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Abstract
● AIM: To study microRNAs (miRNAs) and their potential 
effects in high glucose-induced human retinal pigment 
epithelial cell damage.
● METHODS: We screened the GSE52233 miRNA 
expression dataset for differentially expressed miRNAs 
(DEMs). The target genes of the top 10 DEMs were 
predicted using miRWalk 2.0 database, followed by function 
enrichment and protein-protein interaction analysis. miRNA 
expression was determined in the human retinal pigment 
epithelial cell line ARPE-19 treated with high glucose (HG) 
by quantitative reverse transcription-polymerase chain 
reaction (qRT-PCR). Cell proliferation was determined using 
cell counting kit (CCK)-8 assay. Cell cycle, apoptosis, and 
reactive oxygen species (ROS) levels were determined by 
flow cytometry. The direct interaction between miRNA and 
targets was validated using dual-luciferase reporter assay.
● RESULTS: Thirty-nine DEMs were screened, and we 
predicted 125 miRNA-mRNA pairs for the top 10 DEMs, 
including 119 target genes of seven DEMs such as miR-
346, which was upregulated in diabetic retinopathy (DR). 
miR-346 target genes were substantially enriched in the 
regulation of intracellular transport and retinoic acid-
inducible gene I (RIG-I)-like receptor signaling pathway. 
Expression of three upregulated and downregulated 

miRNAs were verified by qRT-PCR in HG-treated ARPE-19 
cells. Expression of miR-346 was elevated in HG treated 
ARPE-19 cells in a dose-dependent manner. HG inhibited 
cell proliferation and induced apoptosis, which were partly 
reversed by transfecting an miR-346 inhibitor, which even 
decreased the ROS levels elevated due to HG. Argonaute 2 
(AGO2) was a target of miR-346.
● CONCLUSION: miR-346 is a key miRNA and plays an 
important role in HG-induced damage in human retinal 
pigment epithelial cells. 
● KEYWORDS: miRNA;  miRNA -346;  ARPE-19; 
bioinformatics analysis
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INTRODUCTION

D iabetes is a public health issue with an estimated 415 
million patients globally in 2015 and is projected to 

affect 642 million people by 2040[1]. Diabetic retinopathy 
(DR), a major microvascular complication of diabetes, 
normally characterized by abnormal retinal microcirculation, 
affects a third of the diabetic patients and is the main cause 
of irreversible blindness in adults[2]. It is associated with a 
poor life quality and increases the risk of other complications 
and mortality[3-5]. Inflammatory processes play important 
roles in the pathogenesis of DR, which has been enforced by 
the clinical application of dexamethasone[6]. There are three 
strategies to prevent blindness induced by DR. While primary 
prevention requires the prevention or delay of its onset, 
secondary prevention is to delay the progression of DR. Lastly, 
non-invasive laser photocoagulation and invasive ocular 
surgery are the treatment options. However, anti-vascular 
endothelial growth factor (VEGF) is also increasingly used to 
treat vision-damaging DR[7]. Therefore, detailed studies of its 
molecular mechanisms are essential to provide a theoretical 
framework for research on DR treatment.

miR-346 in high glucose-induced RPE damage



1757

Int J Ophthalmol,    Vol. 16,    No. 11,  Nov. 18,  2023      www.ijo.cn
Tel: 8629-82245172     8629-82210956      Email: ijopress@163.com

As we know, blood-retinal barriers (BRB) is a physiologic 
barrier that maintain the structural and functional integrity 
of the retinal tissues[8]. The BRB composed of inner and 
outer components. The inner BRB is formed mainly by the 
tight junctions of retinal endothelial cells, and outer BRB is 
formed by the tight junctions of retinal pigment epithelial 
(RPE) cells[9]. Alterations of both inner and outer BRB play an 
important role in the development of retinal diseases[8]. RPE 
cells were previously believed unrelated to DR. However, 
increasing evidence suggests that all types of retinal cell 
are affected by diabetes[10], including the degeneration or 
dysfunction of the RPE[11-13]. In diabetic retina, cellular changes 
in the RPE occur in the early stage of DR, Samuels et al[11] 
used three mouse models to compare the time course of RPE 
involvement in type 1 and type 2 diabetes, and all mouse 
models showed altered RPE function accompanied with the 
onset of hyperglycemia. Recent studies have emphasized the 
importance of RPE in DR[8,14]. For example, RPE contribute 
to the development of DR probably by promoting the retinal 
vascular alterations in the early stages of the retinopathy[10]. 
Additionally, there have been a substantial of studies focusing 
on the inner retina in DR, and studies on outer retina is still 
limited.
Previous studies have shown that the occurrence of DR is 
related to abnormal epigenetic regulation[15-17]. In eukaryotic 
organisms, miRNA, an important component of epigenetics, 
is a highly conserved class of non-coding RNAs, which are 
about twenty-two nucleotides long. Endogenous miRNAs can 
regulate gene expression at the transcriptional level through 
specific interactions with target gene sequences and participate 
in many biological processes such as cell proliferation, 
differentiation and apoptosis[17-18]. miRNAs are associated 
with DR microvascularization, and differentially expressed 
miRNAs (DEMs) in DR have been identified[19]. miR-15b 
has been reported to inhibit angiogenesis by targeting VEGF 
in proliferative DR[20]. miR-451a mediates the proliferation 
and migration of RPE cells in proliferative DR by regulating 
mitochondrial function[21]. Previous studies have suggested 
that miRNAs could be potential biomarkers for DR therapeutic 
strategies[22-23]. For instance, diabetes could induce the high 
expression of miR-21 in retina, and inhibition of miR-21 
attenuated retinal neovascularization and inflammation, 
indicating that miR-21 might be a therapeutic target in DR[24].
A previous study identified 8 dysregulated miRNAs and their 
key targets using in silico method and were successfully 
confirmed using in vivo method[25], suggesting the feasibility 
of identifying miRNAs using bioinformatics methods. 
Therefore, we screened key dysregulated miRNAs in DR 
using bioinformatics methods based on the miRNA expression 
profiling in the Gene Expression Omnibus (GEO) database. 

The target genes of dysregulated miRNAs were predicted, 
followed by functional enrichment analysis and protein-
protein interaction (PPI) analysis to further study the role of 
dysregulated miRNAs in DR. In addition, we investigated the 
effect of miR-346 in high glucose (HG)-treated human retinal 
pigment epithelial cells.
MATERIALS AND METHODS
Data Access  The microarray dataset of GSE52233 was 
downloaded from the GEO database (http://www.ncbi.nlm.nih.
gov/geo/), which contained the miRNA expression data of age-
matched human autopsy normal (n=6) and DR (n=3) central 
corneas. The sequencing platform was GPL8786 [miRNA-1] 
Affymetrix Multispecies miRNA-1 Array. All methods 
were carried out in accordance with relevant guidelines and 
regulations.
Differential Expression Analysis  The miRNA data from 
downloaded CEL files were processed using the R package 
of Affymetrix (Version 1.50.0, http://www.bioconductor.
org/packages/release/bioc/html/affy.html)[26]. The procedure 
included background correction and normalization. 
Additionally, expression calculations were performed using 
the robust multi-array average (RMA) method. The annotation 
file of the platform was used to annotate the probes for the 
miRNA chip, and the probes of non-human miRNAs were 
removed[27-28]. The empirical Bayes linear model in the limma 
package was used to analyze DEMs between DR and control 
(normal). The criteria for differential expression were set as 
follows: P<0.05, |log2FC|>0.585 (fold change >1.5 or fold 
change <1.5).
Prediction of Target Genes of DEMs  The target mRNAs of 
the DEMs (top five upregulated and top five downregulated 
DEMs) were predicted using miRWalk 2.0[29-30] (http://zmf.
umm.uni-heidelberg.de/apps/zmf/mirwalk2/). The miRNA-
mRNA pairs were included only when they appeared in all 
of the following twelve databases: miRWalk, microT v4, 
miRanda, miRBridge, miRDB, miRMap, miRNAMap, Pictar2, 
PITA, RNA22, RNAhybrid, and Targetscan. Cytoscape 
software (Version 3.4.0), which were used to visualize the 
miRNA-mRNA regulation network, and the CytoNCA[31] plug-
in (Version 2.1.6, http://apps.cytoscape.org/apps/cytonca) was 
used to determine the connectivity degree of each node by 
analyzing the topological properties.
Function Enrichment Analysis  To explore the functions of 
the DEMs, function enrichment analysis was performed for the 
target mRNAs of the DEMs. The hypergeometric distribution 
test of ClusterProfiler in R package was used to analyze 
the biological processes from Gene Ontology[32] and Kyoto 
Encyclopedia of Genes and Genomes (KEGG)[33] pathways. 
Statistical significance was set at P<0.05.
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PPI Network Analysis  STRING database[34] (Version: 10.0, 
http://www.string-db.org/) was used to analyze the interactions 
among the target mRNAs of the DEMs with PPI score ≥0.4. 
Cytoscape software (Version 3.4.0) was used to visualize the 
PPI network. The CytoNCA[31] plug-in was used to analyze the 
topological properties of each node in the PPI network.
Cell Culture  The human retinal pigment epithelial cell line 
ARPE-19 was purchased from the Shanghai Cell Bank of the 
Chinese Academy of Sciences, China. The cells were cultured 
at 37℃ in a humidified incubator with 5% carbon dioxide 
and were maintained in basic DMEM (Catalog No.8117225, 
Gibco, Grand Island, NY, USA) supplemented with 10% 
fetal bovine serum (Catalog No.10099-141, Gibco, Grand 
Island, NY, USA) and 1% penicillin-streptomycin (Catalog 
No.BS734, Sangon biotech, Shanghai, China).
For HG treatment, ARPE-19 cells were treated with different 
concentrations of glucose (7.5, 17.5, 25, 50, 100, and 
200 mmol/L; Catalog No.14431-43-7, Sinopharm, China) 
for 24, 48, and 72h. Cell viability was assessed, and 25 mmol/L and 
200 mmol/L HG treatment for 48h were used in the following 
experiments  HG treatment (7.5 mmol/L) was used as a 
control.
Real-time Polymerase Chain Reaction  The TRIzol reagent 
kit (Catalog No.15596018, Invitrogen, Thermo Fisher 
Scientific, Waltham, MA, USA) was used to isolate total 
RNA according to the manufacturer’s instructions. Total 
RNA (1 μg per sample) was used for the reverse transcription 
reaction with the PrimerScript reverse transcription reagent 
kit (Catalog No.RR036A, Takara, Shiga, Japan) according to 
the manufacturer’s protocol. After reverse transcription, the 
Power SYBR Green PCR MasterMix (Applied Biosystems, 
Foster City, CA, USA) was used for real-time polymerase 
chain reaction (RT-PCR), which was performed in an ABI 
7500 thermocycler (Applied Biosystems, Foster City, CA, 
USA) following the manufacturer’s instructions. Each sample 
contained three replicates. The data were analyzed and 
calculated according to the cycle threshold values.
Transfection  ARPE-19 cells were seeded onto 6‑well plates 
at a density of 3×105 cells/well. After overnight incubation, 
the hsa-miR-346 inhibitor or negative control (NC) sequence 
was transfected into cells using Lipofectamine 2000 reagent 
(Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA). 
After 24, 48, and 72h, the cells were harvested for subsequent 
experiments.
Cell Viability Detection  A cell counting Kit (CCK-8,Catalog 
No. C0039, Beyotime, Shanghai, China) based on WST-8 was 
used to detect cell viability and cytotoxicity. After overnight 
incubation, approximately 4×103 ARPE-19 cells seeded 
in a 96-well plate were subsequently treated with different 
concentrations of glucose (7.5 mmol/L for the blank group, 

25 mmol/L for the HG group). After 24, 48, and 72h of cell 
culture, the medium in the wells was discarded and 100 
μL CCK-8 (5 mg/mL) was added to each well to a final 
concentration of 10% and thoroughly mixed for an additional 
2h of incubation. The absorbance of formazan dye in each well 
was measured using a microplate reader (Thermo Multiscan 
MK3; Thermo Fisher Scientific, Waltham, MA, USA) at 450 nm.
Flow Cytometry Analysis  Fluorescence-activated cell sorting 
(FACS) was performed to detect apoptosis, cell cycle profiling, 
and ROS activity. For apoptosis detection, four different 
groups were formed: 1) ARPE-19-blank (ARPE-19 cells 
without treatment); 2) ARPE-19+HG (ARPE-19 cells treated 
with 25 mmol/L HG); 3) ARPE-19-NC+HG, (ARPE-19 cells 
treated with hsa-miR-346 NC and 25 mmol/L HG); 4) ARPE-
19-inhibitor+HG (ARPE-19 cells treated with hsa-miR-346 
inhibitor and 25 mmol/L HG). Cells were then harvested and 
stained with FITC-Annexin V and propidium iodide (PI, 
36 μg/mL; Catalog No.P4170, MilliporeSigma, St. Louis, 
MO, USA) with RNase (10 μg/mL; Catalog No.RNASEA-
RO, MilliporeSigma, St. Louis, MO, USA) at 25℃ for 15min. 
Cell apoptosis was measured as the percentage of FITC+ and 
PI-cell populations using FACS.
For cell cycle detection, cells were harvested and stained with 
PI (36 μg/mL; Catalog No.P4170, MilliporeSigma, St. Louis, 
MO, USA) with RNase (10 μg/mL; Catalog No.RNASEA-
RO, MilliporeSigma, St. Louis, MO, USA) at 25℃ for 15min. 
The cell cycle was analyzed by PI staining data from FACS.
For ROS detection, the ROS assay kit (Catalog No.S0033, 
Beyotime, Shanghai, China) was used. In details, ARPE-19 
cells transfected with miRNA NC and miRNA inhibitor were 
pre-incubated for 48h. DCFH-DA was then added to four 
different groups of cells to a final concentration of 10 mmol/L 
and incubated at 37℃ for 30min in the dark. The cells were 
subsequently washed with PBS and adjusted to a concentration 
of 1×106 cells/mL for FACS analysis under the condition that 
the excitation and emission wavelengths were 488 and 525 nm, 
respectively. Data were analyzed using ModFitLT software 
(Verity Software House, Topsham, ME, USA). Representative 
data from three independent experiments with similar trends 
are shown.
Dual-luciferase Reporter Assay  In order to verify the direct 
interaction between miR-346 and AGO2, the wild type or 
mutant 3’-UTR fragments of Argonaute 2 (AGO2) containing 
the binding sites were amplified and cloned into the pmirGLO 
reporter vectors (Promega Corp., Madison, WI, USA). Then, 
miR-346 mimic or mimic NC and pmirGLO AGO2 wild 
type (WT)/ mutant (MUT) were then transfected into 293T 
cells using Lipofectamine 2000 Reagent (Invitrogen). After 
48h of transfection, luciferase activity of reporter vectors 
were determined, and the binding intensity between miR-346 
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and AGO2 was reflected by the firefly luciferase activity by 
normalizing against Renilla luciferase activity.
Statistical Analysis  All data are presented as the 
mean±standard deviation (SD). The t-test and two-way 
ANOVA followed by Tukey’s post-hoc test were used for 
statistical analysis. If the P-value was less than 0.05, the 
difference was considered significant.
RESULTS
miRNAs Differentially Expressed in DR  In total, 39 miRNAs 
were found to be differentially expressed between the control 
and DR groups (P<0.05, absolute fold change >1.5), of which 
19 were upregulated and 20 downregulated (Figure 1A). 
The clustering heatmap of DEMs showed different miRNA 
expression patterns in the DR and control groups, and the two 
groups could be clustered by differential miRNAs (Figure 1B).
Potential Function of DEMs  To investigate the potential 
target mRNAs of the key DEMs in DR, we predicted the 
miRNA-mRNA interaction pairs for the top 10 DEMs. A total 
of 119 mRNAs were predicted to be targets for seven DEMs, 
involving 125 miRNA-mRNA pairs (Figure 2). The seven DEMs 
included four upregulated miRNAs (e.g., miR-346) and three 
downregulated ones (e.g., miR-509-3P). There were 15 targets 
was found for miR-346, such as AGO2, RDX and MASP1.
To further investigate the functions and signaling pathways 
related to these seven DEMs, function enrichment analysis was 
performed for the target mRNAs (Figure 3). These targeted 
mRNA were involved in different biological processes and 
pathways, e.g., the target mRNAs of miR-346 were enriched 
in the biological processes of protein localization to the cell 
periphery, protein localization to the plasma membrane, and 
regulation of intracellular transport. They were also enriched 
in the KEGG pathways, including SNARE interactions in 
vesicular transport, retinoic acid-inducible gene I (RIG-I)-
like receptor signaling pathway, and synaptic vesicle cycle. 
The target mRNAs of miR-34b-3P were enriched in the 

mTOR signaling pathway and regulation of miRNA metabolic 
processes, and in the negative regulation of T-helper 17 type 
immune response and activated T cell proliferation.
PPI Network  To further determine whether there was 
crosstalk among the target mRNAs, we constructed a PPI 
network, which contained 67 nodes and 72 interactions 
(Figure 4). According to the degree ranking of the PPI network 
topological properties, MYC (degree=18), RAC1 (degree=11), 
and SOX2 (degree=6) were hub nodes with a higher degree in 
the PPI network.

Figure 1 Results of differential expression analysis  A: Volcano plot of DEMs. Red and blue nodes represent upregulated and downregulated 

miRNAs, respectively. B: Clustering heatmap for DEMs. Each row represents one DEM, and each column represents one sample. The top five 

upregulated and top five downregulated miRNAs are labeled. DEMs: Differentially expressed miRNAs.

Figure 2 miRNA-mRNA interaction network  Blue triangles represent 
down-regulated miRNAs, red diamonds represent up-regulated 
miRNAs, yellow circles represent target genes. The color darkness of 
the blue triangles and red diamonds represents the relative value of 
logFC; the darker the color is, the bigger the |logFC| value is.



1760

Expression of miRNAs in Human Retinal Pigment 
Epithelial Cell Treated with HG  Expression of three down-
regulated and up-regulated miRNAs were validated in human 
retinal pigment epithelial ARPE-19 cells after HG treatment 
(Figure 5). Consistent with the results in bioinformatics 
analysis, expression of miR-509-3p, miR-484 and miR-133a 
were significantly reduced in 200 mmol/L HG treated 
ARPE-19 cells, and the decreased expression of miR-509-

3p and miR-133a in HG treated ARPE-19 cells seemed to be 
dose-dependent. Expression of miR-297 was significantly 
increased in 200 mmol/L HG treated ARPE-19 cells. Additionally, 
expression of miR-424 and miR-346 were elevated in 25 mmol/L 
HG treated ARPE-19 cells compared to that in control cells, 
and its expression continuously elevated in a dose-dependent 
manner up to treatment with 200 mmol/L HG. We mainly 
focused on the two miRNAs (miR-424 and miR-346) whose 
expression was significantly up-regulated with the increase 
of high glucose concentration. Previous studies have reported 
the involvement of miR-424 in retina-associated diseases[35-36], 
while miR-346 has not been investigated yet. Therefore, 
miR-346 was selected for further investigations.
Role of miRNA-346 in HG-induced Cell Proliferation 
Inhibition and Apoptosis  Expression of miR-346 was 
markedly reduced in ARPE-19 cells after transfecting with 
miR-346 inhibitor (Figure 6A). Results of the CCK-8 assay 
showed that cell proliferation was substantially inhibited after 
25 mmol/L HG treatment at both 48 and 72h (1.22 fold at 48h, 
1.29 fold at 72h, P<0.01), while such inhibition was partly 
reversed by inhibiting miR-346 expression (1.12 fold at 48h, 
1.09 fold at 72h, P<0.01; Figure 6B).
As per cell cycle detection results, the proportion of cells in the 
G0/G1 phase (1.16 fold, P<0.01) and G2M phase (1.51 fold, 
P<0.01) increased considerably, but there was a substantial 
decrease in the proportion of cells in S phase (2.69 fold, 
P<0.01) after 25 mmol/L HG treatment. As expected, HG-

Figure 3 Results of function enrichment analysis for target genes of key DEMs  A: Bubble diagram shows the significantly enriched biological 

processes in GO annotation. B: Bubble diagram shows the significantly enriched KEGG pathway. The horizontal axis labels are miRNA IDs with 

the number of enriched genes in parentheses; the vertical axis labels are the names of KEGG pathways. The dot size GeneRatio is the gene 

proportion; the larger the gene proportion, the greater the proportion of the enriched genes. The colors from purple to green represents the 

relative P value; a lower P value indicates higher significance. DEMs: Differentially expressed miRNAs; KEGG: Kyoto Encyclopedia of Genes and 

Genomes.

Figure 4 PPI network for target genes of key DEMs  Brown round 

nodes represent genes, and gray lines represent interactions. PPI: 

Protein-protein interaction; DEMs: Differentially expressed miRNAs.
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induced changes in the cell cycle could be partly reversed by 
inhibiting miR-346 expression (1.20 fold at G0/G1 phase, 2.24 
fold at S phase, P<0.05; Figure7A). In addition, HG treatment 
induced ARPE-19 cell apoptosis (2.36 fold, P<0.01), which 
was partly inhibited by inhibiting miR-346 expression (1.37 
fold, P<0.01; Figure 7B). These results suggest that miR-346 
expression is involved in HG-induced damage in human retinal 
pigment epithelial cells.
Role of miRNA-346 in HG-induced Oxidative Stress  HG 
treatment led to increased levels of reactive oxygen species 
(ROS, 1.64 fold, P<0.01), which substantially decreased after 
inhibiting the expression of miR-346 (1.23 fold, P<0.01, 
Figure 8), suggesting that miR-346 inhibition could reduce 
oxidative stress induced by HG.
AGO2 a Target of miR-346  In order to verify the targets of 
miR-346, the binding probability between miR-346 and its 
targets were predicted. Among the 15 targets shown in the 
above miRNA-mRNA interaction network, AGO2 showed 
highest binding probability to miR-346. Expression of AGO2 

was significantly increased after inhibiting miR-346 (Figure 9A), 
indicating that there might be a negative regulatory between 
miR-346 and AGO2. Dual-luciferase reporter assay was 
further performed to validate the targeting relationship between 
miR-346 and AGO2. Luciferase activity of AGO2-WT was 
markedly reduced after transfection of miR-346 mimics, while 
luciferase activity of AGO2-MUT showed no significant 
changes after transfection of miR-346 mimics (Figure 9B). 
These results suggested that AGO2 was a target of miR-346.
DISCUSSION
DR develops at different levels in more than 40% of 
diabetic patients, and in about 4% of them, progresses to the 
proliferative type[37], which seriously impairs visual function. 
The development of proliferative DR seriously damages 
visual function. Although surgical treatment can restore the 
anatomical structure of the retina, visual function remains 
impaired[38-39]. Therefore, searching for biomarkers with higher 
sensitivity, specificity, and stability may provide potential 
targets for the treatment of DR.

Figure 5 Expression of miRNAs validated in HG-treated ARPE-19 cells  Expression of three upregulated miRNAs and three downregulated 

miRNAs in HG-treated ARPE-19 cells determined by qPCR. aP<0.05; bP<0.01, compared to control. qPCR: Quantitative polymerase chain 

reaction; HG: High glucose.

Figure 6 The effect of miR-346 on ARPE-19 cell proliferation  A: Expression of miR-346 was verified to be decreased after transfecting miR-346 

inhibitor. B: Cell proliferation of ARPE-19 cells determined by CCK-8 assay after HG treatment and miR-346 inhibition. bP<0.01, compared to 

control, ARPE-19-blank group; cP<0.05, dP<0.01, compared to NC+HG group. NC: Negative control; HG: High glucose; CCK: Cell Counting Kit.
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An increasing number of studies have demonstrated the 
important role of miRNAs in DR[40-41]. For example, Bao and 
Cao[42] suggested that the expression of miR-138-5p decreased 
in DR, and that it mediated the proliferation of retinal capillary 
pericytes and endothelial cells by regulating NOVA1. In this 
study, a total of 39 DEMs were screened for DR. Decreased 
expression of miR-509-3p, miR-484 and miR-133a, while 
elevated expression of miR-297, miR-424 and miR-346 were 
verified in HG treated ARPE-19 cells. The detailed roles of 
these miRNAs have not been reported in DR. Noticeably, 
miR-484 was reported to participate in apoptosis of the retinal 

ganglion cells following retinal ischemia reperfusion injury[43]. 
MiR-133a-3p was found to locate at the outer nuclear layer in 
the damaged retina[44], and miR-424-5p was found to be up-
regulated in hypoxia-induced high-altitude retinopathy cell 
model[35]. Further investigations focusing on the involvements 
of these miRNAs in DR should be carried out.
In this study, expression of miR-346 was found to increase in 
central corneas of DR patients, and its increased expression 
was verified in HG-treated ARPE-19 cells in a dose-dependent 
manner, suggesting the involvement of miR-346 in DR. 
However, there was no study to report the roles of miR-346 

Figure 7 The effect of miR-346 on cell cycle and apoptosis of ARPE-19 cells  A: Cell cycle detection by FACS; B: Cell apoptosis detection by FACS. 
aP<0.05; bP<0.01, compared to ARPE-19-blank group; cP<0.001, compared to NC+HG group. HG: High glucose; FACS: Fluorescence-activated cell 

sorting; NC: Negative control.

Figure 8 The effect of miR-346 on HG-induced oxidative stress  ROS detection by FACS. aP<0.001, compared to blank group; bP<0.001, 

compared to NC+HG group. HG: High glucose; ROS: Reactive oxygen species; FACS: Fluorescence-activated cell sorting; NC: Negative control.
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in DR. Here, we found that the target gene of miR-346 was 
mainly enriched in the regulation of intracellular transport, 
(RIG-I)-like receptor signaling pathway, and synaptic 
vesicle cycle. A study by Miao et al[45] found that aberrantly 
hypermethylated genes that were enriched in the synaptic 
vesicle cycle and visual perception were involved in the 
pathophysiology of proliferative DR. (RIG-I)-like receptors 
play an important role in cytoplasmic RNA sensing, where 
viral RNAs are recognized and innate immune system and 
inflammation in cells is induced[46]. The regulation of these 
signals is especially crucial to decrease inflammation in the 
eyes and other immune-tolerant organs[47]. We speculated 
that miR-346 was involved in DR progression, probably by 
targeting genes associated with these signaling pathways. 
We further verified the targets of miR-346, and AGO2 was 
confirmed to be directly regulated by miR-346 in dual-
luciferase reporter assay. In HG-treated ARPE-19 cells, 
expression of AGO2 was significantly increased after inhibiting 
miR-346. Reportedly, either inhibiting or overexpressing 
AGO2 in mouse retina leaded to significantly changed retinal 
morphological and severely damaged retinal function[48]. This 
finding also proven that miR-346 may be involved in the 
occurrence and development of DR to a certain extent.
RPE is a monolayer of pigment epithelium cells which 
comprises the outer blood-retinal barrier, and represents an 
important site for retinopathy[49]. The damage of HG to RPE 
cells has been considered as an important event in DR, and 
the damage was implicated with apoptosis, inflammation, and 
oxidation[10]. Especially, oxidative stress has been demonstrated 
to be an important contributor for the etiopathogenesis of 
DR[50]. ARPE-19 cells are sensitive to oxidative damage, 
while abundant oxidative metabolites are produced in cells 
after HG stimulation[51-52]. The accumulation of oxidative 
metabolites may result in irreversible cytotoxic damage to 
ARPE-19 cells[53]. In addition, increased free radicals may 

trigger apoptosis of ARPE cells by damaging mitochondrial 
DNA[54]. In order to confirm the involvement of miR-346 in the 
pathogenesis of DR, functional experiments were performed in 
HG-treated ARPE-19 cells. We found that miR-346 inhibition 
could alleviate HG-induced decreased cell viability and 
increased cell apoptosis. In addition, inhibition of miR-346 
could also stabilize the increased rate of the G0/G1 phase and 
the decreased rate of the S phase after HG treatment. Most 
importantly, the increased level of ROS caused by HG could 
be reversed by inhibiting miR-346. These findings verified the 
involvement of miR-346 in the pathogenesis of DR.
To our knowledge, this was the first study to investigate the 
role of miR-346 in DR. However, this was just a preliminary 
study, and remained some limitations. The bioinformatics 
analysis revealed that the targeted genes of miR-346 enriched 
in several pathways reported to be involved in DR. Whether 
miR-346 affected these pathways had not been investigated in 
the in vitro experiments. This study suggested that miR-346 
mediated the basic biological processes in HG-induced damage 
of retinal pigment epithelial cell, such as cell proliferation, 
apoptosis and oxidative stress. However, the underlying 
specific regulation mechanism should be further investigated. 
For example, the signaling pathways that control cell cycle 
and apoptosis needed to be further explored. Inflammatory 
processes have been suggested to play important roles in 
the pathogenesis of DR, and whether miR-346 regulates the 
expression of inflammatory markers in DR should be further 
investigated. Additionally, many ocular cells are affected in 
DR. For example, apoptosis of neural and vascular cells in the 
retina had been demonstrated to be a contributing mechanism 
of DR[55]. This study indicated that miR-346 mediated the cell 
proliferation, apoptosis and oxidative stress in HG-induced 
damage of RPE cell. It was necessary to investigated whether 
miR-346 mediated these processes of other ocular cells. Only 
based on this, the roles of miR-346 could be extended to DR 

Figure 9 AGO2 was a target of miR-346  A: Expression of AGO2 after miR-346 inhibition; B: Dual-luciferase reporter assay for determining the 

interactions betwwen miR-346 and AGO2. aP<0.01, compared to control; bP<0.01, compared to inhibitor NC; cP<0.001, compared to WT-mimic 

NC. AGO2: Argonaute 2; WT: Wild type; NC: Negative control.
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in general. In conclusion, as per the current bioinformatic 
and experimental results, miR-346 is highly expressed in DR 
and plays an important role in HG-induced damage in human 
RPE cells. Therefore, miR-346 may play a key role in DR 
progression. However, in future, more rigorous, prospective, 
large sample sized experimental studies and long-term clinical 
trials are required to support this finding.
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