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Abstract
● AIM: To determine whether the microRNA-27b-3p (miR-
27b-3p)/NF-E2-related factor 2 (Nrf2) pathway plays a role 
in human retinal pigment epithelial (hRPE) cell response 
to high glucose, how miR-27b-3p and Nrf2 expression are 
regulated, and whether this pathway could be specifically 
targeted. 
● METHODS: hRPE cells were cultured in normal glucose 
or high glucose for 1, 3, or 6d before measuring cellular 
proliferation rates using cell counting kit-8 and reactive 
oxygen species (ROS) levels using a dihydroethidium 
kit. miR-27b-3p, Nrf2, NAD(P)H quinone oxidoreductase 
1 (NQO1) and heme oxygenase-1 (HO-1) mRNA and 
protein levels were analyzed using reverse transcription 
quantitative polymerase chain reaction (RT-qPCR) and 
immunocytofluorescence (ICF), respectively. Western blot 
analyses were performed to determine nuclear and total 
Nrf2 protein levels. Nrf2, NQO1, and HO-1 expression 
levels by RT-qPCR, ICF, or Western blot were further tested 
after miR-27b-3p overexpression or inhibitor lentiviral 
transfection. Finally, the expression level of those target 
genes was analyzed after treating hRPE cells with pyridoxamine.
● RESULTS: Persistent exposure to high glucose gradually 
suppressed hRPE Nrf2, NQO1, and HO-1 mRNA and 
protein levels and increased miR-27b-3p mRNA levels. High 
glucose also promoted ROS release and inhibited cellular 
proliferation. Nrf2, NQO1, and HO-1 mRNA levels decreased 
after miR-27b-3p overexpression and, conversely, both 
mRNA and protein levels increased after expressing a miR-
27b-3p inhibitor. After treating hRPE cells exposed to high 
glucose with pyridoxamine, ROS levels tended to decreased, 

proliferation rate increased, Nrf2, NQO1, and HO-1 mRNA 
and protein levels were upregulated, and miR-27b-3p mRNA 
levels were suppressed. 
● CONCLUSION: Nrf2 is a downstream target of miR-27b-
3p. Furthermore, the miR-27b-3p inhibitor pyridoxamine can 
alleviate high glucose injury by regulating the miR-27b-3p/
Nrf2 axis.
● KEYWORDS: human retinal pigment epithelial cell; 
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INTRODUCTION

R apid diabetic retinopathy (DR) progression leads to 
dramatic, irreversible vision loss, including recurrent 

diabetic macular edema and retinal hemorrhage[1], and is a 
leading cause of retinal dysfunction in the macular 
area [1-2].  Studies have shown that vision loss in DR is 
associated with macular foveal photoreceptor-retinal pigment 
epithelial (RPE) cell complex structure destruction[3-4]. 
Moreover, DR leads to glucose, lipid, and protein metabolism 
disorders in vivo[5]; therefore, DR patients’ serum has higher 
oxidized advanced glycation end-product (AGE) levels 
compared with non-DR patients[6]. The RPE layer is mainly 
responsible for photoreceptor metabolism and also forms the 
outer barrier of the blood retinal barrier[7]. Thus, RPE cell play 
an important role in maintaining photoreceptor-RPE complex 
and the blood retinal barrier function. 
NF-E2-related factor 2 (Nrf2) is a transcription factor that 
activates antioxidant genes and detoxifying enzymes including 
NAD(P)H quinone oxidoreductase 1 (NQO1) and heme 
oxygenase-1 (HO-1)[8]. This pathway has been implicated 
in DR occurrence and development[9] and is also associated 
with AGE metabolism[10-12]. Under prolonged hyperglycemia, 
glucose binds to proteins and lipids to produce hard-to-degrade 
metabolites, such as AGE, that stimulate cells to release 

miR-27b-3p and Nrf2 regulate cell response



1583

Int J Ophthalmol,    Vol. 16,    No. 10,  Oct. 18,  2023      www.ijo.cn
Tel: 8629-82245172     8629-82210956      Email: ijopress@163.com

oxygen free radicals and exacerbate oxidative damage[6]. 
Pyridoxamine, one form of vitamin B6, suppresses AGE 
formation[13], upregulates Nrf2, exerts antioxidant effects, 
and protects retinal photoreceptor cells[14-15]. Incidentally, a 
recent mouse experiment showed that Nrf2 is a direct target of 
microRNA-27b-3p (miR-27b-3p)[16]. Furthermore, studies have 
shown significant miR-27b-3p upregulation in serum from 
patients with diabetes, non-proliferative DR, and proliferative 
DR, and its expression correlates with DR stage severity[17]. 
In addition, miR-27b-3p from urinary extracellular vesicles 
is increased in type 2 diabetic nephropathy[18]. In this study, 
we set out to determine how high glucose impacts miR-27b-
3p, Nrf2, NQO1, and HO-1 in human RPE (hRPE) cell. We 
verified the regulatory relationship between Nrf2 and miR-
27b-3p and evaluated whether pyridoxamine could alleviate 
high glucose injury through the miR-27b-3p/Nrf2 pathway.
MATERIALS AND METHODS
Cell Culture  The hRPE cell line (ARPE-19) was obtained 
from the Biowing of Shanghai, China and was cultured in 
standard Dulbecco’s modified Eagle’s medium (Gibco, Grand 
Island, NY, USA) supplemented with 10% fetal bovine serum 
(Gibco, Grand Island, NY, USA), 100 units/mL penicillin, and 
100 μg/mL streptomycin (Gibco, Rockville, MD, USA) in a 
humidified 5% CO2 incubator at 37℃. 
Cell Counting Kit-8 Analysis  Cells were cultured in normal 
glucose (C), 30 mmol/L glucose (H), or 30 mmol/L glucose 
with pyridoxamine (2, 4, or 6 μmol/L) for 6d in 96-well 
plates before incubation with cell counting kit-8 (CCK-8) for 
2h. Separately, cells were maintained in normal glucose 
(C), 30 mmol/L glucose (H) for 1, 3, or 6d (H1, H3, H6), or 
30 mmol/L glucose with 4 μmol/L pyridoxamine (HP) for 6d 
and then incubated with CCK-8 (c0039, Beyotime, Shanghai, 
China) for 2h. After CCK-8 incubation, absorbance at 450 nm 
was read using a microplate reader (Thermo Multiska, USA). 
Cellular proliferation rate was calculated by (ODtest group− 
ODblank group)/(ODcontrol group−ODblank group).
Cell Transfection  Lentivirus with a multiplicity of infection 
of 40 was added to cells in 96 well plates for 1d, followed by 
addition of 1.0 μg/mL puromycin for 96h. Green fluorescent 
protein expression was abundant and produced high signal on 
the fluorescence microscope. Stably infected cell lines were 
selected for subsequent experiments. Those cells lines were 
maintained in normal glucose followed by transfection of 
miR-27b-3p overexpression (OE group) or control lentiviral 
vectors (NC group, Genechem, Shanghai, China) for 4d or 
in 30 mmol/L glucose followed by transfection of miR-27b-
3p inhibitor (H-in group) or control lentiviral vectors (H-con 
group, Genechem, Shanghai, China) for 6d. We then performed 
real-time quantitative polymerase chain reaction (RT-qPCR) to 
confirm miR-27b-3p mRNA expression levels.

RT-qPCR Analysis  Total RNA were extracted using Trizol 
lysis buffer (Dingguo, Beijing, China) and then converted 
into cDNA using PrimeScriptTM Reagent Kit with gDNA 
(RR047A, Takara, Japan). RT-qPCR were performed using 
TB GreenTM Premix Ex TaqTM (RR820A, Takara, Japan) with 
the ABI 7500 system (Applied Biosystems, Foster City, CA, 
USA). MicroRNA was converted into cDNA, and RT-qPCR 
was performed using Bluge-LoopTM miRNA RT-qPCR Starter 
Kit (c110211-2, ruibo, Guangdong, China). Data analysis 
was conducted with SDS system software (7500 system, 
Applied Biosystems), and β-actin (Sangon, Shanghai, China) 
or U6 (ruibo, Guangdong, China) endogenous control levels 
were used to normalize miR-27b-3p (Ruibo, Guangdong, 
China), Nrf2, NQO1, and HO-1 (Sangon, Shanghai, China) 
expression levels. All reactions were performed in triplicate. 
The results are presented as 2-∆∆Ct means±standard deviation 
(SD). The following primer sequences were used: miR-
27b-3p forward 5’-GCGCGTTCACAGTGGCTAAG-3’ 
and reverse 5’-AGTGCAGGGTCCGAGGTATT-3’; Nrf2 
forward 5’-ATCAACTACCCGTTCGAGAAG-3’ and 
reverse 5’-ACTTGGTCATGTCGATGTCATA-3’; NQO1 
forward 5’-AGTATCCTGCCGAGTCTGTTCTGG-3’ and 
reverse 5’-AATATCACAAGGTCTGCGGCTTCC-3’; 
HO-1 forward 5’-CCTCCCTGTACCACATCTATGT-3’ 
and reverse 5’-GCTCTTCTGGGAAGTAGACAG-3’; 
β-actin forward 5’-CTCGCCTTTGCCGATCC-3’ and 
reverse 5’-GAATCCTTCTGACCCATGCC; U6 forward 
5’-AGAGAAGATTAGCATGGCCCCTG-3’ and reverse 
5’-ATCCAGTGCAGGGTCCGAGG-3’.
Western Blot Analysis  To collect either total protein or 
nuclear protein, cells were lysed in ice-cold RIPA lysis buffer 
(WB0061, Dingguo, Beijing, China) or nuclear protein 
extraction kit buffer (Solarbio, Beijing, China), respectively. 
Protein obtained from each sample was subjected to sodium 
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) in a Bio-Rad miniature slab gel apparatus (WB0201, 
Dingguo, Beijing, China) and electrophoretically transferred 
onto polyvinylidene fluoride membranes (Millipore, Billerica, 
MA, USA). The polyvinylidene fluoride membranes were 
then incubated with primary antibodies, including anti-Nrf2 
(ab62352), anti-NQO1 (ab80588), anti-HO-1 (ab13243), anti-
β-actin (1:1000, ab1001, Abcam, Cambridge, UK), or anti-
histone3 (1:1000, H3, 100005-MM01, Yiqiao, Beijing, China), 
overnight at 4℃, followed by secondary antibody incubation 
(1:1000, Dingguo, Beijing, China) for 2h at room temperature 
(RT). Immunoreactive bands were visualized using 
autoradiography (Bio-Rad, Missisauga, ON, Canada). Protein 
bands were quantified by densitometry using Image J software. 
β-actin or H3 protein levels served as internal controls.
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Immunocytofluorescence Analysis  hRPE cells were 
cultured in 6-well plates with glass slide for 6d and then fixed 
with 4% paraformaldehyde for 15min. After permeabilizing 
with 1% Triton X-100, cells were blocked with 5% bovine 
serum albumin (A3912, Sigma, USA), incubated with Nrf2, 
NQO1, or HO-1 antibodies (1:500) overnight at 4℃, and then 
incubated with secondary antibody (1:1000, ab150083, Alexa 
Fluor 647, Abcam, Cambridge, UK) for 2h at RT. Images were 
taken using a positive fluorescence microscope (BX53, Olympus, 
Tokyo, Japan), and data were analysed using Image J software.
Reactive Oxygen Species Analysis  hRPE cells were cultured 
in 12-well plates for 6d. The medium was then removed, and 
cells were washed 3 times. The 1 mL per well dihydroethidium 
(PD-MY 003, MCE, NJ, USA) solution was added, and 
cells were incubated for 30min in a cell culture incubator, 
then washed 3 times. Images were taken using an inverted 
fluorescence microscope (IX71, Olympus, Tokyo, Japan) and 6 
fields were randomly selected to represent the reactive oxygen 
species (ROS) fluorescence intensity. Data were analyzed 
using Image J software.
Statistical Analysis  All results were obtained from at least 
three independent experiments and presented as mean±SD. 
Comparisons among groups were tested using one-way 
ANOVA followed by Bonferroni correction and Tamhane’s 
T2 post-hoc test. All results were analyzed using SPSS 24.0 
software (IBM, Amonk, NY, USA) and GraphPad Prism 6.0 
software (GraphPad software, La Jolla, CA, USA). P<0.05 
was considered statistically significant.
RESULTS
High Glucose Affects miR-27b-3p and Nrf2 Expression  As 
incubation time increased, cellular proliferation rate gradually 
decreased and ROS content increased in high glucose medium 
(Figure 1A, 1F, and 1H). After high glucose treatment for 1, 3, 
or 6d (groups H1, H3, and H6, respectively), the relative miR-
27b-3p mRNA expression was higher in the H1 group, but was 
not significantly different than the control (C) group (Figure 
1B). We then assessed Nrf2, NQO1, and HO-1 expression 
by RT-qPCR, immunocytofluorescence (ICF), and Western 
blot. We found that Nrf2, NQO1, and HO-1 mRNA levels 
were upregulated in the H1 group compared to the C group. 
Conversely, these genes were downregulated in the H6 group 
compared to the H1 group (Figure 1B). We then calculated 
protein levels by measuring Western blot band intensity. 
Compared to the C group, Nrf2 total protein and nuclear 
protein levels were increased in the H1 group; however, Nrf2 
was significantly decreased in the H6 group compared to 
the H1 group (Figure 1C–1E, 1G). Moreover, ICF revealed 
positive Nrf2, NQO1, and HO-1 staining in hRPE cells, and we 
could calculate protein expression levels based on fluorescence 

intensity (Figure 1C, 1D). Notably, NQO1 and HO-1 protein 
levels declined in the H6 group compared to the H1 group; 
however, H1 group levels were not statistically different than 
C group levels (Figure 1D). 
miR-27b-3p Lentiviral Overexpression or Inhibition Affects 
Nrf2 Levels  After lentiviral miR-27b-3p overexpression (OE 
group), we found that miR-27b-3p mRNA was significantly 
increased and Nrf2, NQO1, and HO-1 mRNA levels were 
reduced compared to the miR-27b-3p control lentiviral (NC 
group) by RT-qPCR (Figure 2A). In contrast, after miR-27b-
3p inhibitor lentiviral transfection (H-in group), we observed 
strong Nrf2, NQO1, and HO-1 fluorescence in hRPE cells, and 
Nrf2, NQO1, and HO-1 mRNA and protein were significantly 
upregulated as measured by RT-qPCR and ICF, respectively 
(Figure 2B–2D). Additionally, we calculated Nrf2 total protein 
and nuclear protein expression levels based on Western blot 
protein band intensity and found that they were upregulated 
compared to the miR-27b-3p control lentiviral (H-con group, 
Figure 2E, 2F).
Pyridoxamine Protects hRPE Cells from High Glucose 
Exposure Effects  We applied pyridoxamine to hRPE cultures 
after high glucose exposure and then analyzed  proliferation 
rates and ROS levels using CCK-8 and dihydroethidium, 
respectively. We found that hRPE proliferation was greatest 
after applying 4 μmol/L pyridoxamine compared to 2 or 
6 μmol/L pyridoxamine (Figure 3A). Compared to the H 
group, the proliferation rate was higher and ROS content was 
significantly lower after 4 μmol/L pyridoxamine application 
(Figure 3B–3D). Furthermore, we observed strong Nrf2, 
NQO1, and HO-1 fluorescence and Nrf2 protein band intensity 
in hRPE cells by ICF and Western blot, respectively (Figure 
3F, 3I). We found significant Nrf2, NQO1, and HO-1 mRNA 
and protein upregulation, including Nrf2 nuclear protein levels 
in the HP group compared to the H group (Figure 3G, 3H). In 
contrast, miR-27b-3p mRNA was dramatically downregulated 
(Figure 3E). 
DISCUSSION
Metabolite accumulation and inflammaory factor release are 
associated with DR progression and likely trigger structural 
and functional destruction of all retinal layers[5]. Our work 
here demonstrated that continuous high glucose exposure 
gradually increased ROS levels in hRPE cells, which then 
inhibited normal cellular function and proliferative activity. 
ROS are a main oxygen radical component and can cause 
oxidative stress damage[19-20]. Nrf2 is a strong antioxidant 
factor in vivo that can activate related antioxidant target genes, 
such as HO-1, NQO1, and glutamate-cysteine ligase catalytic 
subunit, and scavenge oxygen radicals[8,21]. Although we found 
that Nrf2 expression was transiently upregulated after 1d of 
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high glucose exposure, its function in activating downstream 
genes NQO1 and HO-1 was partially repressed. With longer 
high glucose exposure, we observed weaker Nrf2 expression. 
Studies have shown that Keap1 binds and inactivates Nrf2 in 
the cytoplasm; Nrf2 dissociates from Keap1 immediately after 
internal and external stimulation, translocates to the nucleus, 
and activates downstream target genes[8]. Because Nrf2 is 

mainly active in the cell nucleus[22], we evaluated both total 
and nuclear Nrf2 protein levels. Our results indicated that high 
glucose attenuates nuclear Nrf2 levels. Accordingly, HO-1 
and NQO1 activation were also decreased. Previous studies 
have demonstrated that HO-1 is one of the main oxygen free 
radical scavenging enzymes[23], while NQO1 mainly scavenges 
exogenous metabolites[24]. Based on this, we speculate that 

Figure 1 Impact of high glucose exposure for 1, 3, or 6d on hRPE cells  A: Cellular proliferation rates; B: Relative miR-27b-3p, Nrf2, NQO1, and 
HO-1 mRNA levels; C: ICF of Nrf2, NQO1, and HO-1 (200×); D: Semi-quantitative Nrf2, NQO1, and HO-1 ICF protein levels; E: Nrf2 Western blot 
protein bands from total protein and nuclear protein; F: Intracellular ROS levels; G: Semi-quantitative Nrf2 total protein and nuclear protein 
Western blot analysis; H: ROS fluorescence (100×). aP<0.05; bP<0.01; cP<0.001. hRPE: Human retinal pigment epithelial; miR-27b-3p: microRNA-
27b-3p; Nrf2: NF-E2-related factor 2; NQO1: NAD(P)H quinone oxidoreductase 1; HO-1: Heme oxygenase-1; ICF: Immunocytofluorescence; 
ROS: Reactive oxygen species; C: Normal glucose group; H1, H3, H6: 30 mmol/L glucose for 1, 3, or 6d groups.
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high glucose promotes ROS deposition by impairing the Nrf2/
NQO1/HO-1 axis, resulting in further oxidative stress and 
ultimately weakening cellular metabolic function.
The microRNAs have been shown to negatively regulate 
various downstream target genes[25] and are associated with 
DR[26]. Among them, miR-27b is associated with worse 
DR outcomes[17-18]. In our experiments, we found that high 
glucose induced abundant miR-27b-3p expression, which 
was negatively correlated with Nrf2 expression. Furthermore, 
Nrf2, NQO1, and HO-1 were dramatically suppressed by 
miR-27b-3p overexpression. These results suggest that 
Nrf2 is a downstream target of miR-27b-3p. Therefore, we 
hypothesized that miR-27b-3p inhibition would activate 
the Nrf2 axis. Indeed, we found that miR-27b-3p inhibition 
reversed the phenotypes induced by high glucose. This can 
mainly be attributed to Nrf2 transfer to the nucleus, followed 
by heterodimerization with small Maf proteins and binding to 
antioxidant response elements[21]. Thus, Nrf2 could enhance 
antioxidant conduction function, activate NQO2 and HO-1, and 
possibly reverse the oxidative damage induced by high glucose.
Pyridoxamine inhibits AGE[13] and has been shown to activate 
Nrf2[14]. Because 4 μmol/L pyridoxamine conditions resulted 
in the highest cellular proliferation rate, we chose this 
concentration for our studies. After pyridoxamine application, 
hRPE cell were better able to combat high glucose oxidative 
damage, which was mainly associated with inhibiting miR-

27b-3p and activating the Nrf2 axis. As Nrf2 content increased 
in the nucleus, its conductive function was enhanced. 
Consequently, downstream NQO1 and HO-1 could function as 
antioxidants and reduce ROS accumulation in cells. Oxygen 
radical scavenging is extremely beneficial for protecting 
hRPE mitochondrial enzyme activity and for repairing 
normal cellular metabolic function and maintaining cell 
proliferation[27]. We speculate that pyridoxamine’s antioxidant 
mechanisms under high glucose conditions involve inhibiting 
miR-27b-3p expression, boosting Nrf2 release to the nucleus, 
and protecting the Nrf2 signaling pathway. Unfortunately, our 
current work did not examine whether miR-27b-3p and Nrf2 
regulation could extenuate AGE deposition, which we plan to 
investigate in follow-up experiments.
In conclusion, our results suggest that Nrf2 is a downstream 
target of miR-27b-3p in hRPE cells. Injury from high glucose 
exposure may be associated with miR-27b-3p upregulation, 
which promoted Nrf2 degradation or disrupted its nuclear 
transfer, resulting in reduced NOQ1 and HO-1 expression levels. 
MiR-27b-3p inhibition or pyridoxamine application partially 
reversed the above phenotypes and alleviated oxidative stress. 
Accordingly, pyridoxamine may be an miR-27b-3p inhibitor, 
improving antioxidant effects by regulating miR-27b-3p and Nrf2 
and thus protecting hRPE structure and function. Furthermore, 
miR-27b-3p and Nrf2 could be new therapeutic targets and are 
worthy of further studies related to novel DR therapy development.

Figure 2 Effects of miR-27b-3p overexpression and inhibition on hRPE cells  A: Relative miR-27b-3p, Nrf2, NQO1, and HO-1 mRNA levels after 

miR-27b-3p overexpression lentiviral transfection; B: Relative miR-27b-3p, Nrf2, NQO1, HO-1 mRNA levels after miR-27b-3p inhibitor lentiviral 

transfection; C: Nrf2, NQO1, and HO-1 detected by ICF after miR-27b-3p inhibitor lentiviral transfection (200×); D: Semi-quantitative Nrf2, 

NQO1, and HO-1 ICF protein analysis after miR-27b-3p inhibitor lentiviral transfection; E: Nrf2 total protein and nuclear protein bands detected 

by Western blot after miR-27b-3p inhibitor lentiviral transfection; F: Semi-quantitative Nrf2 total protein and nuclear protein Western blot 

analysis after miR-27b-3p inhibitor lentiviral transfection. aP<0.05; bP<0.001. hRPE: Human retinal pigment epithelial; miR-27b-3p: MicroRNA-

27b-3p; Nrf2: NF-E2-related factor 2; NQO1: NAD(P)H quinone oxidoreductase 1; HO-1: Heme oxygenase-1; ICF: Immunocytofluorescence; 

DAPI: 4’,6-diamidino-2-phenylindole; C: Normal glucose group; H: 30 mmol/L glucose group; OE: Normal glucose followed by transfection of 

miR-27b-3p overexpression lentiviral group; NC: Normal glucose followed by transfection of miR-27b-3p control lentiviral group; H-in: 30 mmol/

L glucose followed by transfection of miR-27b-3p inhibitor lentiviral group; H-con: 30 mmol/L glucose followed by transfection of miR-27b-3p 

control lentiviral group. 
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