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Abstract
● AIM: To investigate the aqueous vein in vivo by using 
enhanced depth imaging optical coherence tomography 
(EDI-OCT) and optical coherence tomography angiography 
(OCTA).
● METHODS: In this cross-sectional comparative study, 30 
healthy participants were enrolled. Images of the aqueous 
and conjunctival veins were captured by EDI-OCT and OCTA 
before and after water loading. The area, height, width, 
location depth and blood flow of the aqueous vein and 
conjunctival vein were measured by Image J software.
● RESULTS: In the static state, the area of the aqueous 
vein was 8166.7±3272.7 μm2, which was smaller than 
that of the conjunctival vein (13 690±7457 μm2, P<0.001). 
The mean blood flow density of the aqueous vein was 
35.3%±12.6%, which was significantly less than that of 
the conjunctival vein (51.5%±10.6%, P<0.001). After 
water loading, the area of the aqueous vein decreased 
significantly from 8725.8±779.4 μm2 (baseline) to 
7005.2±566.2 μm2 at 45min but rose to 7863.0±703.2 μm2 
at 60min (P=0.032). The blood flow density of the aqueous 
vein decreased significantly from 41.2%±4.5% (baseline) to 
35.4%±3.2% at 30min but returned to 45.6%±3.6% at 
60min (P=0.021).
● CONCLUSION: The structure and blood flow density of 
the aqueous vein can be effectively evaluated by OCT and 
OCTA. These may become biological indicators to evaluate 
aqueous vein changes and aqueous outflow resistance 

under different interventions in glaucoma patients.
● KEYWORDS:  aqueous vein; optical coherence 
tomography; optical coherence tomography angiography; 
water drinking test
DOI:10.18240/ijo.2023.09.15

Citation: Chen ZQ, Chen W, Deng CH, Guo JM, Zhang H, 
Wang JM. In vivo quantification of human aqueous veins by 
enhanced depth imaging optical coherence tomography and optical 
coherence tomography angiography images. Int J Ophthalmol 
2023;16(9):1482-1488

INTRODUCTION

T he aqueous humor drains via the trabecular meshwork 
into Schlemm’s canal, and the canal then directs the 

aqueous humor to a network of collector channels and, 
finally, to the aqueous veins[1-2]. The study of the biological 
characteristics of the aqueous vein plays an important role in 
observing the regularity of aqueous humor outflow, but the 
physiology of the aqueous vein remains poorly understood.
The aqueous veins are biomicroscopically visible pathways 
with a blood vessel-like appearance containing clear colorless 
aqueous humor, diluted blood, or both[3-5]. The transparency of 
the aqueous humor makes it difficult to observe the aqueous 
vein, so the aqueous vein is easily confused with conjunctival 
vessels. Aqueous veins were mentioned by Leber as early as 
1903, and studies on aqueous veins have mainly relied on slit 
lamp microscopy and casting studies for visualization[6-11], but 
these methods are too subjective and rudimentary to reflect 
the characteristics of aqueous veins in vivo. The aqueous 
veins have not been characterized in detail morphologically 
or functionally. Optical coherence tomography (OCT) is a 
label-free imaging technique that measures depth-resolved 
tissue reflectance, achieving 3D imaging at micrometer-
scale resolutions (typically 5-20 μm). OCT clearly shows 
the structure of the limbus, including the small Schlemm’s 
canal[12-13]. Optical coherence tomography angiography (OCTA) 
has been applied to image blood vessels in various tissues, 
such as the eye, brain, and skin, as it clearly images the fundus 
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and conjunctival vessels[14-15]. There is a lack of OCT and 
OCTA studies on aqueous veins.
In this study, OCT and OCTA imaging of the aqueous vein was 
performed on normal human subjects, and the structure and 
blood flow were compared between the aqueous vein and the 
accompanying conjunctival vein. In addition, a water-drinking 
test was performed to observe the dynamic changes in the aqueous 
vein during the process of intraocular pressure (IOP) change.
SUBJECTS AND METHODS
Ethical Approval  The study protocols were approved by the 
Ethics Committee of Tongji Hospital, Tongji Medical College, 
Huazhong University of Science and Technology, China (TJ-
IRB20201024). Written informed consent was obtained prior to 
enrollment from all participants, and the study was performed 
in accordance with the tenets set forth in the Declaration of 
Helsinki.
Study Subjects  Thirty healthy volunteers from Tongji 
Hospital in Wuhan (Hubei Province, China) were recruited 
between October 2020 and December 2020. A single eye of 
each subject was enrolled randomly.
The inclusion criteria were as follows: 1) age >18y; 2) IOP 
10-21 mm Hg, best-corrected visual acuity (BCVA) ≥20/20, 
refractive error (RE) >-6.0 D but <+3.0 D, and normal 
ophthalmoscopy; 3) no history of other eye diseases, such as 
macular degeneration or retinal detachment; 4) no use of 
medication that affects the circulatory system within the month 
prior to enrollment; 5) no history of hypertension or diabetes.
Water-Drinking Test and Image Processing  Patients 
fasted for at least 4h. Six measurement timepoints, at baseline 
and 0, 15, 30, 45, and 60min after drinking 1 liter of water 
over ≤5min, were scheduled. The IOP was measured using 
a noncontact tonometer (NCT, NT-530P, Nidek Co., LTD, 
Japan). Three measurements were taken, and their average 
value was recorded.
The aqueous veins are not distributed symmetrically around 
the limbus. The inferior nasal quadrants are most commonly 
found in the aqueous vein. In our study, the inferior quadrants 
were the key area we chose to find the aqueous vein. The scan 
of the aqueous vein was done 2 mm from the limbus, and the 
scan frame was perpendicular to the direction of the aqueous 
vein. The same site was scanned at all time points in the same 
subject. The most obvious aqueous vein of one eye of each 
subject was enrolled. The characteristics of the aqueous vein 
were mainly as follows: 1) Aqueous veins generally contain 
clear aqueous humor drained from the collecting canal. 2) 
Laminal flow of aqueous humor and small amounts of blood 
that drained from the episcleral vein were observed in aqueous 
veins. Conjunctival vessels were used as landmarks to scan 
the same area, judging from the coordinates of the corneal 
limbus. The structures of the aqueous vein and accompanying 

conjunctival vein were captured at the six time points using 
a Spectralis enhanced depth imaging optical coherence 
tomography (EDI-OCT) device (Heidelberg Engineering 
GmbH, Dossenheim, Germany) after resting for 5min. The 
following parameters were measured: area of the aqueous 
vein and conjunctival vein (μm2); height of the aqueous 
and conjunctival veins (coronal diameter, μm); width of the 
aqueous and conjunctival veins (meridional diameter, μm); and 
location depth of the aqueous and conjunctival veins (vertical 
diameter to the ocular surface, μm; Figures 1 and 2).
Optical Coherence Tomography Angiography Imaging  
OCTA images of the aqueous and conjunctival veins were 
acquired using a Spectralis OCT device (SPECTRALIS®, 
Heidelberg Engineering, Heidelberg, Germany). Images were 
acquired with an A-scan rate of 70 000 per second, and a 
10°×5° scan angle protocol was used. A total of 128 B-scans 
resulted in images with an axial resolution of approximately 
4 μm within a B-scan resolution of approximately 9 μm 
(3.87 μm/pixel). The scanning frame dimensions were 
2.4×1.2 mm2. The depth of OCTA images was 1.9 mm 
(3.87 µm/pixel). The SPECTRALIS OCTA images have a 
binary, high-contrast appearance. Increasing the number of 
repeated scans at each location increases the contrast between 
perfused vessels and static tissue. Seven repeated scans 
were done in our study to yield high-quality OCTA images. 
The contrast of OCTA can be varied between 4-7 repeated 
scans. The SPECTRALIS OCTA algorithm is a full-spectrum 
probabilistic approach. The algorithm computes the probability 
that a given pixel follows the OCT signal distribution of the 
perfused flow rather than the distribution of static tissue. Given 
these distributions and a short time series of samples (4 to 
7 repeated scans), it is possible to determine the probability 
of whether the signal at that sample location corresponds to 
one of the two distributions. All OCT and OCTA tests were 
performed under standardized darkroom photopic conditions 
(3.5 lx).
Data Processing  The area, height, width and location depth of 
the aqueous and conjunctival veins (μm2) as well as the blood 
flow density of the aqueous vein (AVD, %) and conjunctival 
vein (CVD, %) were measured at the six time points during 
the water-drinking test using Image J software (version 1.53a; 
National Institutes of Health, Bethesda, MD, USA). The 
grayscale of the aqueous and conjunctival veins (pixels) was 
calculated by mean integrated density analysis in Image J 
software (Figure 3). Analysis of AVD and CVD was performed 
using the Vessel Analysis plugin (Figures 4 and 5). Blood 
flow density was calculated by the vessel analysis plugin 
(Equation 1) as follows[16]:

Blood flow density =
    flow signal area   

× 100%
       

                                          Total area                                        
(1)
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The measurements were performed by two observers (Chen 
ZQ and Chen W). Cases of discrepancy >15% were resolved 
by consulting the senior author (Wang JM). Data were 
recorded and stored for later statistical analysis.

Statistical Analysis  All statistical analyses were performed 
using SPSS software (Version 25.0, SPSS Inc., Chicago, IL, 
USA). Data are presented as mean±standard deviation (SD). 
Student’s t-test was used to compare the differences in the area, 

Figure 1 Examples of the structure of AV (red circle) and accompanying CV (green circle)  AV: Aqueous vein; CV: Conjunctival vein.

Figure 2 Measurement of the area, location depth, width and height of the aqueous vein (AV) and conjunctival vein (CV).

Figure 3 The structural variations in AV at different timepoints during the water-drinking test  AV: Aqueous vein.

Figure 4 Optical coherence tomography angiography image of the aqueous vein (AV) and conjunctival vein (CV).

Quantification of human aqueous veins with OCTA
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height, width, and depth of the aqueous and conjunctival veins. 
One-way repeated-measures analysis of variance was used to 
compare variations in the area and blood flow density of the 
aqueous and conjunctival veins at the different time points 
(baseline and every 15min for 1h). All tests were two-tailed. 
Statistical significance was defined as a P value <0.05.
RESULTS
Thirty eyes from 30 healthy participants (13 males and 17 
females) aged 22 to 38y (27.8±4.1y) were included in the 
study. The mean axial length was 25±0.8 mm, and the mean 
IOP was 15.3±3.6 mm Hg before the procedure, as measured 
by a noncontact tonometer (Table 1). Twenty-six participants 
completed the water-drinking test. 
The mean area of the aqueous vein was 8166.7±3272.7 μm2,
which was smaller than that of the conjunctival vein 
(13 690±7457 μm2). The mean height of the aqueous vein was 
81.3±19.2 µm, which was lower than that of the conjunctival 
vein (103.4±29.6 μm). The mean width of the aqueous vein 
was 106.7±25.0 μm, which was narrower than that of the 
conjunctival vein (158±45.8 μm). The mean location depth of 
the aqueous vein was 212.7±46.2 µm, which was not different 
from that of the conjunctival vein (209.8±46.4 μm). The 
grayscale value of the aqueous vein (112.9±24.9 pixels) was 

higher than that of the conjunctival vein (79.6±25.5 pixels).
The mean blood flow density of the aqueous vein was 
35.3%±12.6%, which was significantly lower than that of the 
conjunctival vein (51.5%±10.6%; Figure 6).
The IOP was 14.9±0.7 mm Hg at baseline, increased to 
17.6±0.8 mm Hg at 15min after the water-drinking test, 
and then returned to 15.1±0.7 mm Hg at 60min after the 
water-drinking test. The area of the aqueous vein decreased 
significantly from 8725.8±779.4 µm2 (baseline) to 
7005.2±566.2 µm2 after 45min but rose to 7863.0±703.2 µm2 
after 60min (Figure 7). The blood flow density of the aqueous 
vein decreased significantly from 41.2%±4.5% (baseline) to 

Figure 5 Blood flow density variations in optical coherence tomography angiography images of the aqueous vein (AV) during the water-

drinking test.

Figure 6 Comparison of architecture between the aqueous vein and conjunctival vein  CV: Conjunctival vein; AV: Aqueous vein. aP<0.01, 
bP<0.001.

Table 1 Baseline characteristics
Parameters Values
No. of subjects 30
No. of eyes 30 (13 right eyes and 17 left eyes)
Age (y) 27.8±4.1
Sex (n)

Female 17
Male 13

IOP (mm Hg) 15.3±3.6
Refractive error (D) -3.8±2.3
Axial length (mm) 25±0.8

D: Diopter; IOP: Intraocular pressure.
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35.4%±3.2% after 30min but returned to 45.6%±3.6% after 
60min (Figure 7).
There were no significant changes in the height, width, or 
location depth of the aqueous vein during water loading (all 
P>0.05). There was no significant correlation between the 
variation in vessel area and the variation in IOP (P=0.11).
DISCUSSION
The aqueous vein has been little studied in vivo, so we 
investigated the presence of aqueous veins using OCT and 
OCTA images in this study. To our knowledge, this is the first 
in vivo study to report the OCT and OCTA manifestations of 
aqueous veins.
There were many studies on aqueous veins in the 1950s and 
1960s[6-9]. In vitro casting has been generally used to observe 
the course and morphological characteristics of aqueous 
veins. In vivo studies on the aqueous veins have been mainly 
conducted by direct observation with a slit lamp microscope, 
and the size, contour, and location of the aqueous vein could 
be evaluated in the photographs of the slit lamp microscope. 
Recently, two studies described a technique to noninvasively 
visualize aqueous veins using hemoglobin video imaging 
(HVI) technology, which uses the hemoglobin absorption 
spectrum to enhance the contrast between red blood cells 
and their surroundings[10-11]. However, HVI is a technology 
based on slit lamp images, and although the HVI software is 
modern and well designed, slit lamp imaging technology limits 
the accuracy of the measurements. The OCT manifestation 
of the aqueous vein can help to identify the aqueous vein. 
In the present study, OCT was used to objectively observe 
the aqueous vein. Multiple morphological characteristics 
were accurately measured and compared with those of the 
conjunctival vein, which helped to accurately identify aqueous 
veins according to these parameters. In addition, these 
parameters provided biological indicators for the evaluation of 
aqueous vein changes under different interventions.
OCTA is an emerging technology for imaging the ocular 
vasculature, and it works on the concept of low-coherence 
interferometry and analysis of signal decorrelation between 
consecutive scans. In addition to the fundus vessels, OCTA 
is used to observe the conjunctiva, superficial sclera, and iris 

vessels. OCTA visualizes blood flow in vessels through motion 
contrast imaging of erythrocyte movement across sequential 
B-scans[17-18]. Because the aqueous vein contains different 
amounts of blood and aqueous humor, we used OCTA to 
observe the aqueous vein in the present study, which allowed 
the content of aqueous humor in the aqueous vein to be inferred 
from the change in OCTA signals. We found that the blood 
flow density of the aqueous vein was significantly lower than 
that of the conjunctival vein, suggesting that the blood flow 
of the aqueous vein is less than that of the conjunctival vein. 
These findings agree with the anatomical and physiological 
characteristics of the aqueous vein and conjunctival vein, 
confirming the reliability of OCTA to observe the blood flow 
of the aqueous vein.
After the water-drinking test, the IOP increased, reaching 
a peak 15min after water loading, and it then gradually 
decreased and returned to the normal level 60min after water 
loading, which was consistent with earlier results[19-21]. Our 
results showed that the area of the aqueous vein decreased 
after the water-drinking test, reaching its nadir 15min after 
water loading, followed by a gradual increase to a normal 
level at 60min. A previous study showed that the aqueous 
humor flow was minimized approximately 10min after the 
water-drinking test[21]. This low flow may have directly led to 
the lowest aqueous vein area 15min after water loading, and 
then IOP increased. On the other hand, in our previous study, 
we reported that parasympathetic nervous system activity 
increased significantly after water loading[19], and whether this 
parasympathetic activation could lead to morphologic changes 
in the aqueous vein needs to be further explored. In addition, 
our results showed that the aqueous vein density decreased 
after the water-drinking test, which may have been related to 
the decrease in the aqueous vein area, leading to a decrease in 
the total amount of aqueous humor and blood in the aqueous 
vein lumen.
OCT is an imaging modality that provides cross-sectional 
images based on the measurement of the magnitude and echo 
time delay of backscattered light[22]. Quantification of different 
reflective bands of OCT images has been widely used in 
retinal diseases and cataracts[23-24], but no OCT reflectivity of 

Figure 7 Variations in the parameters of the aqueous vein during the water-drinking test  IOP: Intraocular pressure. cP<0.05.

Quantification of human aqueous veins with OCTA
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the aqueous vein has been reported. In our study, the aqueous 
vein was observed as a rounded, uneven gray black space on 
the OCT images. The grayscale value of the aqueous vein 
was higher than that of the conjunctival vein, and the OCT 
reflectivity of the aqueous vein was much lower, which may 
have been due to more water in the aqueous vein than in the 
conjunctival vein. This new information will be valuable for 
the interpretation of aqueous vein OCT images and may assist 
the confirmation of aqueous veins in future studies.
The aqueous veins are not distributed symmetrically around 
the limbus. Two to three aqueous veins are typically visible 
in the eye, but there may be a maximum of four to six. The 
distribution is highly asymmetric, with the majority of visible 
aqueous veins at or below the horizontal midline[25-26]. In the 
present study, the most obvious aqueous vein accompanied by 
the conjunctival vein was selected as the object of observation. 
The aqueous vein was observed in the inferior quadrant in 
23 of the 30 enrolled subjects, a distribution consistent with 
previous reports. Our study confirms that the aqueous vein in 
the inferior quadrant is more obvious and can be used as the 
main site for future research on the aqueous vein.
The present study had several limitations. First, the aqueous 
vein was investigated only in healthy subjects who were 
approximately 30 years old, but the morphology and blood 
flow of the aqueous vein may differ between elderly and 
young subjects. Second, the aqueous vein observed in this 
study was mostly in the inferior quadrant, and there might be a 
difference between the different quadrants of the aqueous vein. 
Third, the scan line of the conjunctival vein in this study was 
not necessarily perpendicular to the pipe of the conjunctival 
vein, resulting in some deviation in the measurement of the 
conjunctival vein. However, the main object of this research 
was the aqueous vein, and the angle between the scan line and 
conjunctival vein should be adjusted to study the conjunctival 
vein. Finally, because the study sample size was calculated for 
aqueous vein changes as the primary outcome, it may have 
been underpowered to detect an association between changes 
in IOP and aqueous vein variables after the water-drinking test.
In summary, our study objectively observed the aqueous 
vein in healthy subjects, showing that OCT coupled with 
OCTA analysis can be used as a practical tool for effectively 
evaluating aqueous vein structure and function. The present 
study provides a potential new method to evaluate the 
pathophysiology of glaucoma patients.
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