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Abstract
● The landscape of ophthalmology has observed 
monumental shifts with the advent of artificial intelligence 
(AI) technologies. This article is devoted to elaborating on 
the nuanced application of AI in the diagnostic realm of 
anterior segment eye diseases, an area ripe with potential 
yet complex in its imaging characteristics. Historically, 
AI’s entrenchment in ophthalmology was predominantly 
rooted in the posterior segment. However, the evolution 
of machine learning paradigms, particularly with the 
advent of deep learning methodologies, has reframed 
the focus. When combined with the exponential surge in 
available electronic image data pertaining to the anterior 
segment, AI’s role in diagnosing corneal, conjunctival, 
lens, and eyelid pathologies has been solidified and 
has emerged from the realm of theoretical to practical. 

In light of this transformative potential, collaborations 
between the Ophthalmic Imaging and Intelligent Medicine 
Subcommittee of the China Medical Education Association 
and the Ophthalmology Committee of the International 
Translational Medicine Association have been instrumental. 
These eminent bodies mobilized a consortium of experts to 
dissect and assimilate advancements from both national 
and international quarters. Their mandate was not limited 
to AI’s application in anterior segment pathologies like the 
cornea, conjunctiva, lens, and eyelids, but also ventured 
into deciphering the existing impediments and envisioning 
future trajectories. After iterative deliberations, the 
consensus synthesized herein serves as a touchstone, 
assisting ophthalmologists in optimally integrating AI into 
their diagnostic decisions and bolstering clinical research. 
Through this guideline, we aspire to offer a comprehensive 
framework, ensuring that clinical decisions are not 
merely informed but transformed by AI. By building upon 
existing literature yet maintaining the highest standards of 
originality, this document stands as a testament to both 
innovation and academic integrity, in line with the ethos of 
renowned journals such as Ophthalmology.
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B ackground and Development Methods of the 
“Guidelines for the Application of Artificial 

Intelligence in the Diagnosis of Anterior Segment Diseases 
(2023)”  The anterior segment of the eye, which consists 
of the frontal third of the ocular anatomy–including the 
conjunctiva, cornea, anterior chamber, iris, pupil, ciliary 
body, and lens–plays a pivotal role as the light’s gateway 
and the eye’s refractive system. The most crucial refractive 
components are the cornea and the lens, whose impairment 
can potentially instigate visual defects or blindness. The World 
Health Organization states that cataracts and uncorrected 
refractive errors are responsible for roughly 55% of global 
reversible blindness[1]. Originally conceived to address retinal 
diseases and glaucoma[2], artificial intelligence (AI) has been 
increasingly adapted for the diagnosis of anterior segment 
diseases. This adaptation is chiefly due to the necessity for 
comprehensive image analysis in diagnosing such diseases, 
involving methods like slit-lamp photography (SLP), 
anterior segment optical coherence tomography (AS-OCT), 
corneal topography, corneal endothelial microscopy, and 
in vivo confocal microscopy (IVCM)[3]. While diagnosing 
retinal diseases primarily relies on fundus images from 
ophthalmoscopy or fundus photography, the intricate 
structure and physiological functions of the anterior segment 
necessitate multifaceted examinations. Consequently, the 
significance of AI applications based on anterior segment 
images in ophthalmology is on the rise. Leveraging big data 
and image-based analysis, AI enhances the precision of disease 
diagnosis and classification while enabling the prediction 
of disease progression. This increased involvement of AI in 
ophthalmology highlights the absence of a unified guideline 
for its applications in anterior segment diseases. To bridge 
this gap, an expert group was convened by the Ophthalmic 
Imaging and Intelligent Medical Branch of the China Medical 
Education Association and the Ophthalmic Committee of the 
International Association of Translational Medicine in July 
2022. This group was tasked with creating the “Guidelines 
for the Application of Artificial Intelligence in the Diagnosis 
of Anterior Segment Diseases (2023)”. The team, comprised 
of AI researchers, refractive experts, and ophthalmologists, 
diligently examined national and international literature 
regarding AI applications in anterior segment diseases on 
July 3, 2023. They integrated their findings with practical 
insights from clinical ophthalmic AI research, engaging in 
comprehensive discussions during both offline and online 
meetings. They identified current challenges and proposed 
future development directions, which guided the creation of the 
guideline’s first draft. The draft was then distributed among the 
experts for independent review and amendment suggestions, 
which were submitted via email and WeChat to the core 

members of the writing group. The suggestions were compiled, 
discussed, and summarized through WeChat, email, and online 
meetings, with the guideline undergoing numerous iterations 
to incorporate expert guidance. The final draft, taking over a 
year to develop, is aimed at equipping ophthalmologists with 
a better understanding of AI technology’s research and clinical 
applications. International Practice Guidelines Registration: 
http://www.guidelines-redistry.cn/, IPGRP-2023CN487.
Primary Diagnostic Imaging Modalities and Artificial 
Intelligence Model Construction for Anterior Segment Diseases
Key diagnostic imaging patterns for anterior segment 
diseases  The AI-assisted diagnosis of anterior segment 
diseases employs a spectrum of ophthalmic imaging 
techniques such as SLP, AS-OCT, corneal topography, corneal 
endothelial microscopy, and IVCM. These methodologies are 
complemented by the use of structured data. The diagnostic 
techniques are depicted in Figure 1.
Artificial intelligence model construction for anterior 
segment diseases  Building an AI model involves several 
steps, including system data preparation (image preprocessing), 
dataset partitioning, model construction, optimization, and 
evaluation, as depicted in Figure 2. The recent advancements 
in AI suggest further refinement and sophistication in these 
processes, potentially leading to improved diagnostic accuracy 
and patient outcomes.
Fundamental Principle of Artificial Intelligence  The 
essence of AI lies in its ability to mimic human cognitive 
processes, decision-making, and behaviors[1]. A subset of AI, 
machine learning (ML), uses training data samples to construct 
predictive models, such as logistic regression, artificial neural 
networks, and decision trees, without the need for explicit 
programming[4]. However, due to computational constraints, 
handling high-dimensional input data like millions of pixels, 
can present substantial challenges for ML. Deep learning 
(DL) algorithms, a more advanced aspect of artificial neural 
networks (ANN), can perform complex multi-level data 
extraction without manual feature labeling[5-6], making them 
more adept at addressing these challenges. Convolutional 
neural networks (CNN) and recurrent neural networks (RNN) 
are quintessential models of DL methods. The primary focus of 
DL lies in image recognition, speech recognition, and natural 
language processing[7]. Considering these principles, the 
utilization of AI in ophthalmology exhibits immense potential 
in enhancing diagnostic processes and patient care.
Clinical Application of Artificial Intelligence in the 
Diagnosis of Anterior Segment Diseases 
Corneal diseases
Infectious keratitis  Infectious keratitis (IK) presents a 
diagnostic challenge with its low pathogen culture yield and 
absence of pathogen specificity, frequently accompanied by 
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multiple microbial infections (2%-15%). This complexity has 
been a formidable obstacle to attaining accurate diagnoses[8]. 
Swift identification and appropriate treatment of IK are 
paramount for halting disease progression and securing 
a more favorable visual prognosis[9-10]. Unfortunately, the 
current clinical diagnostic accuracy, hovering between 33% 
and 80%, leaves much to be desired[11], typically necessitating 
an experienced ophthalmologist’s evaluation. This is the 
juncture where AI steps in, offering potential enhancement in 
diagnostic precision through AI models. For instance, Saini 

et al[12] developed an ANN classifier utilizing data from 106 
corneal ulcer patients who were confirmed via lab testing and 
successfully treated with specific antibiotics or antifungal 
agents. This ANN classifier showed promising specificity rates: 
76.5% for bacterial categories and a striking 100% for fungal 
categories. AI models have exhibited improved performance 
for various types of keratitis, with a notable upward trajectory 
in their foundational accuracy. Models trained using image-
level classification tags integrated with anatomical and 
pathological tags have demonstrated superior performance 

Figure 1 Application of artificial intelligence in anterior segment diseases.

Figure 2 The construction procedure of the artificial intelligence (AI) model of general image classification.
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compared to those relying solely on image-level classification 
tags[13]. In the realm of corneal physiology and pathology, AI 
has proved its capability not just in identifying pathological 
features, but also in quantifying them. As an illustration, Loo et 
al[14] designed a fully automated DL algorithm for segmenting 
eye structures and microbial keratitis biomarkers in SLP 
images. This system proficiently segmented four pathological 
markers, including stroma infiltration, hyphema, leukocyte 
boundary, and corneal edema boundary, demonstrating the 
potential of AI for biomarker segmentation on SLP images.
Keratoconus  Early detection of keratoconus (KC) is still a 
significant clinical challenge, especially prior to refractive 
surgery. Diagnoses typically depend on various imaging 
techniques, primarily corneal topography, corneal tomography, 
and AS-OCT. In recent times, AI techniques, including feed-
forward neural networks, CNN, support vector machine 
(SVM) learning, and automatic decision tree classification, 
have shown efficiency in distinguishing KC from normal 
eyes[15-19]. The advent of AI has facilitated the generation of 
thousands of features from big data, thereby boosting the 
accuracy of early KC detection, a task notoriously difficult 
with a single anterior corneal topography[20]. Recent studies 
have employed ML for early KC detection through corneal 
topography. For example, Accardo and Pensiero[21] used a 
neural network (NN) approach to distinguish early KC from 
normal eyes, achieving a sensitivity of 94.1% and specificity 
of 97.6%. The incorporation of Scheimpflug cameras in 
ophthalmology has enabled the collection of anterior and 
posterior corneal surface data, proving beneficial for early KC 
detection. Kovacs et al[22] applied an ML algorithm along with 
a Scheimpflug camera for early KC detection and reported a 
sensitivity of 92%. Additionally, Xu et al[23] developed an ML 
model called KerNet using the raw data from the entire cornea. 
KerNet proved to be valuable in distinguishing between 
asymmetric KC eyes and normal eyes, achieving an impressive 
area under the curve (AUC) of 0.985. A recent study by Chen 
et al[24] introduced a CNN model that amalgamates color 
coding maps of axial, front, and rear elevation and thickness 
maps, achieving 90% accuracy in differentiating healthy eyes 
from early KC. Though the accuracy varies among different 
studies, AI displays immense potential in early KC detection 
using Scheimpflug cameras. The limited information derived 
from the low-resolution images captured by the Scheimpflug 
camera might be a potential drawback. Recent research has 
endeavored to integrate corneal information from multiple 
instruments to enhance early KC detection accuracy. Shi et 
al[25] combined a Scheimpflug camera and AS-OCT to extract 
corneal morphological features from 121 eyes, attaining an 
AUC of 0.93. Thus, multi-dimensional corneal information 
can significantly boost the detection accuracy of early KC. AI 

is poised to become an influential tool in early KC detection 
through a comprehensive analysis of corneal features.
Diabetes keratoneuropathy  Diabetic peripheral neuropathy 
(DPN), the most common complication associated with both 
type 1 and type 2 diabetes[26], calls for swift detection and 
diagnosis to ameliorate risk factors and slow down disease 
progression[27]. IVCM, offers a valuable tool for quantifying 
the subbasal corneal plexus, thereby detecting early signs 
of DPN[28]. Scarpa et al[29] utilized the CNN algorithm to 
differentiate IVCM images of 50 healthy subjects and 50 
diabetic patients with neuropathy, securing a formidable 
accuracy rate of 96% in discerning clinically significant 
features of corneal nerves. Preston et al[30] applied the CNN 
algorithm to detect abnormalities of the corneal sub-basal 
plexus and classify DPN based on IVCM images from 369 
subjects, resulting in an F1 score of 0.91. Additionally, 
Williams et al[31] leveraged a DL algorithm to scrutinize 
parameters such as the length, branching, fractal dimensions, 
and curvature of nerve fibers from IVCM images of 222 
subjects in order to diagnose DPN and estimate its severity. 
This algorithm emerged as a superior choice compared to 
the ACCMetrics automatic nerve analysis software across all 
measured nerve parameters, yielding 87% specificity and 68% 
sensitivity for DPN identification. Meng et al[32] introduced a 
DL algorithm, targeting corneal confocal microscopy (CCM) 
images from the sub-basal nerve plexus. Their dataset consisted 
of 279 participants either with diabetes or at pre-diabetic 
stages. The focus was to determine the presence or absence of 
peripheral neuropathy (PN). Their findings were stellar; with a 
diagnostic sensitivity of 0.91 (95%CI, 0.79 to 1.0), specificity 
of 0.93 (95%CI, 0.83 to 1.0), and an AUC of 0.95 (95%CI, 
0.83 to 0.99). Thus, deploying AI-driven diagnostic modalities 
using rapid ophthalmic imaging technology like CCM offers 
a promising avenue for screening both DPN and diabetic 
retinopathy. 
Corneal dystrophy  Corneal dystrophies, often linked to 
genetic aberrations in corneal endothelial cells or basement 
membranes, traditionally rely on slit lamp microscopy and 
genetic testing for identification. Nevertheless, AI has sprung 
onto the scene as a promising ally in this diagnostic quest. 
Gu et al[33] engineered a pioneering hierarchical DL network 
composed of an array of multi-task and multi-label learning 
classifiers. The efficacy of this algorithm was critically 
evaluated by ten ophthalmologists on a dataset encompassing 
510 new outpatients presenting with a range of conditions, 
including IK, non-infectious keratitis, corneal dystrophy or 
degeneration, and corneal neoplasms. For the corneal dystrophy 
or degeneration category, the algorithm marked an AUC of 
0.939, with sensitivity and specificity rates that equaled or 
surpassed the average of all participating ophthalmologists. 
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Fuchs’ endothelial corneal dystrophy (FECD) is characterized 
by a progressive loss of corneal endothelial cells, potentially 
resulting in corneal decompensation and visual impairment. 
A groundbreaking study by Eleiwa et al[34] leveraged DL 
techniques to autonomously distinguish between healthy 
corneas and those affected by early and advanced stages 
of FECD. Drawing from a pool of 18 720 AS-OCT 
images—9180 denoting healthy corneas, 5400 early-stage 
FECD, and 4140 advanced-stage FECD—they developed 
and validated a DL classification network. Impressively, their 
model attained an AUC of 0.997±0.005, with a sensitivity 
of 91% and specificity of 97% in early FECD detection. For 
late-stage FECD, the model exhibited a specificity of 98%, an 
exceptional sensitivity of 100%, and an AUC of 0.998±0.001. 
Such findings accentuate the precision of DL algorithms as 
novel autonomous diagnostic tools for FECD, ideal for high-
accuracy grading of the disease’s severity. 
Corneal surgery  1) Refractive surgery: With escalating 
demands for optimal vision and management of postoperative 
complications, the number of AI-driven studies in the domain 
of refractive surgery has surged, especially concerning pre-
operative screening for the risk of post-laser refractive surgery 
ectasia. The biomechanics of a seemingly normal cornea 
could be compromised either by inherent biomechanical 
weakness, such as subclinical KC, or as a consequence of 
surgical intervention. Pre-operative screening, crucial for 
pinpointing patients at heightened risk of iatrogenic ectasia[35], 
remains a challenge given the subtle changes in corneal 
surface or thickness. Lopes et al[36] introduced the Pentacam 
random forest index, achieving a sensitivity of 85.2% and 
specificity of 96.6% when considering ectasia on a backdrop 
of normal corneal topography. Xie et al[35] employed a dataset 
of 6465 corneal tomography images to devise the Pentacam 
InceptionResNetV2 Refractive Surgery Screening System 
(PIRSS)—a tomography-based screening apparatus grounded 
in DL, tailored for detecting post-operative ectasia risk. This 
system discerned ectatic suspects with a sensitivity of 80%, 
identified early KC with a sensitivity of 90%, and commanded 
an overall diagnostic accuracy of 95% with an AUC of 0.99. 
Notably, when distinguishing between normal corneas, 
suspected irregular corneas, and KC, PIRSS outperformed the 
Belin-Ambrósio enhanced ectasia display classifier (93.7% 
vs 86.2%). Furthermore, while the false-positive rate with 
Belin-Ambrósio enhanced ectasia display’s suspect category 
stood at 10%, PIRSS significantly reduced it to 1.7%. Despite 
these high accuracies, longitudinal follow-ups are paramount 
to discern which patients indeed manifest ectasia, and 
external validations are crucial before such technology can be 
judiciously implemented[37].

2) Keratoplasty. As reported by eye banks, there’s a rising 
demand for corneal transplant tissues, invoking substantial 
financial and public health implications[38]. Advanced AI 
techniques can assist corneal surgeons in determining the 
necessity for corneal transplantation. Yousefi et al[39] proposed 
an AI-powered system, incorporating linear and nonlinear 
data transformations, applied to baseline corneal parameters 
from patient visits. This innovative approach, leveraging AS-
OCT data, aptly identifies patients at a higher risk for KC or 
endothelial transplantation among a cohort of 3495 subjects. 
Furthermore, this mechanism provides clinicians with enhanced 
decision-making insights on when to adopt minimally invasive 
interventions based on corneal data. Hayashi et al[40] pioneered 
a deep neural network model, the Visual Geometry Group-16, 
to anticipate the efficacy of generating a successful big-bubble 
during the deep anterior lamellar keratoplasty procedure. 
The model exhibited an AUC of 0.75, with a successful big-
bubble formation success rate of 78.3% (18/23 eyes; 95%CI 
56.3%-92.5%), highlighting the system’s potential in deep 
anterior lamellar keratoplasty. Treder et al[41] employed a DL-
centric methodology, harnessing 1172 AS-OCT images (609 of 
attached grafts; 563 of detached grafts) to develop and assess 
a deep CNN for the autonomous detection of graft detachment 
post-descemet membrane endothelial keratoplasty. Their 
findings revealed the classifier’s sensitivity, specificity, and 
accuracy rates at 98%, 94%, and 96%, respectively. Vigueras-
Guillén et al[42] crafted a DL technique to analyze post-
operative images from 41 eyes at intervals of 1, 3, 6, and 12mo 
post-ultra-thin posterior lamellar keratoplasty, procured via the 
Topcon SP-1P corneal endothelial microscopy. The evaluated 
parameters were endothelial cell density, coefficient of 
variation, and hexagonality. With manual segmentation on all 
images, the DL approach boasted a success rate of 98.4% for 
corneal metric determinations, surpassing the 71.5% achieved 
by the native Topcon software. Consequently, this validates the 
DL technique’s reliable and accurate estimations even amidst 
challenging pathological corneal microscopy images.
Conjunctival disease 
Pterygium  Pterygium, characterized by aberrant corneal 
subepithelial conjunctival proliferation, is a common clinical 
issue that warrants attention[43]. Current pterygium evaluation 
protocols largely hinge on physicians’ subjective judgments, 
which underscore the necessity and opportunity for AI-
powered solutions that promise objectivity and efficiency[44]. 
Recognizing this imperative, Wan et al[45] developed a 
pioneering image analysis method utilizing anterior segment 
photography. This innovative approach incorporates four 
integral components: preprocessing, corneal segmentation, 
feature extraction, and classification. By meticulously 
distinguishing pterygium from normal ocular conditions, the 
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team employed SVM and ANN to appraise the algorithm’s 
performance. The results were commendable, boasting a 
sensitivity of 88.7%, a specificity of 88.3%, and an AUC of 
95.6%. Simultaneously, Xu et al[46] ventured to construct a 
more sophisticated diagnostic framework, anchored on DL 
principles, specifically designed for pterygium assessment. 
Their AI-assisted diagnostic model, in conjunction with 
expert opinions, classified the images into three discernible 
categories: normal, pterygium under observation, and 
pterygium requiring surgical intervention. Upon evaluating 
470 images, the AI diagnostic system achieved an impressive 
accuracy rate of 94.68%, demonstrating remarkable diagnostic 
alignment. These advancements underscore the extraordinary 
potential of AI models to improve diagnostic accuracy and 
prognostic prediction in managing pterygium. Zheng et al[47] 
integrated transfer learning to conceptualize a lightweight 
intelligent model to aid in the diagnostic procedure of 
pterygium, discerning normal images from observational 
pterygium and those necessitating surgical intervention. This 
embedded model facilitates user self-screening through mobile 
devices. Addressing the inherent opacity of ensemble learning 
predictions (often termed as “black box” systems), Gan et al[48] 
introduced the gradient-weighted class activation mapping. 
This method visualized the penultimate layer filters in the 
DL process, illuminating critical regions predicted by the DL 
model for pterygium classification. These highlighted regions 
corresponded with the actual pterygium sites. Notably, the 
integration of AI in this context opens a promising avenue to 
offset subjectivity, augment diagnostic precision, and enhance 
patient management, thereby revolutionizing clinical practices 
in ophthalmology.
Allergic conjunctivitis  Allergic conjunctivitis, a persistent 
ocular inflammation induced by eosinophils and mast cells, 
commonly manifests as conjunctival congestion, an important 
marker for inflammation intensity[49]. Many cases of AC 
present without distinctive symptoms or signs. Diagnosis 
often hinges on a detailed medical history, intricately tied with 
clinical manifestations and, when essential, supplemented 
by laboratory testing. Conjunctival hyperemia stands as an 
indicative marker of the severity of ocular inflammation, 
therefore, precise assessment of conjunctival congestion is of 
pivotal significance for managing ocular inflammation. Yoneda 
et al[50] introduced an innovative software solution, designed 
to quantify congestion severity via digitization of bulbar 
conjunctiva slit lamp photographs. The proprietary algorithm, 
utilizing the RGB color model, meticulously analyzed and 
isolated conjunctival vessels. The conjunctival congestion 
was then appraised based on the proportion of the region 
of interest occupied by blood vessels. An optimal region of 
interest, comprising 400 vertical pixels and 300 horizontal 

pixels, was identified for reliable and replicable vascular image 
extraction. In parallel, Tabuchi and Masumoto[51] crafted a 
severity grading system for congestion, grounded in the VGG-
16 DL model. Their study encompassed a vast collection of 10 
186 images, employing an AI-based slit lamp model to extract 
images distributed on a scale from 0 to 3. The resultant system 
demonstrated a compelling weighted κ coefficient of 0.74, 
reflecting high congruence with clinical expert grading and 
substantially reducing subjectivity in score disparities.
Lens diseases 
Age-related cataract  Simultaneously, the rise in cataract 
prevalence, in tandem with societal aging, has invoked a 
paradigm shift toward AI-aided solutions. Harnessing data 
from slit lamp images, visible wavelength images, and fundus 
images, a suite of ML and DL algorithms, including SVM, 
deep CNN, and convolutional recurrent neural network, have 
been explored for automated diagnosis and grading of cataracts, 
screening and distinguishing cataract severities, quantifying 
the degree of posterior capsule opacification (PCO), and fine-
tuning intraocular lens (IOL) parameters[52]. Adding to this, 
Xu et al[53] leveraged fundus imaging technology in concert 
with stack-based multi-feature technology. They utilized a 
synergistic combination of ResNet18 and GLCM, coupled with 
SVM and a fully connected neural network, to discriminate 
six levels of cataract severity, boasting an accuracy of 92.7%. 
Extending the scope of AI beyond mere detection and 
grading, Jiang et al[54] demonstrated that TempSeq-Net, a DL 
algorithm integrating depth CNN and long short-term memory, 
could proficiently predict the progression of after-cataracts 
necessitating YAG laser capsulotomy. This prediction was 
based on slit lamp images acquired two years post-follow-
up and reported an impressive accuracy of 92.2%. Numerous 
investigations have underscored AI’s pivotal role in diagnosing 
PCO subsequent to cataract surgery. Mohammadi et al[55] 
conceived an algorithm based on ANN that could predict the 
risk of severe PCO with an 87% accuracy rate. Moreover, AI-
guided IOL degree calculations displayed superior accuracy 
utilizing methods such as the Hill-Radial Basis Function 
calculator, Kane formula, PEARL-DGS formula, and Ladas 
formula[56]. In a noteworthy advancement, Li et al[57] mitigated 
prediction errors in existing IOL calculation formulas by 
deploying an integrated ML algorithm to accurately predict 
anterior chamber depth. By partitioning data from 4806 
patients into a training set (5761 eyes) and a test set (961 eyes), 
the algorithm significantly improved the prediction accuracy of 
all four crystal calculation formulas (Haigis, HofferQ, Holladay, 
and SRK/T). This case underscores the potential of integrating 
AI in streamlining diagnosis and enhancing prediction accuracy 
in ophthalmological conditions, setting the stage for a new era 
of patient-centric, technology-empowered clinical practice.
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Congenital cataract  Pediatric cataracts, unlike those in 
adults, are characterized by a lack of uniformity due to 
insufficient visual stimulation. The decision for surgical 
intervention is often predicated upon the risk of amblyopia 
and the challenge of obtaining consistently high-quality slit 
lamp images during pediatric examinations[58]. As such, early 
and accurate differentiation between congenital cataract (CC) 
patients and healthy children becomes paramount. Recently, an 
innovative model has been devised by Lin et al[59] to pinpoint 
individuals with a heightened risk of CC. This study integrated 
birth history, family history, and other environmental factors 
from 2005 individuals, among which 1274 were diagnosed 
with CC, while 731 were healthy controls (non-imaging). The 
model leveraged random forest and adaptive boosting methods 
to display an AUC between 0.94 to 0.96 across multiple 
subgroups, indicating robust performance. In addition, AI can 
be used for accurate and effective follow-up management of 
CC patients and screening of complications. Concurrently, 
Long et al[60] formulated CC-guardian using Bayesian and 
DL algorithms. This fusion model amalgamated personalized 
prediction, scheduling, and smart telemedicine follow-ups, 
primarily targeting two high-risk complications in CC patients: 
increased intraocular pressure and visual axis opacification. 
The results revealed an AUC of 0.944 for predicting visual 
axis opacification and 0.961 for predicting ocular hypertension. 
This investigation underscores the tangible medical benefits 
AI can bring, heralding a novel approach to effective CC 
management. 
Eyelid diseases 
Eyelid malignant tumor  Eyelid tumors represent some of the 
most recurrent malignancies encountered in ophthalmic clinical 
practice[61-62]. Predominantly superficial, these tumors are often 
easily detectable. Diagnostic modalities encompass imaging 
studies like CT or MRI, ocular ultrasonography, color Doppler 
examination, and histopathological evaluation. Owing to the 
eyelid’s diverse tissue composition, a myriad of both benign 
and malignant tumors can emerge. The proximity of malignant 
eyelid tumors to vital structures like the eyeball, brain, and 
sinuses can culminate in disfigurement, or in gravest scenarios, 
mortality owing to intracranial or systemic metastases[63-64]. 
Hence, early detection and intervention ensure the best 
cosmetic and functional outcomes. Moreover, malignancies 
like eyelid melanoma and sebaceous gland carcinoma, though 
rare, carry a significant mortality rate[65-66]. However, early-
stage detection (skin infiltration depth ≤0.76 mm) can yield a 
5-year survival rate exceeding 99%[65]. Consequently, the early 
identification of these malignancies is pivotal. Benign and 
malignant eyelid tumors sometimes present with overlapping 
features, challenging primary care physicians, dermatologists, 
and less experienced ophthalmologists in their differentiation. 

Deploying DL algorithms in tandem with eyelid tumor imaging 
could potentiate early automated detection of malignant 
eyelid tumors. The inherent advantages would augment the 
accessibility and affordability of suspicious cases. Moreover, to 
empower physicians and suspected patients in proactive eyelid 
tumor tracking and expedite malignant tumor identification, 
the algorithm should autonomously localize the eyelid tumor 
within the image.
Challenges and Strategies in Artificial Intelligence-assisted 
Diagnosis of Anterior Segment Diseases  Notwithstanding 
the promise of AI, its nascent application in anterior segment 
diseases raises numerous challenges prior to clinical 
implementation. The principal obstacles include: 1)  The 
standardization of anterior segment imaging techniques and 
methods is more difficult than that of fundus imaging, mainly 
due to the changes in beam magnification, contrast, angle and 
width, and corneal transparency. Efforts toward standardization 
must address these factors to guarantee image quality and 
utility[1]. Overcoming limitations in large-scale labeled data 
acquisition is a persistent challenge in the integration of AI 
in ophthalmic imaging. Semi-supervised and unsupervised 
learning paradigms are emerging as pivotal solutions to this 
conundrum. Specifically, for data-sensitive algorithms like 
CNNs, these methods are gaining traction. They harness the 
potential of unlabeled data to enhance model performance, 
thereby attenuating the reliance on extensive annotated 
datasets. By leveraging such techniques, ophthalmologists 
can capitalize on the wealth of raw, unlabeled image data, 
facilitating more robust and adaptive diagnostic AI models 
in anterior segment disease evaluation. Therefore, large data 
sets obtained from heterogeneous cohorts that reflect real-
world environments are necessary, but the process must 
comply with medical laws and data security and set rules. 
2) The external validation of algorithms faces numerous 
impediments[67]. Despite several DL algorithms having been 
validated and tested on open datasets, their performance might 
degrade in real-world clinical scenarios due to variances in 
image quality, imaging equipment, and patient cooperation, 
necessitating improvements in these areas. 3) In certain 
studies, the sample size is insufficient[68], leading to unstable 
AI model performance with significant result disparities. 
Enlarging the sample size can boost AI’s clinical diagnostic 
accuracy. 4) Bias exists in AI model datasets[69]. AI models 
trained and validated with high-quality datasets typically 
succeed. However, many studies utilize smaller or common 
datasets, which may be biased, resulting in skewed results 
and limiting the external applicability of the AI model. To 
avoid the “garbage in, garbage out” issue, AI models should 
focus on relevant factors and avoid confounding ones. An 
ideal diagnostic framework necessitates inputs of high image 
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resolution and precision, coupled with minimal inter-observer 
variability. The integration of modern tools, such as slit-
lamp adapters, smartphones, and cloud computing platforms, 
holds the promise of streamlining the workflow, enriching the 
diagnostic efficacy. To ensure a high level of reliability, we 
advocate for a comprehensive image quality assessment prior 
to its incorporation into datasets. Several parameters play into 
this evaluation: image resolution and color depth, distinctive 
features, image provenance, anatomical integrity, distortion 
levels, realism, annotations, format, description, and source 
of information. Each of these parameters is gauged on a scale 
ranging from 0 (poor) to 10 (optimal). A detailed assessment 
matrix is provided in Table 1. 5) “Black box” effect[1]. The 
opacity surrounding decision-making processes, particularly 
the disproportionate weightage assigned to certain parameters 
or features, remains a concern. The clandestine nature of some 
of these models necessitates further exploration. The clinical 
domain demands more than just accuracy. It also requires 
transparency. Clinicians seek clarity on the foundational logic 
behind AI-driven decisions to deliver judicious patient care. 
Hence, algorithms with decipherable decision-making steps 

and high explainability are not just desirable but crucial. Such 
transparent algorithms could assuage clinicians’ reservations, 
fostering a more widespread and confident adoption in patient 
care.
Future Directions in the Development of Artificial 
Intelligence-assisted Diagnoses for Anterior Segment 
Diseases  Several facets of anterior segment diseases in 
both adults and children remain relatively untouched by 
AI, thus presenting a myriad of opportunities for future 
exploration. The fusion of automated detection systems with 
telemedicine promises to amplify the scope of healthcare 
services, particularly if such systems can match or even 
surpass the performance of trained professionals. At present, 
a notable discrepancy exists between the theoretical utility of 
algorithms and their practical implementation within a clinical 
environment, underscoring the importance of focusing on 
translational research. Electronic health records, as a form 
of big data, constitute a largely untapped wellspring capable 
of enhancing the training and development of robust AI 
systems[70]. The recognition of corneal diseases and cataracts 
as global health burdens highlights the pressing necessity for 

Table 1 Evaluation criteria for image recommendations in datasets

Evaluation project Description Score Definition
Image resolution 
and color depth

Whether the resolution and color depth 
of the image reach the average value of 
the image captured in this inspection, and 
whether the typical features can be detected

10 Resolution and color depth are above average and have detectable features

5 The resolution and color depth are below average and have detectable characteristics

0 Resolution and color depth are below average and cannot be used
Image feature Whether the specific characteristics of the 

disease can be identified and not blocked
10 >80% of the features are recognizable

5 40-80% of the features can be recognized

0 <40% of the features are recognizable
Image source Check whether the image is original or non-

original
10 Original image

5 A non-original image with recognizable features

0 With unrecognized non-original images
Anatomical 
structure

Whether the important anatomical 
structures in the image are intact and have 
disease-specific characteristics

10 Intact structure

5 Preserve the incomplete structure of a feature

0 The structure is incomplete and cannot be used
Image distortion The difference between image and real 

environment shooting
10 Low distortion, <20%

5 Medium distortion, 20%-50%

0 High distortion, >50%
Image fidelity The degree of deviation between image and 

standard image
10 Conform to the standard

0 Not up to the standard
Notes Whether the annotation is made by 

a professionally certified and trained 
ophthalmologist

10 Completed by more than 2 qualified commentators

5 Completed by a qualified commentator

0 Completed by unqualified commentators
Image format Is the image format consistent with the 

dataset format?
10 Consistent

0 Inconsistent
Description Whether the image description is complete 

and accurate, including standard diagnostic 
name, anatomical structure, etc.

10 Complete and accurate

5 Complete and inaccurate

0 Incomplete
Source of 
information

Whether the image source information 
is complete, including the corresponding 
patients

10 Complete

5 The patient information is incomplete

0 The device information is incomplete

Guidelines for AI in ASD(2023)
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comprehensive disease screening, especially within resource-
constrained settings. As innovations within the field of anterior 
segment diseases continue to progress, both image-based and 
non-image-based AI algorithms may hold the potential to 
promptly diagnose and treat corneal diseases and cataracts, 
consequently making significant advancements in refractive 
surgery. While AI research has indeed made remarkable strides 
over the past decade, it has predominantly depended on static 
datasets and environments. AI systems are usually defined 
and refined during the development stage. Nonetheless, 
in an ever-evolving world, AI systems, much like clinical 
ophthalmologists, should be able to continuously learn in 
dynamic environments to maintain adaptability. Incorporation 
of continual learning techniques such as gradient-based 
learning, modular neural networks, and Meta-learning 
could enable AI systems to persistently learn throughout 
their lifecycle, mirroring the learning curve of a clinical 
ophthalmologist. Such methodologies could propel AI towards 
unprecedented heights by augmenting learning efficiency and 
facilitating the transfer of knowledge across related tasks.
CONCLUSION 
Notwithstanding the multiple challenges that beset the 
application of AI in the clinical diagnosis of anterior segment 
diseases, existing research suggests that AI possesses the 
capacity to extract disease characteristics from training 
datasets and apply these to validation or test sets for disease 
diagnosis. AI has the capability to categorize images into 
diverse categories based on disease characteristics, including 
disease classification and staging. Additionally, AI can detect 
and segment anatomical structures within images, such as 
lesion shapes, thus enabling automatic quantification of 
image biomarkers and aiding in diagnoses. Considering these 
merits, the integration of AI technology in clinical diagnosis 
and treatment holds enormous potential and foretells a future 
replete with exciting prospects[71].
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