
1766

·Basic Research·

Therapeutic effect of folic acid combined with decitabine 
on diabetic mice

Gang Du1, Yong Yan2, Jun-Feng Gao3, Chun-Yan Guo4, Xiao Shen1, Xun-Wen Lei1

1The First Hospital of Lanzhou University, Lanzhou 730000, 
Gansu Province, China
2Huining Second People’s Hospital, Baiyin 730700, Gansu 
Province, China
3The Fourth People’s Hospital of Tianshui, Tianshui 741000, 
Gansu Province, China
4Dingxi People’s Hospital, Dingxi 743000, Gansu Province, 
China
Co-first authors: Gang Du and Yong Yan
Correspondence to: Xun-Wen Lei. The First Hospital of 
Lanzhou University, Lanzhou 730000, Gansu Province, China. 
leixw82@163.com
Received: 2023-05-08        Accepted: 2023-08-15

Abstract
● AIM: To evaluate the therapeutic effect of folic acid 
combined with decitabine on diabetic mice. 
● METHODS: The diabetic model of db/db mice were 
randomly divided into model group, folic acid group, 
decitabine group, folic acid combined with decitabine 
group, and C57 mice as normal control group. The density 
of retinal blood vessels and retinal thickness were detected 
by fundus photography and optical coherence tomography, 
respectively. Pathological changes of retina were observed 
by hematoxylin-eosin (HE) staining. The homocysteine (Hcy) 
in serum was detected by enzyme linked immunosorbent 
assay (ELISA). TdT-mediated dUTP nick-end labeling (TUNEL) 
was used to detect apoptosis in retinal tissue. Evans blue 
dye was used to detect the permeability of retinal blood 
vessels. The platelet endothelial cell adhesion molecule-1 
(CD31) and vascular endothelial growth factor receptor 
(VEGFR) protein were detected by Western blot. The 
3-nitrotyrosine (3-NT) and 4-hydroxynonanine (4-HNE) were 
detected by immunohistochemistry. 
● RESULTS: The density of retinal blood vessels, retinal 
thickness, retinal vascular permeability and the proportion 
of apoptotic cells of retinal tissue in the model group 
increased significantly than control group (P<0.05). The Hcy 
in serum and the levels of CD31, VEGFR, 3-NT, and 4-HNE 
in retinal tissue increased significantly in the model group 
(P<0.01). Folic acid and decitabine both reversed these 

changes significantly, and the combination of the folic acid 
and decitabine worked best. 
● CONCLUSION: The combination of folic acid and 
decitabine has a more significant protective effect on the 
retina in diabetic mice.
● KEYWORDS: diabetic model folic acid; decitabine; 
apoptosis; mouse
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INTRODUCTION

D iabetic retinopathy (DR) is one of the most serious 
microangiopathic complications of diabetes mellitus 

(DM). Long-term chronic hyperglycemia injury leads to 
morphological and functional abnormalities in retinal tissues, 
damages microvascular endothelial cells, and results in 
abnormal angiogenesis[1-2]. Currently, many research have 
found that multiple drugs can exhibit certain therapeutic effects 
on DR by targeting angiogenesis[3-4].
It has been demonstrated that hyperglycemia-induced 
oxidative stress can lead to apoptotic damage of retinal 
endothelial cells, changes in vascular permeability, disorder of 
neovascularization and changes in metabolism of glycolipid-
protein in retinal tissues[5-7]. Herein, homocysteine (Hcy) is 
the main cause of oxidative stress in DM and is an important 
independent factor in DR[8]. The free sulfhydryl groups on Hcy 
are prone to auto-oxidation, producing hydrogen peroxide and 
other oxygen radicals, leading to lipid peroxidation. Hcy can 
also inhibit the activity of various antioxidant enzymes such 
as glutathione peroxidase, which can weaken the antioxidant 
function of the body and cause oxidative stress reactions[9]. 
Meanwhile, Hcy can induce the expression of various adhesion 
factors in vascular endothelial cells, promote adhesion of 
inflammatory cell, cause endothelial coagulation, anti-
coagulation disorder and promote thrombosis[10-12].
Hcy is an intermediate of the methionine cycle, which directly 
affects the Hcy content in blood and tissues. In this cycle, 
folic acid acts as a one-carbon carrier, and is catalyzed by 
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5-methyltetrahydrofolic acid Hcy methyltransferase, which 
provides a methyl group to Hcy, methylating Hcy to afford 
methionine (Met). Therefore, folic acid supplementation 
can promote the conversion of Hcy to Met and reduce 
the Hcy content in blood. It has been demonstrated that 
supplementation of folic acid can protect retinal vascular 
endothelial cells from damage in the hyperglycemia state[13], 
reduce the local oxidative stress state[14], reduce Hcy serum 
levels, and alleviate retina thinning in early DR models[15].
The ratio of S-adenosine Met (SAM) and S-adenosine 
homocysteine (SAH) in the methionine cycle (SAM/SAH 
ratio) plays an important role in DNA methylation. In the 
process of DNA methylation, methyltransferase can indirectly 
promote the conversion of SAM to SAH by accelerating 
methyl metabolism, resulting in the decrease of SAM and the 
increase of SAH, the precursor of Hcy, thus manifesting as 
a high Hcy state, the high Hcy and SAH levels will further 
aggravate the oxidative stress state and affect the development 
of DR[16]. As a specific inhibitor of methyltransferase, decitabine 
can protect retina by inhibiting methyl metabolism, reducing 
the conversion of SAM to SAH, thereby reducing Hcy levels, 
improving DR progression, and preventing mtDNA damage[17].
Currently, the natural product quercetin has shown potential 
therapeutic effects in DR by inhibiting NLRP3 inflammasome 
and autophagy signaling pathways, which are involved in 
the dysregulation of neovascularization[18]. However, there is 
currently no research exploring new treatment strategies for 
DR based on the methionine cycle. In summary, folic acid 
reduces Hcy levels by promoting the remethylation of Hcy 
to generate Met, whereas decitabine reduces Hcy levels by 
indirectly inhibiting SAM demethylation and increasing the 
SAM/SAH ratio to inhibit Hcy production. Both alone may 
alleviate DR by reducing the level of Hcy and inhibiting 
the resulting local oxidative stress[15]. However, the effect 
of the combination of the two on DR has not been reported. 
Therefore, in this experiment, folic acid was combined with 
decitabine to intervene in DM model mice to explore the 
therapeutic effect on DR.
MATERIALS AND METHODS
Ethical Approval  This experimental study was carried out 
in the laboratory at the First Hospital of Lanzhou University 
and Gansu University of Chinese Medicine between March 
2021 and August 2022. The Ethics Committee approval for 
this study was obtained from the First Hospital of Lanzhou 
University, Lanzhou, China (No.LDYYLL2021-135).
Experimental Animals  Forty male db/db mice (16-week-old, 
weighing 57±5 g), and 10 male C57BL/Ksj mice (16-week-
old, weighing 22±2 g) were purchased from Changzhou 
Cavens experimental animal Co., Ltd. with license No. SCXK 
(SU) 2016-0010. All the mice were raised in the specific 

pathogen-free (SPF) barrier environment of Gansu University 
of Chinese Medicine which simulated natural day and night 
conditions, with daytime relative temperature of 21℃±2℃, 
relative humidity of 40%-45%, daily sunshine time of 12h, and 
free feeding and water intake. 
Drugs and Reagents  All materials were as follows: folic 
acid (HPLC purity≥97%; F7876, Sigma-Aldrich, USA), 
blood glucose meter and blood glucose test paper (BD, USA), 
inverted fluorescence microscope (BX53, Olympus, Japan), 
Evans blue dye (E2129, Sigma-Aldrich, USA), mouse Hcy 
enzyme linked immunosorbent assay (ELISA) kit (ml037451, 
Shanghai mlbio, China), TdT-mediated dUTP nick-end 
labeling (TUNEL) apoptosis detection kit (Alexa fluor 488; 
40307es50, Yeasen Biotechnology, Shanghai, Co., Ltd.), 
mouse anti-3-nitrotyrosine (3-NT) monoclonal antibody 
(ab61392, Abcam, UK), rabbit anti-4-hydroxynonanine 
(4-HNE) polyclonal antibody (ab46545, Abcam, UK), HRP-
labeled Goat anti-rabbit polyclonal IgG(H+L) (ab6721, 
Abcam, UK), HRP-labeled goat anti-mouse IgG(H+L) 
(ab6789, Abcam, UK), Alexa Fluor® 488-labeled goat anti-
rabbit IgG(H+L) (ab150077, Abcam, UK), BeyoECL Plus 
(P0018, Beyotime Biotechnology, Shanghai, Co., Ltd.), radio 
immunoprecipitation assay lysis buffer (P0013C, Beyotime 
Biotechnology, Shanghai, Co., Ltd.), SDS-PAGE protein 
sample loading buffer (P0286, Beyotime Biotechnology, 
Shanghai, Co., Ltd.).
Groups and Treatment  Ten C57BL/Ksj mice used as the 
normal control group were fed with common diet, 40 db/db 
mice with fasting blood glucose ≥11.1 mmol/L were randomly 
divided into 4 groups: model group (n=10), folic acid group 
(n=10), decitabine group (n=10) and folic acid+decitabine 
group (n=10). Among them, folic acid group was fed by 
gavage at 70 μg/kg·d with folic acid once a day. The decitabine 
group was injected intraperitoneally with decitabine at the dose 
of 0.25 mg/kg once every 5d, the folic acid+decitabine group 
was intervened with the combination of 70 μg/kg·d folic acid 
and 0.25 mg/kg decitabine[19]. The normal group was given 
the same dosage of normal saline by gavage and injection, 
respectively. The above groups were intervened for 30d.
Angiogenesis in Retinal Tissue Detected by Fundus 
Photography  After the intervention, the eye of the mice 
anesthetized by intraperitoneal injection of 10% chloral 
hydrate with a dose of 30 mg/kg were fixed, the pupils of both 
eyes were dilated, and the 20 D indirect mirror was fixed on 
the fundus camera (nonmyd) in front of the lens of α-D Ⅲ), 
fix the mouse eyelids, make the mouse’s eyeballs directly in 
front of the indirect lens through adjustment, and adjust the 
mouse’s position until a clear fundus image is observed and 
photographed through the fundus camera.
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Retina Thickness Detected by Optical Coherence 
Tomography  After the intervention, the mice were 
anesthetized with 30 mg/kg intraperitoneal injection of 10% 
chloral hydrate, fixed the rat eyes, mydriasis in both eyes, 
fixed the rat eyes, measured the retinal thickness at the two 
disc diameters above, below, nasal and temporal, and took the 
average value. The high reflection layer from the inner limiting 
membrane of the retina to the retinal pigment epithelium was 
measured manually using the built-in software of the detection 
system, which was defined as the thickness of the retina.
Cells Apoptosis in Retinal Tissue Detected by TUNEL 
Test  The eyeball slices fixed with 4% paraformaldehyde were 
dewaxed in water. Protease K (20 μg/mL) incubated the slices 
at room temperature for 30min. Then slices were washed with 
phosphate buffered saline (PBS) for 3 times, added 50 μL 
Alexa Fluor 488-12-dUTP labeling mix, and incubated at 37℃ 
in dark for 60min. Washed with PBS for 3 times and dropwise 
added of 50 μL PI solution (1 μg/mL) at room temperature for 
5min, slices were rinsed with deionized water, and observed 
and photographed under microscope.
Hcy in Serum Detected by ELISA  After the intervention, 
1% pentobarbital sodium was injected intraperitoneally 
to anesthetize the mice, the blood was taken by extracting 
the eyeballs. The blood was naturally coagulated at room 
temperature for 20min, centrifuged at 3000 rpm for 10min, 
and the serum was taken. The content of Hcy in serum was 
detected using the ELISA kit according to manufacturer’s 
protocol. 
Expression of 3-NT and 4-HNE Protein in Retina Detected 
by Immunohistochemistry After hydrated and repaired of 
antigen, the paraffin sections of retinal tissue were washed 
with PBS, added 3% H2O2, and incubated at room temperature 
for 10min to block endogenous peroxidase. After washed 
with PBS, the paraffin sections were incubated with 10% goat 
serum at room temperature for 30min, with 3-NT and 4-HNE 
antibody overnight at 4℃, and with biotin labeled goat anti-
rabbit secondary antibody at room temperature for 1h. After 
washed with PBS, the sections were stained with HRP-labeled 
Streptomyces ovalbumin, incubated at room temperature for 
15min, and added 3,3’-diaminobenzidine, then stained with 
hematoxylin, dehydrated with gradient alcohol, added xylene, 
and observed under the microscope. 
Expression of CD31 and VEGFR Detected by Western 
Blot  The total protein in the retina were extracted using radio 
immunoprecipitation assay lysis buffer. Briefly, the retina 
was lysed in radio immunoprecipitation assay lysis buffer for 
30min at 4℃, The lysates were centrifuged at 13 000 rpm for 
10min, the supernatants were separated and added 5× loading 
buffer, boiled for 5min for the denatures. Equal amounts of 
protein (30 μg) were subsequently loaded in SDS-PAGE gel 

for electrophoresis. Following concentration, separation and 
membrane transfer, the membranes were blocked overnight 
with 10% skim milk in 0.5% Tween 20 in PBS (PBST) 
for 1h at room temperature and then incubated with rabbit 
antiserum specific for CD31 and VEGFR (diluted 1:2000) 
at 4℃ overnight, and subsequently washed with PBS. HRP-
conjugated goat anti-rabbit IgG (diluted 1:5000) in PBS 
was incubated as the secondary antibody reacted for 2 h at 
room temperature. Antibody binding was visualized by ECL, 
exposed and developed with automatic exposure instrument, 
and take photos for analysis. The gray value of each band was 
analyzed by imagePro plus software.
Statistical Analysis  SPSS 21.0 data statistics software 
package was used for data statistics. The measurement data are 
expressed as mean±standard deviation (SD). One way ANOVA 
is used for multi group comparison, LSD-t test is used for 
pairwise comparison between groups, and the difference is 
statistically significant at P<0.05.
RESULTS
Angiogenesis and Retinal Thickness Changes  The 
neovascularization and retinal thickness increased significantly 
in the model group compared with normal group and decreased 
significantly in folic acid, decitabine, and decitabine+folic 
acid groups compared with model group. There were no 
significant changes between folic acid group and decitabine 
group. Compared with folic acid group and decitabine group, 
the neovascularization and retinal thickness in decitabine+folic 
acid group were significantly reduced (Figure 1).
Changes of Retinal Vascular Permeability  The Evans 
blue leakage value in the retina of the model group increased 
significantly compared with the normal group (P<0.01) and 
decreased significantly in folic acid, decitabine, and folic 
acid+decitabine groups compared with the model group 
(P<0.01). Evans blue leakage in folic acid group was less than 
decitabine group (P<0.01) and the folic acid+decitabine group 
was the least (P<0.01; Figure 2).
Changes of Hcy Level in Serum  Serum Hcy level in the 
model group increased significantly compared with the 
normal group (P<0.01) and decreased significantly in folic 
acid, decitabine, and folic acid+decitabine groups compared 
with the model group (P<0.01). The serum Hcy level in folic 
acid+decitabine group was the most significant decrease 
among the three groups (P<0.01; Figure 3). 
Changes of Retinal Cell Apoptosis  After one month of 
intervention, the proportion of apoptotic cells in the retina of 
the model group increased significantly compared with the 
normal group (P<0.01) and decreased significantly in the folic 
acid, decitabine, and folic acid+decitabine groups compared 
with the model group (P<0.01). It was the most significant 
decrease in folic acid+decitabine group (P<0.01; Figure 4).
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Changes of 3-NT and 4-HNE in Retina  The 3-NT and 
4-HNE proteins increased significantly in the model group 
compared with normal group (P<0.01) and decreased 
significantly in folic acid, decitabine, and decitabine+folic acid 
groups compared with model group (P<0.01), especially in 
decitabine+folic acid group (P<0.01; Figure 5).

Expression Changes of CD31 and VEGFR in Retina  The 
CD31 and VEGFR proteins increased significantly in the model 
group compared with normal group (P<0.01) and decreased 
significantly in folic acid, decitabine, and decitabine+folic acid 
groups compared with model group (P<0.01), especially in 
decitabine+folic acid group (P<0.01; Figure 6).

Figure 1 The effect of folic acid combined with decitabine on the angiogenesis and thickness of retina in diabetic mice  The retinal vascularization 

was observed by fundus photography (FP), and the retinal thickness changes were observed by optical coherence tomography (OCT).

Figure 2 Effect of folic acid combined with decitabine on vascular 

permeability in retina of diabetic mice, and retinal permeability 

changes were detected by Evans blue staining  aP<0.01 vs blank 

group, bP<0.01 vs model group, cP<0.01.

Figure 3 The effect of folic acid combined with decitabine on serum 

Hcy level in diabetic mice  ELISA assay was used to detect the level 

of Hcy in serum of mice. aP<0.01 vs blank group, bP<0.01 vs model 

group, cP<0.01.

Figure 4 The effect of folic acid combined with decitabine on the cell apoptosis of retina in diabetic mice  The cell apoptosis of retinal tissue 

was detected by Tunel staining (A, ×200), and the rate of apoptotic cells was analyzed using Image pro plus software (B). aP<0.01 vs blank group, 
bP<0.01 vs model group, cP<0.01.
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DISCUSSION
The results of this study revealed that folic acid, decitabine 
and its combination could significantly inhibit the damage of 
retinal tissues in mice induced by DM, increase the thickness 
of retinal tissues, decrease the permeability of retinal vascular, 
reduce vascular damage and generation as well as apoptosis of 
retinal tissues. At the molecular level, folic acid, decitabine and 
the combination of both could significantly reduce the levels 
of Hcy in serum and the expression of angiogenesis-related 
factors CD31 and VEGFR in retinal tissues, and decrease the 
levels of oxidative stress-related indicators 3-NT and 4-HNE 
in mice affected by DM. Nevertheless, the therapeutic and 
protective effects of folic acid combination with decitabine on 
DM retinal tissues were significantly better than those of the 
two alone.

DR is caused by long-term damage of hyperglycemia to the 
micro-vessels in retinal tissues. It has been demonstrated 
that both folic acid and decitabine can protect DM retinal 
tissues[13,15]. It is of great significance to improve and alleviate 
DR[20]. Likewise, the results of this study revealed that both 
folic acid and decitabine significantly inhibited DM-induced 
structural damage to the retinal tissues of mice, decreased 
retinal vascular permeability, reduced vascular damage, 
generation and apoptosis of retinal tissues, and the effect of 
folic acid was better than that of decitabine. The protective 
effect of folic acid combined with decitabine on DM retinal 
tissues was found to be significantly better than the effect 
of both alone. It has been demonstrated that folic acid can 
reduce Hcy levels by promoting Hcy methylation[15,21-22], while 
decitabine can reduce Hcy levels by indirectly inhibiting SAM 
demethylation, increasing the SAM/SAH ratio and inhibiting 
Hcy production[17,23]. High levels of Hcy in blood can cause 
elevated active oxygen in retinal tissues[17], tissue and vascular 
endothelial cell damage[24], and increased inflammation[25]. 
High level of active oxygen in retinal tissues caused by high 
levels of Hcy is an important factor in the occurrence and 
development of DR. Therefore, the better alleviating effect 
of folic acid combined with decitabine on DR may be related 
to the fact that the combination of folic acid and decitabine 
inhibited the production of Hcy and promoted the metabolism 
of Hcy. Therefore, in this study, the levels of Hcy in mice 
serum were further explored and the results showed that the 
effect of folic acid combined with decitabine on the reduction 
of Hcy levels in the serum of DM mice was significantly 
stronger than the effect of the two alone.
It has been demonstrated that abnormally elevated plasma 
Hcy levels caused by hyperglycemia disrupt the balance of 
free radical production and scavenging, leading to elevated 
active oxygen in retinal tissues, producing oxidative stress, 
damage to retinal tissues and blood vessels, leading to 
DR[16,26], which is an important independent factor for the 
occurrence and development of DR[27]. In terms of molecular 

Figure 5 The effect of folic acid combined with decitabine on the expression of 3-NT and 4-HNE in retina of diabetic mice  

Immunohistochemistry was used to detect the changes of 3-NT and 4-HNE in the retina of mice (A, ×200), and the optical density of the region 

stained by 3,3’-diaminobenzidine dye was analyzed using Image pro plus software (B). 3-NT: 3-nitrotyrosine; 4-HNE: 4-hydroxynonenal. aP<0.01 

vs blank group, bP<0.01 vs model group, cP<0.01.

Figure 6 The effect of folic acid combined with decitabine on the 

expression of CD31 and VEGFR in retina of diabetic mice  The 

expression of CD31 and VEGFR protein in the retina of mice was 

detected by Western blot, and the optical density of the bands was 

analyzed using Image pro plus software (B). CD31: Platelet endothelial 

cell adhesion molecule-1; VEGFR: Vascular endothelial growth factor 

receptor. aP<0.01 vs blank group, bP<0.01 vs model group, cP<0.01.
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mechanisms, sustained high active oxygen can lead to changes 
in mitochondrial membrane permeability in retinal tissues cells 
and their vascular endothelial cells, elevated Bax, decreased 
Bcl-2, and cytochrome C entry into the cytoplasm, causing 
activation of the cellular caspase protein cascade, which in turn 
induces apoptosis, causing inflammation and tissue damage[28]. 
In this study, oxidation levels in retinal tissues were further 
investigated, and the combination of folic acid with decitabine 
was found to significantly reduce the content of 4-HNE, 3-NT 
in DM retinal tissues compared to folic acid or decitabine 
alone. 4-HNE and 3-NT are important indicators of cellular 
active oxygen levels, of which 4-HNE is an important indicator 
of unsaturated fatty acid lipid oxidative damage[29] and 3-NT 
is an important indicator of protein oxidative damage[30]. It is 
evident that the better protective effect of folic acid combined 
with decitabine on DM retinal tissues is based on the combined 
effect of the two in reducing the Hcy levels in serum of DM 
mice, which further reduces the active oxygen levels in the 
retinal tissues of db/db mice more effectively.
In conclusion, compared with folic acid or decitabine alone, 
the protective effect of folic acid combined with decitabine on 
DM retinal tissues is more significant, which can further reduce 
the level of Hcy in the blood of DM mice, inhibit oxidative 
stress in DM retinal tissues, prevent the development of 
apoptosis and inflammation in retinal cells, and thus inhibiting 
the development of DR. It provides a theoretical basis for the 
clinical application of folic acid combined with decitabine in 
the treatment of DR.
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