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Abstract
● With the rapid development of computer technology, the 
application of artificial intelligence (AI) to ophthalmology 
has gained prominence in modern medicine. As modern 
optometry is closely related to ophthalmology, AI research 
on optometry has also increased. This review summarizes 
current AI research and technologies used for diagnosis 
in optometry, related to myopia, strabismus, amblyopia, 
optical glasses, contact lenses, and other aspects. The aim 
is to identify mature AI models that are suitable for research 
on optometry and potential algorithms that may be used in 
future clinical practice.
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amblyopia; optometry
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INTRODUCTION

O ptometry is an interdisciplinary field that combines 
modern optical technology with ophthalmology 

and uses principles and technologies of modern optics to 
overcome visual obstacles. It is a medical specialty that blends 
classic traditional practices and modern high-technology 
characteristics. Modern optometry is also closely related to 
ophthalmology. The strategic combinations in optometry have 
opened an avenue for a holistic and comprehensive approach 
to ophthalmic clinical services[1]. Various ocular health 
problems concern optometry, including visual problems during 
rehabilitation from eye diseases, visual quality of modern 
surgical and non-surgical ametropia correction, and exploration 
of the etiology and mechanisms of functional eye diseases (e.g., 
myopia)[2].
With the rapid development of capable algorithms and 
increasing computing power, medical artificial intelligence 
(AI) has experienced an explosive growth in recent years. 
AI allows to extract features from unexpected sources and 
draw connections that humans overlook or cannot detect[3]. In 
ophthalmology and optometry, which are important branches 
of clinical medicine, several image and non-image data 
resources are available to constitute a good foundation for AI 
applications. Although research on AI was initially focused on 
ophthalmology[4], more studies are being devoted to applied AI 
in optometry for the prevention and correction of conditions 
such as myopia, strabismus, and amblyopia. In this review, we 
summarize and analyze recent research achievements of AI-
aided technology in optometry related to myopia, strabismus, 
amblyopia, optical glasses, contact lenses, surgical treatment 
of refractive error, and other visual corrections.
SEARCH METHODS
A systematic literature search was performed on PubMed 
and the Web of Science. We aimed to retrieve studies on the 
application of AI to optometry. As keywords, we considered 
all combinations of optometry, refractive error, ametropia, 
myopia, hyperopia, astigmatism, amblyopia, strabismus, 
low vision, glasses, orthokeratology (OK), contact lens, and 
refractive surgery with artificial intelligence, machine learning 
(ML), deep learning (DL), convolutional neural network 
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(CNN), and decision tree. No limitations regarding the 
publication date were applied to the search.
ARTIFICIAL INTELLIGENCE APPLICATION IN 
MYOPIA
Worldwide, myopia is a leading cause of visual impairment 
characterized by uncorrected refractive errors[5-6]. In 2020, 
approximately 161 million people had moderate to severe 
vision impairment or blindness due to uncorrected refractive 
errors, which are the leading cause of vision impairment[6]. 
Sixty years ago, 10%–20% of the Chinese population had 
myopia. Nowadays, up to 90% of teenagers and young adults 
wear glasses, becoming the rule instead of the exception in 
settings such as Chinese universities[7]. Moreover, the risk of 
children developing high myopia has become a great concern 
among parents[8], with thousands seeking care at optometric 
and ophthalmic clinics annually around China. This may lead 
to a substantial healthcare burden that the current infrastructure 
might struggle to handle. As a greater proportion of young 
individuals develop high myopia, there is a higher risk of 
developing visual impairment and blinding complications, 
including retinal detachment, glaucoma, macular degeneration, 
and macular neovascularization[9].
AI can be used to accurately identify individuals at early risk 
to provide personalized treatments and simplify the allocation 
of medical resources. Table 1 mainly reviews the application 

of AI in the prediction, screening and diagnosis of myopia.
For the accurate prevention and control of myopia, AI models 
can predict development trends based on genetic factors, living 
environment, and eye habits in adolescent myopia patients 
through regular routine refractive examination and big data 
comparisons. In 2018, Lin et al[10] proposed a big data and 
ML approach to predict the onset of high myopia among 
Chinese school-aged children at specific future dates. This 
study provided evidence for transforming clinical practice, 
health policy-making, and precise individualized interventions 
regarding the practical control of myopia in school-aged 
patients. Yang et al[11] provided a systematic solution that 
included feature selection, data cleaning, and model training. A 
series of protective and risk factors for myopia were screened, 
and a risk prediction model based on a support vector machine 
(SVM) was obtained for accurately predicting the occurrence 
of myopia in the future. Li et al[12] investigated risk factors for 
myopia progression in primary school students and established 
a prediction model by applying ML to longitudinal cycloplegic 
autorefraction data. AI models can accurately predict the 
development of myopia in children. Wu et al[13] developed an 
AI system that could predict optical coherence tomography 
(OCT)-derived high myopia grades based on fundus images. 
This system may reduce the costs of patient follow-ups and 
is suitable for application in less developed areas, where only 

Table 1 The application of AI in the prediction, screening and classification of myopia
Authors, year Modalities Sample size Databases Algorithms AUC (%) Accuracy (%) Sensitivity (%) Specificity (%)

Lin et al[10], 2018 Medical records - High myopia RF 80.2-88.8 - - -

Yang et al[11], 2020 Original data - Myopia GBRT/SVM 97.0 93.0 94.0 94.0

Li et al[12], 2022 Cycloplegic autorefraction data - Myopia RF - >80.0 - -

Wu et al[13], 2022 Fundus images 1854 High myopia CNN/TL 89.5-96.9 85.3-92.4 72.5-92.2 91.5-98.1

Yang et al[14], 2020 Ocular appearance images 2350 Myopia DCNN 92.7 - 81.1 86.4

Choi et al[15], 2021 OCT 690 High myopia CNN 99.0 100.0 - -

Sogawa et al[16], 2020 OCT 910 MM CNN 97.0-100.0 67.6-96.5 90.6-100.0 94.2-100.0

Hemelings et al[17], 2021 Fundus images 1200 PM CNN 98.7 - - -

Du et al[18], 2021 Fundus images 7020 PM EfficientNet 88.1-98.2 92.1 37.8-87.2 94.5-98.3

Lu et al[19], 2021 Fundus images 1000 PM CNN 99.5 97.4 93.9 98.2

Tan et al[20], 2021 Fundus images 226686 High myopia and MM CNN 91.3-97.8 - 88.0-95.2 72.9-91.4

Ye et al[23], 2021 OCT 2342 PM CNN 92.7-97.4 - 73.9-92.8 84.8-94.0

Kim et al[25], 2021 OCT 860 PM SVM 82.8-86.8 84.5-91.5 77.5-80.0 88.1-93.6

Wan et al[26], 2021 Fundus images 758 The risk of high myopia DCNN 99.7 98.2 95.2-100.0 97.9-100.0

Lu et al[27], 2021 Fundus images 16428 PM DL 99.3 97.7 97.7 97.2

Li et al[21], 2022 OCT 5505 Myopic vision- threatening 
conditions

CNN 96.1-99.9 - 90.0-100.0 90.5-96.5

Li et al[22], 2022 Fundus images 36515 PM DCNN 97.0-99.8 93.0-96.9 90.8-93.3 98.7-99.6

Park et al[24], 2022 OCT 367 PM CNN 95.0-98.0 86.0-95.0 85.0-93.0 88.0-96.0

Wang et al[28], 2023 Fundus images 10347 MM and PM CNN/TL 95.0-100.0 93.2-99.8 90.8-96.8 93.3-99.9

AUC: Area under the curve; RF: Random forest; TL: Transfer learning; GBRT: Gradient boosting regression tree; SVM: Support vector machine; 

CNN: Convolutional neural network; DCNN: Deep convolution neural network; PM: Pathological myopia; MM: Myopic maculopathy; OCT: 

Optical coherence tomography; DL: Deep learning; Original data: Students’ individual activity, their own eye condition, parental heredity, 

individual physiology, eye habits, environment, diet and so on.
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fundus images but not OCT scans can be acquired. Yang et 
al[14] applied an AI system to myopia screening using ocular 
appearance images and achieved a high screening accuracy, 
enabling remote monitoring of the refractive status in children 
with myopia. Choi et al[15] verified and evaluated a DL model 
for screening high myopia using spectral-domain OCT. An 
AI model based on ResNet50 showed comparable diagnostic 
performance to retinal specialists.
In addition to myopia screening, AI has been applied to 
pathologic myopia. In 2020, Sogawa et al[16] developed an 
AI model to accurately distinguish OCT images without 
and with myopic macular lesions, such as myopic choroidal 
neovascularization and retinoschisis. Hemelings et al[17] 
applied a CNN to establish a high-myopia AI model and 
automatically segmented and graded related lesions, 
obtaining an area under the curve up to 0.9867. Du et al[18] 
developed an AI algorithm to identify the features of myopic 
maculopathy for its automatic classification. The algorithm 
achieved high sensitivity and specificity for identifying 
specific myopic maculopathy lesions. Lu et al[19] developed 
DL algorithms and AI models for automatic pathologic 
myopia identification, myopic maculopathy classification, 
and “plus” lesion detection on retinal fundus images. Tan 
et al[20] developed and tested retinal-photograph-based DL 
algorithms for detecting myopic maculopathy and high 
myopia. They also used blockchain technology for data 
transfer and model transfer and testing between sites and 
across two countries. Li et al[21] developed an AI system that 
could identify the four vision-threatening conditions in high 
myopia: retinoschisis, macular hole, retinal detachment, and 
pathological myopic choroidal neovascularization. Li et al[22] 
designed a dual-stream deep CNN that perceived features 
from original images and corresponding processed images 
by color histogram optimization for classifying no myopic 
maculopathy, tessellated fundus, and pathologic myopia. Ye 
et al[23] developed a CNN-based AI system for the detection 
and classification of myopic maculopathy in patients with high 
myopia using OCT macular images. Their system achieved 
a sensitivity equal to or even better than that of junior retinal 
specialists. Park et al[24] developed an AI algorithm that used 
three-dimensional OCT volumetric images to automatically 
diagnose patients with pathologic myopia. The model was 
developed using transfer learning based on four pretrained 
CNNs, namely, ResNet18, ResNext50, EfficientNetB0, and 
EfficientNetB4. The model based on EfficientNetB4 showed 
the best performance in identifying pathologic myopia. 
Kim et al[25] proposed an SVM classifier with radial basis 
function kernel using a dataset of posterior globe tomographic 
measurements to predict the presence of pathologic myopia. 
Only six features were used in their model to achieve 91.47% 

accuracy and an area under the curve of 0.865. Wan et al[26] 
used deep convolution neural network (DCNN) to grade 
the risk of developing high myopia. The input images were 
automatically classified into three categories: normal fundus 
images (class 0), low-risk high myopia images (class 1), 
and high-risk high myopia images (class 2). According to 
the results of fivefold cross-validation, the average accuracy 
reached 98.15%. Lu et al[27] designed various AI systems 
to detect pathologic myopia and myopic macular lesions 
according to a recent International Photographic Classification 
System based on color fundus images. Their performance was 
comparable to that of general ophthalmologists and retinal 
specialists. Wang et al[28] developed an AI model for the 
detection and classification of myopic macular lesions based 
on fundus images. Its performance was comparable to that 
of experts and could assist ophthalmologists by reducing the 
workload and saving time during large-scale myopia screening 
and long-term follow-ups.
Overall, AI can be applied to myopia in various ways. 
Currently, AI research is mainly focused on the classification 
and prediction of myopia. However, these efforts have not 
yet translated into clinically relevant and viable solutions. 
Deeper collaborative research should be conducted in 
combination with the development of robust datasets toward 
implementations in clinical practice.
ARTIFICIAL INTELLIGENCE APPLICATION IN 
STRABISMUS
Strabismus is a clinical condition in which the visual axis 
deviates in either eye. It can be caused by monocular 
abnormalities in both eyes or by abnormalities in the optic 
nerve muscles that control the eye movements or various 
mechanical restrictions. Strabismus affects approximately 
0.8%–6.8% of the world’s population and appears by the 
age of 3y in 65% of the affected individuals[29-31]. Strabismus 
impairs the quality of life of preschool children and is a major 
cause of binocular vision impairment and visual function 
abnormalities[32]. Therefore, early strabismus diagnosis is 
necessary for its prevention. Conventional methods for 
strabismus diagnosis, such as the alternate prism cover test 
and Hirschberg and Krimsky tests, require the judgment of 
a professional ophthalmologist, thus being time-consuming 
and expensive[33-34]. Recently, automated strabismus screening 
using digital images has become a research hotspot to aid 
ophthalmologists in diagnosing strabismus faster, more cost-
effectively, and more accurately. Table 2 lists AI applications 
in strabismus diagnosis.
Zheng et al[35] developed and evaluate DL algorithms that 
screen referable horizontal strabismus in children’s primary 
gaze photographs. The DL algorithm's performance (with an 
accuracy of 0.95) in diagnosing referable horizontal strabismus 
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was better than that of the resident ophthalmologists (with 
accuracy ranging from 0.81 to 0.85). Chen et al[36] used eye 
tracking data and a CNN to identify strabismus. First, an 
eye tracker was used to record the eye movements of the 
participants. A gaze deviation image was then constructed to 
represent the subjects’ eye tracking, and a CNN trained on the 
large ImageNet dataset was used to extract features from the 
gaze deviation image for strabismus recognition, achieving an 
accuracy of 95.2%. de Figueiredo et al[37] developed a mobile 
application to evaluate eye movements. The application 
showed an overall accuracy of 42%–92%, and it established a 
convenient and quick tool to accelerate the clinical diagnosis 
of strabismus.
Despite the available developments, further exploratory 
research and validation are required. Mao et al[38] constructed 
an AI system consisting of three DL models for strabismus 
diagnosis, angle evaluation, and operation planning based on 
corneal light-reflection photographs. The system was trained 
and validated using a retrospective development dataset. On 
the retrospective test sets, the system detected strabismus with 
a sensitivity of 99.1%, specificity of 98.3%, and area under 
the curve of 0.998. Huang et al[39] used a CNN face detection 
model and detector of 68 face marker points for eye region 
extraction from frontal face images (Figure 1). The deviation 
in the positions on both sides was compared for strabismus 
screening by calculating the distance from the center of 
the pupil to the inner and outer canthus. The algorithm 
determined that the deviation of iris position on both sides 

was significantly smaller in normal subjects than in strabismus 
patients (P<0.001).
ARTIFICIAL INTELLIGENCE APPLICATION IN 
AMBLYOPIA
Amblyopia is the loss of best-corrected visual acuity in one 
or both eyes caused by abnormal visual experiences during 
visual development, presenting as a non-organic pathology 
on ocular examination. Amblyopia is the leading cause of 
visual impairment in children worldwide, affecting 1%–6% 
of that population[40-41]. If left untreated, amblyopia can lead 
to complete blindness. In addition, amblyopia treatment is 
limited by age (visual maturity). Therefore, early screening 
for amblyopia risk factors is essential for successful 
recovery[42]. Amblyogenic risk factors include refractive error, 
anisometropia, strabismus, ptosis, media opacities, and form 
deprivation[43-44]. Photographic screening is an effective method 
for the objective screening of refractive errors and amblyopia. 
The use of AI in the clinical diagnosis of amblyopia can 
greatly improve its efficiency and accuracy. Table 3 lists AI 
applications in amblyopia diagnosis.
Murali et al[45] embedded DL algorithms in an Android 
smartphone to implement the Kanna facial photo screener that 
identified amblyogenic risk factors. The AI algorithm was 
highly accurate in detecting strabismus and refractive errors. 
The researchers then tested the Kanna screener with 654 people 
under 18 years of age[46]. Hence, the Kanna screener was highly 
accurate in recognizing amblyogenic risk factors and may be 
suited for use in smartphones. The screener was compared 

Table 2 Summary of studies focused on computer-aided strabismus diagnosis

Authors, year Modalities Sample size Databases Algorithms AUC 
(%)

Accuracy 
(%)

Sensitivity 
(%)

Specificity 
(%)

Mao et al[38], 2021 Nikon D5300 5797 Corneal light-reflection images CNN 99.8 99.0 99.1 98.3

Huang et al[39], 2021 - 60 (30 strabismus, 30 normal) Low-light and ambient-light images CNN - - - -

Zheng et al[35], 2021 Nikon D800 7530 (3330 strabismus, 4200 orthoptic) Primary gaze images DCNN 99.0 95.0 94.0 99.3

de Figueiredo 
et al[37], 2021

Nikon S8200 110 strabismic Nine gazes images CNN 42.0-92.0 - - -

Chen et al[36], 2018 Tobii X2-60 42 (17 strabismic, 25 normal) Eye-tracking, gaze deviation images CNN 95.20 95.2 94.1 96.0

AUC: Area under the curve; CNN: Convolutional neural network; DCNN: Deep convolution neural network.

Figure 1 The flowchart of the proposed method[39]  A frontal facial image is sent to the face detection model to identify the face region and 

the detected face region is subsequently used to extract the eye region through the facial landmark detector. Otsu’s binarization and the color 

model are applied to the extracted eye region image, and the results from two methods are used to form a new image. The pixel points located 

at the limbus are sampled and used to estimate the pupil center. Finally, the positional similarity of the iris on both eyes is computed for 

strabismus screening. 
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with other tools for screening amblyogenic risk factors. The 
results showed that the Kanna screener outperformed the other 
automated solutions.  
ARTIFICIAL INTELLIGENCE APPLICATION IN 
OPTICAL GLASSES AND CONTACT LENS
OK is an effective treatment to slow the progression of axial 
length elongation in myopic children by flattening the central 
cornea while steeping the mid-peripheral cornea to mitigate 
relative peripheral hyperopia[47]. Given its effectiveness in 
controlling the progression of myopia, OK is widely used 
worldwide. However, various complications may be associated 
with wearing OK lenses. The conventional method for fitting 
lenses requires skills and experience in repeated lens trials to 
determine the appropriate lens parameters, consequently being 
time-consuming. In addition, repeated lens trials may increase the 
risk of ocular surface injury and cross-risk infections. Recently, 
many studies have explored ML algorithms to improve the 
accuracy and feasibility of selecting OK lens parameters to 
minimize the number of lens trials and improve efficiency 
while maintaining accuracy. Table 4 lists AI applications in the 
prescription of optical glasses and contact lenses.
Fan et al[48] proposed an ML-based strategy for prescribing 
the returning zone depth and landing zone angle for corneal 
refractive therapy lenses. The first corneal refractive therapy 
trial lens is conventionally selected based on a sliding 
card provided by a manufacturer. Although this approach 
requires only two parameters, namely, flat keratometry and 
spherical reduction, the sliding card is designed using corneal 
parameters of Western adolescents instead of Chinese subjects. 
Furthermore, the card does not consider the eccentricity and 
anterior chamber depth. Fan et al[48] retrospectively analyzed 
the clinical case files of 1037 Chinese myopic adolescents 
with good lens fitting. Three models were adopted, including 
calculation, ML, and linear regression models, to estimate the 
values corresponding to the returning zone depth and landing 

zone angle. The optimized ML model exhibited the highest 
performance among the evaluated methods. 
Fan et al[49] then constructed an ML-based approach for 
estimating the aligning curvature of a vision shaping treatment 
lens to improve their previous calculation method. The 
ML models were compared with the previous calculation 
method, and the final parameters of the ordered lenses were 
evaluated. The linear SVM and Gaussian process ML models 
achieved the best performances. The ML model can provide 
practitioners with an efficient method for estimating the 
alignment curve curvatures of vision shaping treatment lenses 
and reducing the probability of cross-infection originating 
from trial lenses, which is especially useful during pandemics, 
such as that for coronavirus disease (COVID-19). Zhang et 
al[50] get an OK lens fitting model according to enrolled 750 
OK lens wearers (1467 samples) to evaluate basic optometry 
examination data and effective optometry prescriptions. This 
OK lens fitting model seems promising for efficient, fast, and 
accurate prescriptions of glasses. The effectiveness of OK 
in controlling myopia progression is well-known[51], but it 
is not equally effective in all patients. Fang et al[52] used an 
ML-assisted model to predict the clinical effects of OK. The 
model included ocular parameters and clinical characteristics 
of 91 OK wearers, including age, baseline axial length, pupil 
diameter, lens wearing time, time spent outdoors, time spent 
near work, white-to-white distance, anterior corneal flat 
keratometry, and posterior corneal astigmatism. The decision 
analysis curve showed that the model was sufficiently good 
to guide lens fitting. In addition, the calibration plots showed 
excellent overall agreement between the predictions, while the 
2-year outcomes showed a correlation between the prediction 
and actual observations. Tang et al[53] proposed an AI algorithm 
to identify the boundary and the center of reshaped corneal 
area (i.e., treatment zone). These AI models showed equal 
performance to expert clinicians in assessing OK zones and 

Table 3 Summary of studies focused on computer-aided amblyopia diagnosis
Authors, year Modalities Sample size Databases Algorithms F-score (%) Accuracy (%) Sensitivity (%) Specificity (%)

Murali et al[45], 2020 Android smartphone 54 Low-light and ambient-light images CNN 73.2 88.2 88.2, 75.6

Murali et al[46],  2021 Android smartphone 654 Low-light and ambient-light images CNN 85.9 90.8 83.6 94.5

CNN: Convolutional neural network.

Table 4 Summary of studies focused on computer-aided optical glasses and contact lens diagnosis

Authors, year Modalities Sample 
size Databases Algorithms AUC 

(%) IoU R2 MAE RMSE

Zhang et al[50], 2019 Clinical infornation and optometry parameters 1467 Lens fitting ML - - 0.93/0.95 - -

Fan et al[48], 2021 Clinical infornation and optometry parameters 1037 Corneal refractive therapy lenses ML - - - ≥0.386 ≥0.556

Fan et al[49], 2022 Clinical infornation and optometry parameters 1271 Lens fitting SVM - - ≥0.730 ≥0.263 ≥0.373

Fang et al[52], 2023 Clinical infornation and optometry parameters 91 Predict treatment effect of ok ML 94.9 - - - -

Tang et al[53], 2021 Corneal topographical maps 6328 Identify the corneal treatment zone FCN/CNN - 0.90±0.06 - - -

AUC: Area under the curve; IoU: Intersection over union; MAE: Mean absolute error; RMSE: Root mean squared error; ML: Machine learning; 

SVM: Support vector machine; FCN: Fully convolutional networks; CNN: Convolutional neural network.
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centers. A cross-sectional study found that AI may improve the 
accuracy, efficiency, and reliability of measurements recorded 
using hICA in various light environments for the normal 
human eyes[54]. Overall, such AI systems can automate and 
facilitate the assessment and reduce interindividual subjectivity 
during follow-ups. 
ARTIFICIAL INTELLIGENCE APPLICATION IN 
SURGICAL TREATMENT OF REFRACTIVE ERROR
Optometrists often use nonsurgical methods to treat visual 
problems, including prescription of optical glasses and contact 
lenses, visual training, and drug delivery. Alternatively, 
surgical methods practiced by refractive surgeons include 
various corneal refractive interventions such as laser-assisted 
in situ keratomileusis, small incision lenticule extraction, 
photorefractive keratectomy, and lens implantation in phakic 
eyes, such as implantable collamer lense (ICL)[55].
With the extensive development of corneal refractive surgery, 
the demand for minimizing the risk of post-operative 
complications has increased, including AI research on 
screening for the risk of ectasia after corneal refractive surgery 
and guiding the selection of the corneal refractive surgery 
type[56-58]. Table 5 lists AI applications in the surgical treatment 
of myopia.
Lopes et al[59] collected Pentacam examination results of 3693 
patients after laser-assisted in situ keratomileusis in five centers 
and evaluated various ML models, including regularized 
discriminant analysis, SVM, naïve Bayes classification, neural 
networks, and random forest (RF). The RF algorithm provided 
the highest accuracy in predicting corneal ectasia after corneal 
refractive surgery, establishing the Pentacam RF index, which 

achieved an area under the curve of 0.992 (sensitivity of 
94.2%, specificity of 98.8%, and cut-off of 0.216). That index 
was significantly higher than the Belin-Ambrósio deviation 
index. Using Orbscan II tomography, Saad and Gatinel[60] 
designed a linear discriminant model with high sensitivity 
(93%) and specificity (92%) for detecting dilation after 
laser-assisted in situ keratomileusis. Xie et al[57] developed a 
screening system for refractive surgery based on an Inception-
ResNet-V2 model and a large dataset containing 6465 corneal 
tomography images. The model achieved an overall detection 
accuracy of 95% (95% confidence interval, 0.888–0.978) 
on an external test set, being comparable to the performance 
of senior ophthalmologists as refractive surgeons (92.8% 
accuracy; 95% confidence interval, 0.912–0.944). Yoo et al[61] 
used data from 18 480 subjects to train an interpretable ML 
model based on extreme gradient boosting (GB) for selecting 
the corneal refractive surgery type. When tested on internal and 
external validation sets, the accuracy of the model was 81.0% 
and 78.9%, respectively, and the inference interpretation was 
consistent with knowledge of ophthalmologists. Cui et al[62] 
used data from 865 subjects to train a nomogram prediction 
model of small incision lenticule extraction based on an 
artificial neural network and compared the model predictions 
with surgeons’ evaluations. The efficacy of the network 
was significantly higher than that of the surgeons. The post-
operative corrective error of 93% of the subjects in the ML 
group was within 0.50d, compared with 83% in the surgeon 
group.
Corneal refractive surgery is an effective method to correct 
myopia, but the amount of correction is limited by the corneal 

Table 5 Summary of studies focused on computer-aided surgical treatment of myopia

Authors, year Surgery type Sample size Databases Algorithms AUC (%) Accuracy (%) R2 MAE RMSE

Saad et al[60], 2010 LASIK 143 Forme fruste keratoconus Linear discriminant model 98.0 - - - -

Lopes et al[59], 2018 LASIK 3693 Corneal ectasia after surgery SVM, ANN, RF 99.2 - - - -

Cui et al[62], 2020 SMILE 865 Nomogram ANN - 93.0 - - -

Xie et al[57], 2020 Refractive surgery 6465 Screening potential candidates 
for refractive surgery

CNN - 94.7 - - -

Yoo et al[61], 2020 LASIK, LASEK, SMILE 18480 To select the refractive surgery 
technique

ML - ≥78.9 - - -

Park et al[68], 2021 SMILE 3034 Nomograms of sphere, cylinder, 
and astigmatism axis

ML - ≥23.6 ≥0.9922 - ≥0.1166

Kim et al[69], 2022 LASIK, LASEK, SMILE 2009 Myopic regression after surgery CNN ≥73.0 ≥71.7 - - -

Francis et al[70], 2023 LASIK, SMILE, PRK 539 Corneal stiffness after surgery ML 100 - - ≥6.24 -

Shen et al[64], 2023 ICL 6297 Vault RF ≥71.8 ≥80.2 ≥0.285 - ≥159.026

Xu et al[65], 2021 ICL 137 Vault ANN - - 0.98 - -

Kamiya et al[66], 2021 ICL 1745 Vault SVR, RF - - - ≥94.8 -

Kang et al[67], 2021 ICL 3739 Vault ICL size GB - ≥67.4 - ≥106.88 ≥140.14

LASIK: Laser-assisted in situ keratomileusis; LASEK: Laser epithelial keratomileusis; SMILE: Small incision lenticule extraction; PRK: 

Photorefractive keratectomy; ICL: Implantable contact lens; AUC: Area under the curve; MAE: Mean absolute error; RMSE: Root mean squared 

error; ML: Machine learning; SVM: Support vector machine; ANN: Artificial Neural Network; RF: Random forest; LR: Linear regressor; GB: 

Gradient boosting; SVR: Support vector regressor.
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thickness. For patients with high myopia, especially very high 
myopia, and those who cannot undergo corneal refractive 
surgery because of insufficient corneal thickness or abnormal 
morphology, lens implantation in phakic eyes may be the 
only surgical option. Implantation can correct a wide range of 
refractive errors, with myopia reaching 18 diopters (D) and 
astigmatism reaching 6 D, all of which can be completely 
corrected, providing satisfactory visual effects and enhanced 
quality of life[63]. Research on AI-assisted lens implantation 
in phakic eyes has been mainly focused on predicting the 
vault after ICL using ML and selecting the ICL size through 
the vault. Common algorithms include linear regressors, RF, 
SVM, GB, AdaBoost, extreme GB, and light GB machines. 
Shen et al[64] collected and summarized the data of 3536 
patients (6297 eyes) who underwent ICL surgery. They tested 
the ML models of decision tree, RF, AdaBoost, GB, extreme 
GB, and support vector regression and found that the RF, GB, 
and extreme GB algorithms accurately predicted the vault after 
receiving ICLs, achieving accuracies of 82.8%, 81.5%, and 
80.2%, respectively. Based on the vault prediction, models for 
ICL size prediction were established. The prediction accuracies 
of the RF, GB, and extreme GB algorithms for ICL size were 
82.2%, 81.5%, and 81.8%, respectively. Xu et al[65] established 
a model to predict the vault and choose the ICL size based 
on the data from 74 subjects (137 eyes) who received ICL. 
Using linear regression analysis, they found that the vault was 
related to the ICL size, anterior chamber depth, angle-to-angle 
distance, white-to-white distance, and lens thickness. They also 
analyzed a neural network, finding that adding input variables 
improved the prediction performance. When the 11 considered 
variables were included in the neural network, fitness was 
close to 1 (R2=0.98). The studies by Kamiya et al[66] and Kang 
et al[67] were similar. They used various ML models to predict 
the vault and ICL size, Korean data for training and internal 
validation, and Japanese data for external validation, obtaining 
promising results. Kamiya et al[66] included 1745 subjects 
who received ICL in Japan and South Korea and used support 
vector regression, GB regression, RF, and linear regression 
to predict the vault. Using the mean absolute prediction error, 
calculated as the absolute value of the actual post-operative 
vault minus the predicted vault, the RF algorithm achieved 
the best prediction. Followed by GB, linear, and support 
vector regression, they observed a higher predictability of 
the vault with their ML algorithm than with the manufacturer 
nomogram. In the predictive results of training with Korean 
data and testing with Japanese data as external validation, 
the RF algorithm also provided the lowest error and highest 
percentage of eyes within 50–200 μm of the target vault. Kang 
et al[67] used the stacking ensemble technique based on extreme 
GB and a light GB machine to pre-operation ocular data from 

two eye centers and then predicted the postoperative vault. 
Their proposal outperformed similar ML models, with a lower 
average absolute error of vault prediction after receiving ICL 
(106.88 μm and 143.69 μm in internal and external validations, 
respectively). Good performance was also obtained in the 
prediction of ICL size (accuracies of 75.9% and 67.4% for 
internal and external validation, respectively)[68-70].
ARTIFICIAL INTELLIGENCE APPLICATION IN THE 
DESIGN OF CONTACT LENSES AND LOW VISION
The design of a complex lens involves several uncertain 
variables. Supporting the best lens design to reduce wearing 
discomfort is essential. In addition, customizable treatment 
for correcting higher-order aberrations is a current research 
hotspot in lens design. Yen et al[71] combined a neural network 
and genetic algorithm to optimize the spherical aberration, 
coma aberration, and modulation transfer function of contact 
lenses. They aimed to apply optical design and optimization 
to select the parameters of contact lenses and support optical 
designers in the improvement of contact lenses (myopia with 
5.5 D and astigmatism with 1.75 D) after routine optimization 
using available optical software. When implementing the 
proposed optional weight neural network-genetic algorithm, 
the performance could be adjusted by changing the weight of 
the fitness function. This method simplified the selection of 
parameters for optical system optimization. Low vision AI-
aided device fitting is closely related to visual rehabilitation 
needs. Dai et al[72] have established a FCNN model for AI-
aided device fitting. The accuracy of this AI model is about 
80%.
CONCLUSION
Eyecare problems related to optometry are diverse and include 
visual problems during eye disease recovery, visual quality 
after surgical or non-surgical refractive corrections, and 
etiological investigation of functional eye diseases such as 
myopia[73]. The considerable economic growth in China has 
resulted in better quality of life. To cope with the demand 
for quality eyecare, an increase in the number of optometric 
professionals and standardization of comprehensive eyecare 
services are planned. However, there is a general shortage 
of optometrists in China. Compared with the proportion of 
optometrists to population in the United States, the shortage 
of optometrists in China reaches approximately 200 000. To 
overcome this problem, many sub-degree or diploma programs 
in optometry are available. Graduates from bachelors and 
diploma programs are more numerous and can overcome 
the shortage of optometrists. However, these graduates may 
not have the necessary knowledge and skills to provide 
comprehensive eyecare services[74].
AI technology can support optometry services. With the 
rapid development of computer science and technology, 

Artificial intelligence in the field of optometry
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the application of AI in medical research has become a hot 
topic, especially in ophthalmology[75-79]. Just a few years after 
pioneering demonstrations of medical AI algorithms that 
achieve expert-level disease detection from medical images, 
the landscape of medical AI has matured considerably[3]. With 
the assistance of AI, computers can be used to identify and 
analyze data to replace manual work in applications such 
as automatically identifying the corneal fluorescein staining 
morphology after wearing OK lenses and automatically 
analyzing and classifying optometry data. Compared with 
manual methods, computerized identification and analysis 
can take less than a second, greatly improving the efficiency 
and reducing costs[80]. On the other hand, judging whether a 
medical image is abnormal is mostly based on a quantitative 
analysis of size, shape, color, and quantity, while hidden 
features may be overlooked. This is because humans may fail 
to find relations between such features and the analysis results. 
In addition, hidden features contained in images may far 
outnumber low-dimensional features such as size, shape, and 
quantity, and some of them can be neither seen by humans nor 
quantitatively analyzed. With the help of ML technology[81], 
several images can be provided as samples to a computer to 
learn and automatically extract high-dimensional features, thus 
finding internal relations between the images and results.
AI research on optometry includes the application of big data 
in the collection of massive clinical data and images, and the 
application of medical big data to AI to guide or assist doctors 
in clinical decision-making by exploiting supercomputing and 
data mining in cloud computing. AI may alleviate the pressure 
owing to the shortage of optometrists and heavy workload, 
and it can lead to optimal services for clinical and scientific 
research by using existing data resources. For optometry, 
different data modalities involving image and non-image 
samples are available. Therefore, we believe the development 
of AI in optometry will include methods considering 
multimodal medical data and approaches integrating DL in 
image processing, non-image big data processing, and novel 
formulations.
However, there are still some limitations in AI-aided diagnosis and 
treatment in the field of optometry. First of all, in most studies, 
the effectiveness of the model lacks external validation. It 
raises the question of whether the AI model still has the 
research effect in further popularization and application. 
Second, because of the differences in the size, format and 
shooting mode of images output by different devices, it is 
difficult to directly apply the model developed for one device 
to another device with similar functions, and it is necessary to 
further develop and train the compatibility of the model with 
images to solve such problems. Finally, if the relationship 
between input and expected output materials is complex, the 

system will probably not build a AI model. In some rare cases, 
some unexpected mistakes may occur in the AI model, so in 
clinical practice, the AI-aided model still needs the supervision 
of clinicians, and it can’t run independently without the 
attention of doctors.
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