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Abstract
● Dry eye disease (DED),  pr imari ly  classif ied as 
multifactorial ocular surface disorder, afflicts tens of 
millions of individuals worldwide, adversely impacting their 
quality of life. Extensive research has been conducted on 
tear film analysis over the past decades, offering a range of 
tests to evaluate its volume, health, and integrity. Yet, early 
diagnosis and effective treatment for DED continue to pose 
significant challenges in clinical settings. Nevertheless, by 
recognizing key phenomena in DED such as ocular surface 
inflammation, hyperosmolarity, and tear film instability, 
this article provides a comprehensive overview of both 
traditional and recently developed methods for diagnosing 
and monitoring DED. The information serves as a valuable 
resource not only for clinical diagnosis but also for further 
research into DED.
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INTRODUCTION 

D ry eye disease (DED), a multifactorial ocular surface 
disorder, is often known to be one of the primary 

reasons individuals require eye treatment[1]. With an estimated 
prevalence approaching 12% and steadily rising, DED is 
impacting tens of millions of people globally, placing a 
significant financial burden on society and individuals alike[2]. 
Symptoms of DED can range from minor to debilitating, 
including blurred vision, discomfort, irritation, or fluctuating 
vision, along with signs such as decreased tear stability, 

diminished tear production, loss of conjunctival goblet cells, 
and increased corneal epitheliopathy[3]. The varied clinical 
manifestations of DED and the absence of unified diagnostic 
criteria have resulted in misunderstandings and challenges 
in the clinical identification and management of this disease, 
thereby, not only affecting the treatment outcomes but 
also complicating numerous clinical trials[4-5]. Hence, the 
urgent need to identify new tests for accurate diagnosis and 
monitoring of DED is evident. 
This review focuses mainly on currently available medical tests 
and a novel biomarker for DED, discussing their advantages 
and key limitations in clinical application.
DEFINING AND CLASSIFYING DED
DED is defined as “a multifactorial disease characterized 
by a persistently unstable and/or deficient tear film causing 
discomfort and/or visual impairment, accompanied by variable 
degrees of ocular surface epitheliopathy, inflammation, and 
neurosensory abnormalities”[5]. The common thread running 
through numerous studies investigating DED pathology is the 
loss of tear film stability. It’s well accepted that inadequate 
quantity or quality of the tear film is the primary instigator 
of DED. Disruption of the tear film leads to compromised 
vision[6-9]. 
Given that an unstable tear film plays a pivotal role in DED’s 
etiology, it is typically classified as either evaporative dry eye 
(EDE) or aqueous deficient dry eye (ADDE), which is often 
dependent on the inadequate component (lipid or aqueous). 
However, in reality, most unstable tear films are influenced by a 
multitude of risk factors and can result from the dysfunction or 
disease of various tear-producing cells or glands. Mechanisms 
disrupting the tear film can include issues with aqueous/
secretory mucins, lipids, and membrane-associated mucins[10]. 
As a response, the Asia Dry Eye Society (ADES) proposed 
an alternative DED classification system that correlates with 
the three tear film layers (lipid, aqueous/secretory mucin, 
and membrane-associated mucin). This system classifies the 
conditions as increased evaporation dry eye, aqueous-deficient 
dry eye, and decreased wettability dry eye. Using simple 
fluorescein, it operates by observing tear film break patterns: 
a “random break” indicates increased EDE, a “line break” or 
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“area break” signifies mild-to-moderate and severe ADDE, and 
a “spot break” or “dimple break” is associated with decreased 
wettability[4]. In comparison to the traditional approach, this 
new classification provides a more practical and effective 
method for diagnosing and classifying DED, enabling targeted 
treatments for the corresponding tear film layer or surface 
epithelium, both crucial for maintaining tear film stability[4-5]. 

However, this system is yet to gain popularity in China, 
possibly due to the prevalent use of multifunctional eye drops.
TEAR FILM ASSAY
Over the past two decades, substantial progress has been made 
in the field of tear film analysis, with a primary objective of 
achieving minimally invasive and reproducible results.
The homeostasis of the tear film serves as a readily measurable 
and sensitive indicator of DED and is now considered a key 
criterion in the clinical definition of DED[5]. Traditional tests 
comprise tear breakup time (TBUT), Schirmer test, and tear 
film meniscus. As the years have passed, advancements have 
been made in identifying noninvasive methods to assess tear 
stability and volume, utilizing devices such as topography and 
tomography, along with image analysis software[11]. 

Tear Breakup Time  TBUT, a conventional test for tear 
instability, holds a distinctive role in diagnosing and 
assessing DED. Readings under 10s are deemed definitively 
pathological, while the typical time range falls within 20 and 
30s[7]. The introduction of fluorescein dye during the test can 
affect the fundamental stability of the tear film, prompting the 
use of a noninvasive TBUT test employing a multipurpose 
corneal topographer. Despite its speed and simplicity, 
obtaining an accurate measurement can be challenging due to 
the subjective aspect of the test. Furthermore, TBUT exhibits 
low specificity for DED subtypes and displays poor correlation 
with other tests[11-12].
Schirmer Test  The Schirmer test evaluates the secretion 
function of the lacrimal gland. This test can be simply 
operated without any equipment. However, although it is not 
a painful test, it still cause discomfort in patient. Due to its 
poor repeatability, low sensitivity and specificity, and large 
inter- and intraindividual differences, the evaluation remains 
difficult. Yet, in ADDE, both the range of fluctuation and 
absolute values are diminished, possibly due to reduced reflex 
tear secretion[5,11].
Tear Meniscus Height  The tear meniscus height (TMH) 
traditionally assessed under a slit lamp, offers irreplaceable 
value in clinical evaluation and as a therapeutic endpoint. 
However, the reading for the second eye may be less as 
accurate since the light from the slit lamp stimulates tear 
secretion. Multipurpose corneal topographers and anterior 
segment optical coherence tomography (OCT) have been 
widely used for measuring tear meniscus dimensions, even 

though image analysis depends on the technology and/
or software used and the operator performing the test[13]. 
Readings of 0.2 mm or lower are considered pathological 
in clinical practice[14]. Studies have found correlations 
between TMH, non-invasive TBUT, and the severity of 
corneal fluorescein staining (CFS)[13]. Despite the sensitivity 
and specificity not being perfectly ideal, the objective and 
noninvasive quantification of TMH assists in differentiating 
between evaporative DED and aqueous-deficient DED, unlike 
osmolarity and matrix metalloproteinase (MMP)-9 testing[12]. 

Ocular Scatter Index  The ocular scatter index (OSI) is 
objectively and noninvasively measured using an HD Analyzer. 
It independently assesses the visual significance of the tear 
film and ocular surface, providing valuable measures of visual 
quality and concurrently obtaining non-invasive TBUT (NI-
TBUT)[15]. 

Lipid Layer Thickness  Lipid layer thickness (LLT) quantifies 
the quantity of expressible glands currently present. LipiView, 
a meibography interferometer that produces high-definition 
images of the meibomian glands, allows us to evaluate the 
thickness of the lipid layer while concurrently assessing the 
structure and function of the meibomian glands. Research 
has demonstrated that an LLT below 60 nm shows a 90.2% 
specificity for the existence of meibomian gland dysfunction 
(MGD)[16-18]. 

Osmolarity  Numerous studies have established tear 
osmolarity as one of the most accurate objective tests for 
DED. Tear osmolarity fluctuates as the normal homeostasis of 
the tear film becomes disrupted, either locally or diffusely[19]. 

Crucially, the TFOS DEWS II study confirmed that 
evaporative water loss leading to hyperosmolar tissue damage 
is one of the principal mechanisms primarily involved in the 
onset and progression of DED[6]. A mounting body of literature 
has suggested that goblet and epithelial cells deteriorate as 
a result of hyperosmolarity, either directly or by instigating 
inflammation, which reduces surface wettability. Consequently, 
in a vicious cycle, TBUT shortens, hyperosmolarity intensifies, 
and symptoms exacerbate[6,10,12,20]. 

Although osmolarity can be determined in various ways, one 
of the most recent methods is the use of the portable TearLab 
instrument. It provides the first objective and quantitative test 
for diagnosing dry eye patients, aiding doctors in tracking 
the severity of dry eye and evaluating treatments. Owing to 
its high accuracy (less than 1% variance) and quick assay 
time (about 20s), it has become the most adaptable tool in 
the clinical setting. Normal tears display inter-eye variability 
within a range of 7 mOsm/mL[19]. The suggested threshold 
for diagnosing DED spans from 305 mOsm/L all the way 
to 316 mOsm/L[21]. As the condition progresses, higher 
osmolarity levels and increased variability are observed. 

Tear diagnostic testing for dry eye disease
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Recent studies have indicated that, besides diagnosis, tear 
osmolarity measurement is also a valuable metric for disease 
management[19,22]. However, it has been noted that improvement 
in tear osmolarity may occur before symptom relief[7]. For 
illustrative purposes, when topical cyclosporine is used as 
treatment, a decrease in tear osmolarity is observed 2-4wk 
before any subjective improvement of the condition becomes 
obvious[11]. 

Although tear osmolarity increases in all DED phenotypes, it 
is not applicable for differential diagnosis of DED subtypes[11]. 

Owing to the physiological nature of this measurement, tear 
osmolarity can fluctuate significantly under various environments 
or even within a short timeframe[6]. In addition to its poor 
repeatability, tear osmolarity is a relatively expensive test, and 
therefore has not been widely adopted in clinical practice[23]. 

MOLECULAR BIOMARKERS
The onset of DED can be initiated by both extrinsic factors 
(such as dry environments, prolonged digital device use, 
exposure to drafts, preservative or drug toxicity, post-
blepharoplasty exposure, contact lens use, and Lasik surgery) 
and intrinsic factors (including age, gender, dysbiosis, and 
systemic autoimmune/anticholinergic conditions). These 
factors disrupt tear film stability, cause hyperosmolarity, and 
alter tear composition[10,20,24]. The resulting hyperosmotic state 
intensifies stress signaling pathways in ocular surface cells, 
inhibits the natural defense system, and directly activates the 
mitogen-activated protein kinase (MAPK) pathway, which 
in turn triggers the production of tumour necrosis factor 
and interleukin (IL)[25]. Pro-inflammatory cytokines are then 
generated via the activation of immune cells through the 
Toll-like receptor signaling pathway (like NLRP3), which 
amplifies the inflammatory response[26]. Lymphoid cells (DC2) 
have a crucial role in the immune regulation of DED[27]. As 
the most potent antigen-presenting cell (APC), dendritic cell 
(DC) activate primary T cells and bridge innate and adaptive 
immunity by functioning in the initiation and regulation of the 
immune response[28]. 

In DED, while specific autoantigens currently remain 
unidentified, it is believed that they are produced as a retaliative 
response to desiccating stress via altered differentiation or 
proteolytic cleavage[29]. After ingesting the autoantigen, APCs 
mature and then travel to the draining (cervical) lymph nodes. 
Here, they present the antigen to naive T cells, which play a 
vital role for the adaptive immune response in DED[29-30]. During 
the adaptive immune phase, antigen-specific T cells produced 
in regional lymph nodes migrate to the ocular surface. This 
migration induces macrophage infiltration [mediated by 
interferon gamma (IFN-γ)] and a cytotoxic effect, resulting 
in damage to the ocular surface. In response, macrophages 
produce or upregulate IL-12, CD80, and CD60. These 

products lead to the proliferation and amplification of T cells, 
thereby reinitiating the proinflammatory response. Because 
of the lack of immune regulation, this sets off a vicious cycle 
of the ocular surface pathogenic immune response, tear film 
instability, and hyperosmolarity[6,24]. Therefore, the chronic and 
self-perpetuating inflammation seen in DED is caused by this 
continuous activation of the immune system. Novel diagnostic 
and therapeutic strategies are needed to interrupt this cycle and 
treat the underlying causes of DED.
Tears, which provide a readily accessible reflection of ocular 
surface health, are sensitive to minor homeostatic disruptions 
that can cause variations in their component makeup[31]. 

Over the years, numerous biomarkers have been discovered 
within tears. Specifically, alterations in the expression levels 
of IL-1β, IL-2, IL-6, IL-8, IL-17, CCL3, IFN-γ, tumor 
necrosis factor (TNF)-α, and MMP-9 are thought to signify 
ocular inflammation. Meanwhile, variations in the levels of 
lactoferrin, lysozyme, EGF, and aquaporin 5 are indicative of 
lacrimal gland dysfunction[31-32]. Moreover, higher tear levels 
of IL-9 have been linked to chronic ocular discomfort[33]. In 
cases of systemic inflammatory disease-related dry eye, the 
levels of IL-17, IL-8, and IL-1 receptor antagonist (IL-1Ra) 
have shown a strong correlation with the severity of DED[32]. 

Each of these biomarkers holds its unique importance, ranging 
from differentiating between various phenotypes to monitoring 
disease severity. However, their adoption in clinical practice 
has been hindered by a lack of standardization and the 
complexity of the analytical procedures involved. To date, only 
a handful of point-of-care (POC) diagnostic techniques are 
available for identifying these biomarkers within the tear film.
Matrix Metalloproteinase-9  Epithelial cells are fundamental 
components of the ocular surface’s innate immune system. 
In response to hyperosmolar stress, corneal epithelial cells 
produce MMPs and other mediators[34]. MMPs, a family of 
proteolytic enzymes, play pivotal roles in extracellular matrix 
remodeling, wound healing, and natural desquamation of 
the corneal epithelium under normal conditions. Particularly, 
MMP-9 is involved in disrupting the corneal barrier by 
lysing tight junctions in the superficial epithelium[35-36]. 

These enzymes initiate inflammatory cascades and establish 
chemokine gradients often achieved through cleaving pro-
cytokines and other extracellular proteins, including growth 
factors, receptors, and adhesion molecules. Numerous studies 
have shown an elevation in tear levels of MMP-9 in individuals 
with DED[37-38]. When exposed to desiccating stress, mice 
lacking MMP-9 showed resilience against disruption of the 
corneal barrier[35-36]. Studies have suggested that corticosteroids 
can prevent desiccation-induced breakdown of the corneal 
epithelial barrier in DED animal models by suppressing IL-6, 
IL-6, IL-1, MMP-9, and MAPK stress signaling pathways[39]. 



1886

InflammaDry (Quidel) is an FDA-approved commercial point-
of-care device that swiftly screens for tear MMP-9 in DED 
patients[40]. It is recommended to use this test prior to other tear 
analyses, the instillation of ocular anesthesia, or the application 
of topical dyes. As per a study by Sambursky et al[41], exhibited 
an 85% sensitivity, 94% specificity, 73% negative predictive 
value, and a remarkable 97% positive predictive value. 

Specifically, it has been identified as a sensitive method for 
determining the severity of DED[42]. Recent studies have 
also proposed that the ratio of tear TSP1 to MMP-9 can be 
utilized as a screening test to identify the underlying Sjögren’s 
syndrome (SS) in DED patients[43]. Given the minute volume 
of tear samples required, InflammaDry aids doctors in 
identifying the root cause of the disease, thereby facilitating 
the initiation of anti-inflammatory treatment and paving the 
way for personalized medicine. Studies propose that patients 
with elevated tear MMP-9 levels could benefit from anti-
inflammatory treatment, including topical cyclosporine and 
topical corticosteroids. Although inflammadry has not yet been 
clinically implemented in China, it shows great promise[12]. 

However, it’s worth noting that MMP-9 alone cannot differentiate 
DED subtypes. Since an increase in MMP-9 levels is 
also observed in other inflammatory diseases like allergic 
conjunctivitis and infections, this diagnostic approach is not 
considered perfect at the moment[12,41]. 

Lymphotoxin Alpha  Lymphotoxin alpha (LT-α), formally 
known as TNF-β, has recently emerged as a potential 
biomarker for diagnosing DED. This development was first 
reported at the 2018 Association for Research in Vision and 
Ophthalmology Annual Meeting, with a large prospective 
clinical study involving 1168 participants (849 with DED, 
and 319 as non-dry eye controls) offering an update after two 
years[44]. In the study, participants were effectively assessed 
through utilising the Ocular Surface Disease Index (OSDI) 
ocular symptom sub-scale, and their tear fluid was collected 
for measurement of LT-α levels via the LT-α-POC test 
(i-ImmunDx) before performing additional tests. Interestingly, 
the LT-α level in the dry eye group (0.33±2.82 ng/mL) was 
significantly lower than that in the control group (0.99±3.69 ng/mL) 
(P<0.01). Moreover, a correlation was found between LT-α 
levels and the Schirmer test and TBUT, with an inverse 
correlation with OSDI score, CFS and conjunctival hyperemia 
(P<0.01). The receiver operating characteristic (ROC) curve 
was used to assess LT-α as a biomarker for dry eye diagnosis, 
and the area under the curve (AUC) was 0.765 (95%CI: 0.731-
0.800), lending support to the use of LT-α as a biomarker for 
dry eye diagnosis.
LT-α, first discovered by Granger and his research group in 
1960, is a member of the TNF superfamily and shares 35% 
homology with TNF-α, interacting with the same receptors[45]. 

Like TNF-α, it carries out a range of biological functions, 
including the induction of gene expression, in vitro tumor 
cell eradication, and promotion of fibroblast proliferation. 
Interestingly, the specific role that LT-α plays in immune 
regulation depends on its form. Unlike other TNF superfamily 
members, LT-α only exists as a soluble homotrimer. Soluble 
LT-α signals through INF receptors and the canonical NF-κB 
pathway[46]. It has been established from previous research that 
this form of LT-α is integral to the formation and maintenance 
of the gastrointestinal immune system, the architecture of 
lymphoid organs, and the activation signaling in both innate 
and adaptive immune responses. However, when LT-α is 
located on the cell surface, it needs to form a complex with 
LT-β to create an LT-α1β2 complex[47]. This configuration 
enables the complex to bind to LT-β receptors, which then 
mainly signal through the alternative NF-κB pathway. This is 
extremely significant for the embryological development of 
lymphoid organs, as it possess a heavy influence on vasculature 
and chemokine expression[48]. 

Recent findings have illustrated that the LT-α1β2 ligand-driven 
LTβR-NIK signaling pathway can induce structural changes in 
lymphatic endothelial cells. These changes can ultimately lead 
to a significant increase in migration receptors and chemokines 
levels, such as CCL21 or CXCL12, which in turn will boost 
the lymphatic migration of inflammatory leukocytes from 
corresponding tissues. However, the authors of this research 
paper also point out that since LT-βR is expressed in various 
cell types, it’s crucial to determine whether these particular 
types perform complementary or antagonistic functions[49]. 

Interestingly, it appears that the effect of LT-α can vary widely 
based on several important factors. These factors mainly 
include the specific organ it interacts with, the type of cell 
it influences, the cellular environment, the gender of the 
organism, and even the timing within an immune response.
Undeniably, existing studies have confirmed the potential of 
inhibiting the LT-α/LT-βR pathway as a treatment strategy 
for immune-related disorders, such as graft versus host 
disease (GVHD) and rheumatoid arthritis. This is especially 
relevant where a heightened expression of LT-α is essential[50]. 

Interestingly, while a subset of GVHD patients exhibit elevated 
LT-α levels, research conducted by Jing M. and colleagues 
identified a notably diminished LT-α concentration in tears of 
chronic ocular GVHD (oGVHD) patients (0.093±0.090 ng/mL),
when juxtaposed with control subjects (0.54±2.84 ng/mL). 
This observation harmonizes with the findings from the DED 
clinical study, thereby strengthening the case for LT-α as a 
reliable biomarker for dry eye diagnosis[44,51]. However, the 
precise involvement of LT-α in the development of DED 
remains subject to contentious debates. While an array 
of evidence supports a decline in LT-α tear concentration 

Tear diagnostic testing for dry eye disease
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among DED patients, some research paradoxically reports 
significantly elevated tear LT-α levels in a certain subset of 
these patients[51-52]. Aiming to unravel the function of LT-α 
in DED pathogenesis, Chen et al[52] spearheaded a forward-
looking cross-sectional study, exploring the variations in tear 
protein marker expression across high (>700 pg/mL) and low 
(≤700 pg/mL) LT-α DED cohorts. The investigation unveiled 
a unique cytokine expression pattern in tears from both high 
and low LT-α DED patients. Notably, higher levels of several 
cytokines, including TNF-α, IFN-γ, IL-10, IL-1β, IL-17A, IL-1Ra, 
and IL-12/23 p40 were observed in patients with high LT-α 
DED. This suggests inflammation might be a pivotal element 
in the progression of high LT-α DED. 
While discussions surrounding the correlation between LT-α 
and DED have been sparse, and seemingly contradictory 
findings have been reported, a notable consensus among 
studies points to a significant link between LT-α levels and 
measures of eye irritation severity such as the OSDI score 
and corneal fluorescein staining[44,51-52]. Furthermore, the loss 
of conjunctival goblet cells, crucial for tear stability and 
ocular surface equilibrium, has been tied to clinical severity 
in the context of aqueous tear deficiency. There appears to 
be an inverse relationship between goblet cell density and 
local staining scores[53]. The reduction in goblet cells has been 
implicated in various systemic and ocular surface inflammatory 
conditions such as SS, Stevens-Johnson Syndrome, and 
GVHD[54-55]. 

Kunert’s[56] research further sheds light on the role of goblet 
cells, revealing markedly lower LT-α levels in DED patients 
with systemic inflammatory conditions (including SS, systemic 
lupus erythematosus, and rheumatoid arthritis) compared to 
typical DED patients with the same severity. This underscores 
the possibility that goblet cell loss may serve as the main driver 
in low LT-α DED cases. In a ray of hope, FDA-approved Phase 
3 clinical trials of cyclosporine A (CsA) emulsion for dry eye 
reported a significant resurgence in goblet cell density in eyes 
with aqueous deficiency treated with CsA over six months 
(increases of 198% in SS and 234% in non-SS aqueous tear 
deficiency). In contrast, the control group recorded a mean 
reduction of 95%[56]. 
Intriguingly, in studies of SS, LT-α was not only found to be 
increased in salivary gland secretions and serum in animal 
models but was also found to be overexpressed in patients[57]. 

Inhibiting the LT-R pathway led to the dismantling of the 
lymphoid structure of the salivary glands and an improvement 
in salivary gland function[58]. Moreover, blocking LTβR was 
proven to enhance corneal integrity and tear production by 
reducing leukocyte infiltrates in lacrimal glands[59]. This 
inconsistency could be attributed to the multifaceted function 
of LT-α in different contexts.

In light of these considerations, it’s plausible to infer that 
inflammation is a predominant factor in high LT-α DED, 
whereas low LT-α DED may primarily result from a deficit of 
goblet cells. Given this context, the LT-α POC tear test could 
serve not only as a convenient point-of-care immunoassay 
for diagnosing and grading DED, but could also guide 
the direction for personalized treatment approaches in the 
future. Despite these promising developments, a multitude 
of questions remain unresolved, and further research on LT-α 
is urgently needed. Investigations using animal models with 
LT-α depletion or comparative studies between DED patients 
with varying LT-α levels could uncover novel insights into 
the role LT-α plays in maintaining ocular surface homeostasis. 
Such revelations could potentially pave the way for more 
individualized medical treatments.
CONCLUSION
The complexity of DED, ranging from age-related dry eye to 
systemic inflammatory conditions, and from meibomian gland 
dysfunction to producer-induced cases, introduces various 
underlying mechanisms[60]. The broad spectrum of symptoms 
and the lack of a single definitive clinical assessment render 
the accurate and early diagnosis of DED a significant challenge 
in routine clinical practice.
Globally recognized key events in DED include tear film 
instability, tear film hyperosmolarity, and ocular surface 
inflammation. In light of these pathogenic processes, this article 
presents a comprehensive overview of existing and emerging 
diagnostic and monitoring options for DED. Despite the 
advent of new technologies and accumulating evidence, each 
test still carries its own benefits and limitations. Conventional 
tests, such as the TBUT and Schirmer test, are invasive and/or 
have low sensitivity. In contrast, the osmolarity test is heavily 
environment-dependent and suffers from poor repeatability. 
Hence, the discovery of specific biomarkers in the tear film 
is pivotal for early diagnosis and effective treatment of the 
disease. Unlike others, tear osmolarity, MMP-9, and LT-α are 
the only biomarkers with commercially available point-
of-care measurement devices. Among these, LT-α appears 
to be a promising new target, albeit with some interstudy 
variations. The evolution of biomarkers presents a tremendous 
opportunity to advance clinical study and patient care in DED.
Despite the identification of a multitude of DED biomarkers, 
few can be widely applied in everyday clinical use due to the 
complexity of analytical procedures and high testing costs. 
Significant progress is still urgently required to establish 
validated and objective metrics for clinical care and further 
research in DED. The development of an efficient and patient-
tailored evaluation strategy, which not only allows for a 
definitive and early diagnosis of DED but also optimizes 
treatment, is critical. 
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