0.04 0.88±0.04 0.77±0.06 0.85±0.03
Group IIIB 0.75±0.04 0.83±0.05 0.91±0.03 0.85±0.01 0.73±0.03 0.81±0.05 0.91±0.02 0.84±0.02

LR: Logistic regression; RFC: Random forest classifier. 
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Figure 7 Plot of weights of different features of the BCVA classification task  BCVA classification task in all groups, where class 1 represents 

BCVA≤0.3 and class 2 represents BCVA>0.3. A, B, C, D, E, and F represent group IA, IB, IIA, IIB, IIIA, and IIIB, respectively. BCVA: Best-corrected 

visual acuity.

Figure 6 Plot of weights of the different features for the BCVA prediction task  The global feature importance plots for all groups with the 

horizontal coordinates indicating the Shapley value for each sample corresponding to each feature and the color of each point representing the 

magnitude of this sample feature value. A, B, C, D, E, and F represent group IA, IB, IIA, IIB, IIIA, and IIIB, respectively. BCVA: Best-corrected visual acuity.

Figure 5 The confusion matrixes of XGB modle  A: All samples in the internal dataset of the XGB model; B: The test dataset of the XGB model, 

the predicted label = 0 with ture label = 0 represents the correct prediction of visual acuity > 0.3 logMAR, the predicted label = 1 with ture label 

= 1 represents the correct prediction of visual acuity ≤0.3 logMAR. XGB: Extreme gradient boosting.

Predicting visual acuity in ocular trauma patients



1013

Int J Ophthalmol,    Vol. 16,    No. 7,  Jul.18,  2023         www.ijo.cn
Tel: 8629-82245172     8629-82210956      Email: ijopress@163.com

or impose punishment on the perpetrator. Therefore, some 
patients disguise severe vision loss or blindness. VA in ocular 
trauma is usually worse in patients with posterior segment 
involvement. Therefore, a forecast model that can assess 
BCVA might be helpful for the accurate judgment of forensic 
workers. Although there are patients with poor cooperation in 
practice, because high-resolution OCT and fundus photographs 
may reveal morphological changes, the factors affecting 
VA can be identified. In recent years, machine learning has 
been extensively applied, and it has been found that an OCT 
scan of the macula could provide millions of morphological 
parameters affecting VA[22-23]. Previous studies have mostly 
focused on the diagnosis and classification of eye diseases. 
Due to the complex and changeable nature of ocular trauma, 
such studies are relatively few.
Several studies have developed machine-learning algorithms to 
predict VA in patients with ocular or systemic diseases. Some 
of them used OCT images of the macular[19], and some used 
clinical data and measurement features from OCT (such as 
central retinal thickness)[24]. Others use basic information, such 
as disease type or condition, age, and sex[25].
As shown in Table 1, the initial VA, UVA, GOTS, classification 
of ocular trauma score, RNFL, ASV-ANM, CDR, and 
BCVA were worse in group A than in group B. Our results 
could identify several rules of thumb: men easily suffered 
injuries compared to women, and the RNFL was more easily 
influenced than the macula lutea. The data from OCT images, 
fundus photos, and clinical information were used to predict 
BCVA in patients with ocular trauma using the XGB, SVR, 
BYR, and RFR models, and another four models for the 
accomplishment of the classification task. The results reveal 
that these models can predict BCVA in most patients with 
ocular trauma and shows promising performance. As expected, 
the best predictor variables by the auto-selected model were 
including UVA, GOTS, CST, RNFL, RNFL-S, comus[26], ASV-
ANM, and CDR. This outcome coincides with the consensus 
that the VA is closely related to eyeball structure. We can 
observe that the predicted values are well correlated with the 
ground truth values (P>0.7), and the Bland-Altman plot shows 
good consistency between the gold standard and predicted 
values. The XGBoost model had the best performance in 
Group A, and the RFR model had the optimal results in 
Group B. In forensic clinical assessment of visual function, 
the recovery vision after ocular trauma below 0.3 logMAR 
can be used as a basis for assessing the degree of impairment 
and disability. To improve the efficiency and accuracy of 
identifying pseudo visual loss, this experiment was combined 
with the corresponding conditions of the visual function 
assessment, and finally a dichotomous experiment with a 
0.3 logMAR cut-off was performed. From the classification 

results, the XGB model had the highest accuracy in all groups, 
and sensitivity was always greater than specificity in group 
A. We speculate that this is a problem of sample imbalance, 
and we found that in group A, there were more eyes with 
BCVA≤0.3 logMAR than eyes with BCVA>0.3 logMAR, but 
in group B, the increase in the number of healthy eyes leads to 
an increase in the number of eyes with BCVA>0.3 logMAR. 
Finally, to prove the generalization of the model, we combined 
OCT images captured by the two machines to predict VA 
and compared the outcomes with those of groups I and II; no 
significant difference in outcomes predicted and classification 
between each group was observed. We tested the model with 
additional data to determine how well it eventually performed 
the regression and classification tasks, and the test set was 
not involved in the training or gradient descent process of the 
model. It therefore makes sense to use an independent test set 
to test the best model against the best variables, and our results 
show that our model also performs well on the unexposed test 
set. The results of the test dataset showed that the regression 
and classification model also showed a stable and promising 
performance on the test dataset with MAE of 0.20 and RMSE 
of 0.29. The classification performance was also good. 
The advantages of this experiment are as follows. Our 
experiments were designed based on the relationship 
between changes in the eye structure and VA. This innovative 
experimental design may help evaluate VA after injury. We 
divided the data into three groups to avoid errors due to OCT 
images obtained from different systems. Our study has some 
limitations. First, the data extracted from the OCT images and 
fundus photos were artificial, and several effective features 
were lost. Second, the sample size needs to be increased 
to further improve the robustness and generalizability of 
the machine-learning models. Finally, an error between the 
predicted and actual values still exists.
In the future, we plan to directly input OCT images and fundus 
photos into the model for VA prediction and continually 
increase the sample size to optimize the model. It is also 
expected to develop an open platform by using real-world 
clinical data for optimized software, which means inputting 
ophthalmic images into the model to directly obtain the VA 
and assist in accurate diagnosis.
In conclusion, owing to the complex and changeable 
conditions of ocular trauma, the prognosis of vision is difficult 
to clarify. This is based on the relationship between changes 
in eye structure and vision and the increasing application of 
artificial intelligence in ophthalmology. We used four different 
machine-learning models to predict the BCVA and found 
useful variables to predict BCVA. It can be used to predict VA 
and may be helpful for the auxiliary analysis of postoperative 
VA in clinical ophthalmology.
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