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Abstract
● A corneal epithelial-stromal defect is recognized as a 
major contributor to corneal scarring. Given the rising 
prevalence of blindness caused by corneal scarring, 
increasing attention has been focused on corneal epithelial-
stromal defects. Currently, the etiology and pathogenesis 
of these defects remain inadequately understood, 
necessitating further investigation through experimental 
research. Various modeling methods exist both domestically 
and internationally, each with distinct adaptive conditions, 
advantages, and disadvantages. This review primarily aims 
to summarize the techniques used to establish optimal 
animal models of corneal epithelial-stromal injury, including 
mechanical modeling, chemical alkali burns, post-refractive 
surgery infections, and genetic engineering. The intention 
is to provide valuable insights for studying the mechanisms 
underlying corneal epithelial-stromal injury and the 
development of corresponding therapeutic interventions.
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INTRODUCTION

T he cornea, a transparent non-vascular connective tissue, 
serves crucial roles in both refraction and mechanical 

barrier functions. Its intricate anatomical structure and cellular 
components enable us to perceive a clear visual field[1]. 
Positioned in the outermost layer of the eyeball, the cornea is 
susceptible to various exogeneous or endogenous pathogenic 
factors, including infections, surgeries, immune-mediated 
reactions, and traumas. Consequently, these factors can 
compromise the cornea’s integrity, leading to the development 
of corneal ulcers. Corneal ulcers manifest as surface defects 
in the corneal epithelium, often accompanied by necrosis 
and thinning of the corneal stroma. In severe cases, such 
defects can result in corneal clouding, dissolution, and even 
perforation, causing visual impairment and blindness and 
significantly impacting patients’ quality of life, as well as their 
physical and mental well-being[2].
The corneal stroma, comprising approximately 90% of the 
corneal thickness, plays a pivotal role in maintaining corneal 
transparency and refractive function by forming the majority 
of the corneal framework. However, when trauma, infection, or 
other factors result in partial or complete penetrating damage to 
the corneal stroma, fibroblasts and multinucleated leukocytes 
initiate fibrin clot formation within 7d. Subsequently, these 
clots undergo continuous refinement and remodeling of 
extracellular matrix components, ultimately leading to 
the irreversible loss of corneal transparency through scar 
formation. Corneal scarring stands as a major cause of visual 
impairment and vision loss worldwide[3]. Currently, corneal 
scarring can be addressed through corneal transplantation or 
the development of corneal stromal equivalents. However, the 
efficacy of these approaches requires further investigation due 
to challenges such as the limited availability of corneal donors, 
immune rejection, scarcity of suitable animal models, and the 
need for validation in human subjects[4].
The utilization of an appropriate in vivo animal model of 
corneal injury allows for a deeper comprehension of the 
reparative mechanisms involved in corneal epithelial-stromal 
damage, thereby facilitating the development of improved 
treatment modalities for individuals suffering from corneal 
scarring-induced blindness. Presently, numerous techniques 
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have been employed both domestically and internationally 
to establish animal models of corneal stromal defects. These 
techniques encompass methods such as mechanical resection, 
filter paper cauterization, microbial inoculation, and gene 
modeling. However, a standardized approach for establishing 
such models is yet to be universally adopted.
ANIMAL SPECIES FOR IN VIVO STUDIES
Corneal defects have been extensively investigated in several 
animal models, including rabbits, mice, rats, zebrafish, pigs, 
and chickens. Among these models, rabbits are particularly 
well-suited for experimental studies due to their corneal 
structure, which closely resembles that of humans, and the 
ease with which local surgical procedures can be performed, 
observations can be made, and experimental specimens can be 
obtained. Esteves et al[5] have comprehensively documented 
the sustained and extensive use of rabbits as a reliable model 
for studying various human diseases, such as syphilis, 
tuberculosis, norovirus, and ocular herpesvirus infections. 
This model has contributed significantly to our understanding 
of the cellular and molecular mechanisms underlying these 
diseases, as well as facilitating investigations into antibody 
structure and diversification mechanisms and advancing 
drug development and testing. Nonetheless, there are certain 
drawbacks associated with using rabbits, including high costs, 
limited availability of polyclonal antibodies targeting specific 
proteins of interest, and constraints on access to genetically 
diverse strains and transgenic animals.
Mice are the preferred experimental animals for many corneal 
studies due to the availability of genetically modified resources 
and their relatively low cost. The advent of genetically 
engineered mice in the 20th century ushered in the era of the 
mouse model. Currently, the most commonly utilized mouse 
strains are BALB/c and C57BL6, and differences among 
strains can directly impact corneal wound healing[6]. Pham et 
al[7] have conducted corneal epithelial-stromal injury using a 
corneal rust ring remover. They have found that the BALB/c and 
CFW mouse with the higher density of corneal nerve plexus 
show faster wound healing than C57BL/6. On the other hand, 
zebrafish, as described by Puzzolo et al[8], lack the Bowman 
layer, post-elastic layer, and nerve fibers, and have a thinner 
extracellular matrix compared to the human cornea. Therefore, 
they are not suitable for corneal defect models. Regardless of 
the chosen animal model, variations in anatomical structure 
and function exist. Therefore, the selection of an appropriate 
animal model should be based on the specific experimental 
purpose and objective conditions. Prior to conducting 
experiments, animals should undergo adaptive breeding, 
and their eyes should be carefully examined. Compliance 
with animal ethical regulations and policy guidelines is 
imperative.

OPERATION METHODS
Mechanical Wound Models
Lamellar keratectomy wounds  In the 1960s, Barraquer[9] 
introduced the concept of keratomileusis, which involved 
altering corneal curvature through lamellar surgery to correct 
refractive errors. Various methods have been employed for 
corneal lamellar cutting in keratomileusis, including the use 
of blades, micro-electric lamellar knives, or automatic gear 
rotation. Rittie et al[10] have provided a detailed description of 
the lamellar keratotomy procedure. In brief, a ring drill with 
a diameter of 1.5–2.5 mm is gently rotated into the corneal 
stroma at the central cornea. Subsequently, forceps are utilized 
to separate the epithelial layer, basement membrane, and 
thin anterior mesenchyme from the remaining mesenchyme, 
successfully establishing a mouse model of corneal scarring. 
This model is employed to test the potential of drugs in 
reducing corneal fibrosis.
Shirzaei Sani et al[11] have employed a 3-mm biopsy punch to 
create a hole at the central cornea of the right eye of male New 
Zealand white rabbits aged 8 to 12wk, followed by lamellar 
keratotomy at approximately 50% depth using a scalpel. This 
approach aims to evaluate the biocompatibility and biointegration 
of engineered GelCORE hydrogel. However, it is worth noting 
that in mice, there is a risk of penetrating the cornea and 
achieving an incorrect cut diameter due to the thinness of the 
cornea. Moreover, manual separation-induced matrix fluctuations 
can result in optical distortion and irregular astigmatism.
Photorefractive keratectomy wounds  To minimize the 
variability in corneal injury, researchers have the option 
to utilize an excimer laser for keratectomy. Refractive 
keratectomy, specifically photorefractive keratectomy (PRK), 
involves the removal of corneal epithelium using mechanical 
or chemical methods, followed by the use of an excimer 
laser to precisely ablate the corneal stroma. This approach 
results in minimal collateral damage to surrounding tissues. 
Park and Kim[12] have conducted a comparison between the 
corneal wound healing processes of PRK using the VISXSTAR 
193 nm excimer laser and laser-assisted in situ keratomileusis 
(LASIK) employing the MicroTech microkeratome in rabbit 
eyes. They have observed inward growth of corneal epithelium 
and regenerating stroma between the flap and stromal bed at 
the wound edge in both procedures. However, the number of 
regenerating stromal tissue and keratinocytes within the wound 
area is found to be smaller in the LASIK group compared to 
the PRK group. The loss of dehydrated and contracted flap 
or corneal epithelium in PRK can lead to exposure of the 
corneal stroma and activation of corneal cells, potentially 
leading to excessive wound healing in the annular region. 
This phenomenon may be associated with the occurrence of 
significant corneal haze following clinical PRK surgery.
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Femtosecond-assisted LASIK (FS-LASIK) utilizes the 
nonlinear optical detonation principle of the femtosecond 
laser to create a separation between the corneal flap and the 
stromal bed. Subsequently, the excimer laser is employed 
to perform the refractive cut on the stromal bed. FS-LASIK 
offers several advantages, including the generation of a more 
predictable corneal flap, reduced ocular aberration, improved 
uncorrected visual acuity, and minimal intraocular pressure 
(IOP) fluctuations.
Koulikovska et al[13] have employed a novel FS-LASIK model 
to implant an acellular bioengineered porcine construct (BPC) 
into the corneal stroma for a duration of 8wk. This approach 
results in transparent corneas with rapid healing and devoid 
of inflammation. Postoperative administration of steroids 
is unnecessary. The procedure minimizes interference with 
the epithelium and endothelium and preserves the shape and 
curvature of the cornea without sutures, thereby reducing the 
risk of stimulating positive wound healing and minimizing the 
likelihood of rejection. Consequently, this approach enables 
the production of truly individualized valves, contributing 
to optimal clinical outcomes. It should be noted, however, 
that a drawback of this modeling approach is the inability to 
utilize laser-ablated tissue for subsequent RNA or biochemical 
analysis.
Incisional wounds  Sumioka et al[14] have utilized a surgical 
blade to create a full-thickness penetrating incision injury, 
measuring 1.5 mm in length, in the central cornea of both 
wild-type C57BL/6 (WT) mice and KO mice of C57BL/6 
background. Their findings reveal that the absence of tenascin 
C inhibits the effect of transforming growth factor β1 (TGFβ1) 
in accelerating fibroblast expression and myofibroblast 
production, ultimately impairing the primary healing of the 
corneal stromal injury. Li et al[15] have employed a scalpel to 
generate a triangular corneal defect measuring 2×2×2 mm³. 
They have promptly filled the area with trabecular tissue, 
sutured the laceration, and debrided the defect using an oblique 
suture. After a period of 3mo, all rabbits exhibit favorable 
anterior chamber formation, smooth corneal curvature, and 
healing of the fibrous scar. To prevent chronic iris incarceration 
into the corneal incision, it is recommended to administer 
atropine to dilate the pupils before conducting the experiment. 
This model is characterized by its simplicity, ease of operation, 
low cost, and lack of specialized equipment requirements. 
Consequently, it is commonly employed to investigate the 
mechanisms and roles of corneal defect replacement repair. 
However, it is essential to note that the extent of the damage 
may vary, and the manipulation technique should be carefully 
regulated.
Chemical Wound Models  With the progress of economic 
development and modern industrialization, corneal chemical 

injuries are increasingly prevalent. These injuries can be 
attributed to approximately 10 categories of chemicals, primarily 
categorized as either acids or alkalis. When eye tissue meets 
alkaline substances, rapid dissolution of intraocular fat and 
protein occurs, leading to deep infiltration. Additionally, 
leukocytes accumulate and release various proteases and 
free radicals, causing the dissolution of corneal collagen 
and the subsequent development of corneal ulcers[16]. On the 
other hand, acidic substances can induce the solidification of 
tissue proteins, forming scab membranes that prevent further 
penetration of the acid into deeper layers. Nevertheless, high 
concentrations of acid can still permeate the deep matrix, 
resulting in similarly severe consequences as alkali burns.
Alkali injury  Corneal neovascularization and scarring are 
significant characteristics of alkali burns[17]. Animal models of 
corneal alkali burns are valuable for studying the underlying 
regulatory mechanisms, evaluating the effectiveness of drugs, 
and exploring prevention and treatment strategies. Currently, 
rats, mice, Japanese big-eared rabbits, and New Zealand rabbits 
are commonly used as experimental subjects[18-20]. The shape 
of the filter paper used for the burn can vary, including ring, 
circular, or triangular shapes. The burn area can encompass 
the central cornea, limbus, or the entire cornea. For instance, 
Koivusalo et al[13] have accurately placed NaOH-soaked filter 
paper on the central cornea for 40s, followed by immediate 
rinsing with BPC and epithelial scraping. Subsequently, a 
5-mm trephine is used to excise the corneal stroma, and the 
stromal buttons are removed. This study demonstrates the 
concept of implanting limbal stem cells and stromal repair 
cells into an adherent scaffold of corneal regenerative tissue 
without the need for sutures. 
Acid injury  In comparison to alkali burns, corneal acid 
burns have a lower incidence of ulceration and reduced 
secretion of inflammatory mediators and proteases. He et al[21] 
have established a model of low-concentration acid burn by 
immersing a single-layer filter paper with a diameter of 2 mm 
in 25% sulfuric acid for 10s and then evenly applying it to 
the center of the cornea of the right eye for 60s. The results 
indicate that the scars and opacities left by dexamethasone are 
more pronounced in the early stage of repair compared to the 
acute and late stages of repair. 
Hydrofluoric acid (HF), as a highly corrosive liquid, induces 
severe pain upon eye contact and rapidly forms white 
pseudomembranous turbidity, causing extensive dose-related 
damage to the superficial and deep structures of the eye[22]. 
The severity of progressive corrosion of the eye by HF is 
determined by a combination of pH value and the toxic effect 
of free fluoride ions. While mild burns are reversible, severe 
burns can lead to the formation of corneal stromal scars, 
vascularization, edema, calcification zone formation[23]. Altan 
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and Ogurtan[24] have successfully established an HF burn 
model in rabbits by applying 0.05 mL of 2% HF drops into the 
eyes for 60s under general anesthesia. The healing of corneal 
opacity and conjunctival injury is evaluated clinically based 
on corneal opacity, IOP, conjunctivitis, conjunctival status, and 
corneal erosion area, as well as pathologically by assessing 
stromal thickness, inflammatory cell infiltration, and corneal 
angiogenesis.
Silver nitrate injury  In the study of corneal neovascularization 
and corneal opacity induced by injury, as well as the behavioral 
evaluation of ocular hyperalgesia, topical application of 
silver nitrate cauterization of the cornea has been employed. 
A modified procedure for silver nitrate cauterization involves 
using a smear or filter paper coated with a mixture of 75% 
silver nitrate and 25% potassium nitrate to cauterize the central 
cornea for a duration of 2–20s, resulting in the formation of 
gray-white discrete lesions. Subsequently, the residues are 
rinsed with normal saline, and the local application of eye 
ointments or antibiotic eye drops is performed[25-26]. 
Vesicant injury  Vesicants, also known as blister agents, 
are cytotoxic alkylating agents that can cause tissue damage 
and poisoning when they enter the body through the skin or 
respiratory tract. Common types of vesicants include nitrogen 
mustard (NM), sulfur mustard (SM), and Lewisite (LEW). The 
functional recovery from vesicant damage is determined by the 
exposure dose and the total area of exposure[27].
In the study of the ocular toxicity effects of NM, NM is often 
used as a substitute for SM in acute corneal injury models. 
The animals are exposed to 1% NM for 5min, and corneal 
stromal injury and ulceration are evaluated using slit-lamp 
imaging 28d after exposure[28]. Experimental models have 
been established in rabbits, pigs, and rodents to investigate 
the potential mechanisms of SM-induced skin and lung 
injury[29-30]. SM, a highly toxic agent, is first used in World War 
I and has long-lasting effects on veterans and survivors due 
to its delayed complications[31]. In the experimental setup, the 
animals’ eyes are protected with a shield, and their heads are 
fixed with protective glasses while being exposed to SM vapor 
at concentrations of 400 μg/L (390–420 μg/L) for short (5min) 
or long (7min) durations. SM exposure leads to maximum 
epidermal degradation on day 3 after exposure in both groups, 
and the inflammatory response results in corneal ulceration and 
opacity. SM also induces an increase in the number of stromal 
blood vessels and activates inflammatory indicators such 
as cyclooxygenase-2 (COX-2), Matrix metalloproteinase-9 
(MMP-9), vascular endothelial growth factor (VEGF), and 
interleukin-8 (IL-8). Corneal thickness, cloudiness, and epithelial 
degradation are affected by the duration of exposure[32].
In studies involving LEW, rabbits’ eyes are exposed to LEW 
vapor at a concentration of 0.2 mg/L for 2.5 or 7.5min using 

a vapor exposure system. This allows for the quantification 
of blood vessels and inflammatory cells in the entire stromal 
region of the cornea, providing valuable endpoints to assess 
LEW-induced corneal injury at different exposure durations. 
These models contribute to the identification and screening of 
therapies for LEW-induced corneal injury[33].
Acrolein is a highly reactive unsaturated aldehyde that can 
be found in various substances, including smoke, automobile 
exhaust, and fungicides. Gupta et al[34] have conducted a study 
to optimize the effect of continuous exposure to acrolein on 
eye injuries in living rabbits. They investigated both local and 
vapor exposure modes and evaluated the resulting eye injuries. 
In the vapor exposure method, an 8-mm diameter filter paper 
disc impregnated with acrolein (30 μL) is placed in the center 
of a circular clear acrylic chamber. The acrylic chamber is then 
inverted and placed on the rabbit’s eye for either 1 or 3min. 
On the other hand, in the local exposure method, an acrolein-
impregnated filter paper disc (30 μL) is placed directly in the 
center of the cornea for either 1 or 5min. All procedures for 
both exposure methods are conducted in a chemical hood to 
ensure safety. The results of the study show that the vapor-
exposed group exhibits more corneal fibrosis, while the locally 
exposed group has more corneal neovascularization. These 
findings indicate that different exposure methods can lead to 
distinct patterns of eye injury in response to acrolein exposure.
The establishment of a vesicle-induced corneal injury model 
can aid in detecting relevant molecular markers, developing 
treatment methods to minimize toxicity, promoting tissue 
repair processes, and optimizing the effectiveness of drug 
therapy.
It is crucial to strictly control the concentration and duration of 
substance application to accurately gauge the level of cautery. 
This is necessary to prevent complications such as corneal 
perforation or excessive diffusion of the substance towards the 
conjunctiva and eyelids, which can lead to conjunctival burns 
and eyelid deformities.
Infectious Keratitis After Laser Vision Correction  
Postoperative infectious keratitis represents a challenging 
clinical entity that often leading to significant diagnostic and 
therapeutic distress. Infectious keratitis, which can be caused 
by bacteria, viruses, fungi, and echinococcosis, is the primary 
source of this condition[35].
Since the initial clinical use of femtosecond lasers for LASIK 
flap creation in 2001, these lasers have progressively become 
the preferred technology worldwide. The representative 
procedure, femtosecond laser small incision stromal lens 
extraction (SMILE), has demonstrated superior repeatability, 
safety, precision, and versatility compared to traditional stromal 
refractive surgery. Although the incidence of postoperative 
complications is low, certain issues such as dry eye, diffuse 
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laminar keratitis, pressure-induced stromal keratitis, interface 
fluid syndrome, interface debris, and infectious keratitis can 
arise due to its invasive nature[36]. Among these complications, 
postoperative infectious keratitis is one of the most severe, 
characterized by rapid progression and the potential to severely 
impair vision or even lead to blindness if left untreated.
Incidence and pathogen  The incidence of keratitis following 
refractive surgery varies considerably across different data 
sources. Schallhorn et al[37] have conducted a review of 
suspected microbial keratitis cases after laser refractive surgery 
from 2008 to 2015, reporting an incidence of 0.013% for 
post-PRK and 0.0046% for post-LASIK microbial keratitis. 
Soleimani et al[38] have found an overall incidence of 0.02% 
for keratitis post-PRK. Liu et al[39] have retrospectively 
summarized the clinical treatments of patients who undergo 
SMILE in local hospital from 2019 to 2021, only 5 patients 
develops infectious corneal infiltration. Ivarsen et al[40] have 
retrospectively analyzed 1800 eyes treated with SMILE and 
found that five patients returned for treatment due to ocular 
irritation, experiencing slight interface infiltration once or more.
Liu et al[41] have analyzed 306 cases of infectious keratitis 
occurring after refractive surgery. These cases include 68 
cases of Staphylococcus aureus, 23 cases of Coagulase-
negative Staphylococcus (CNS), 62 cases of Mycobacterium 
and 14 case of Aspergillus. Currently, only around 17 cases 
of infectious keratitis post-SMILE have been reported 
internationally[39-40,42-48]. Among these cases, ten are bacterial 
infections (including Staphylococcus aureus, Streptococcus 
pneumoniae, hemolytic Streptococcus, Mycobacterium 
tuberculosis ,  and bacterial keratitis without culture 
confirmation), two are unilateral fungal infections[45,48], and 
one is caused by unilateral herpes simplex virus[47]. Except for 
one case of non-tuberculous mycobacterial infection[44], all 
cases exhibit clinical signs of corneal infection within 7d after 
the surgery. Most patients receive antimicrobial agents for 
interface flushing, and seven patients undergo photoactivated 
chromophore for infectious keratitis-corneal collagen cross-
linking (PACK-CXL) and drug therapy concurrently[43,46-47], 
including one patient who receives penetrating keratoplasty 
(PKP) treatment for corneal perforation due to aspergillosis[48]. 
Staphylococci and Streptococci are the most commonly 
detected microorganisms within the first 2wk after the 
operation, while atypical mycobacteria and fungi are more 
prevalent from 2wk to 3mo postoperatively.
Post-LASIK infectious keratitis  Staphylococcus aureus 
is the primary culprit responsible for bacterial infections 
following LASIK surgery. To establish a rabbit model of 
methicillin-resistant Staphylococcus aureus (MRSA) keratitis 
post-LASIK, a corneal flap is created using a microknife, and 
a MRSA keratitis isolate [5 mL, 500 colony-forming units 

(CFU)] is inoculated beneath the flap. This model is employed 
to compare the effectiveness of moxifloxacin and gatifloxacin 
in preventing, treating, and managing MRSA keratitis[49].
In addition to Staphylococcus aureus, Streptococcus species 
are the second most common cause of non-opportunistic 
bacterial infections after LASIK. Streptococcus pneumoniae 
is responsible for approximately 35% of infectious keratitis 
cases. Donnenfeld et al[50] have conducted a study using 12 
New Zealand white rabbits, which are randomly divided into 
three groups: topical 0.3% gatifloxacin, 0.3% ciprofloxacin, 
and control groups. In this study, 0.1 mL of Streptococcus 
pneumoniae is inoculated at the interface to examine the effects 
of the respective treatments. 
Post-SMILE infectious keratitis  Currently, the literature 
primarily consists of case reports on post-SMILE infections, 
and there is a lack of information regarding the establishment 
of animal models for post-SMILE infection[51]. SMILE surgery 
offers several advantages, such as a small incision, avoidance 
of corneal flap creation, minimal corneal damage, favorable 
biomechanical properties, and clinical safety. The one-step 
lenticular creation and extraction technique eliminates the 
need for previous excimer laser ablation, thus preventing 
exposure to the corneal stromal bed. However, the space left 
by the corneal cap can create a conducive environment for 
microbial growth. Additionally, antibiotics may have difficulty 
penetrating necrotic tissue and may be challenging to remove, 
making infection control difficult and potentially leading to 
severe visual impairment. Consequently, the establishment of a 
reproducible animal model for SMILE postoperative infection 
holds significant importance. Such a model would allow for the 
study of infection characteristics and pathological processes, 
providing a foundation for diagnosis and treatment. It is 
important to note that there are some drawbacks to establishing 
this model, including the need for expensive equipment, 
the relative complexity of the procedure, and the high skill 
requirements for the research staff involved.
Genetically Engineered Animal Models
Gene knockout mice  Genetic modification is a technique that 
involves the integration of foreign genes into a specific location 
on the target cell genome through homologous recombination. 
This process allows for the modification of a gene on the 
chromosome. Knockout technology, developed in the late 
1980s, relies on locus integration and in vitro culture of mouse 
embryonic stem cells (ESCs). The first knockout animal model 
was established in 1988, marking the beginning of knockout 
animal model development[52]. Currently, knockout mouse models 
are widely utilized in fundamental ophthalmology research to 
elucidate the role of specific genes in eye development and the 
maintenance of normal visual function.
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Osteopontin (OPN) is a phosphorylated glycoprotein that 
is secreted and belongs to the small integrin-binding ligand 
N-linked glycoprotein family. It is widely distributed in human 
tissues and plays a role in inducing fibroblast proliferation, 
neovascularization, and regulation of scar formation. The loss 
of OPN impairs the proliferation, osteogenic differentiation, 
mineralization, and angiogenic potential of mesenchymal 
stem/stromal cells[53]. Dai et al[51] have demonstrated that 
OPN induces the expression of VEGF through the PI3K/
AKT and extracellular regulated protein kinases (ERK) 
signaling pathways, thereby promoting angiogenesis. In ocular 
fibroblasts of both WT and OPN-null (KO) mice, the absence 
of OPN attenuates TGFβ1 signaling (Smad3 and p38) as 
well as VEGF expression. This leads to a reduction in injury-
induced neovascularization in the corneal stroma of mice[54].
Miyazaki et al[52] have established corneal injury repair models 
using corneal epithelial debridement, full-thickness penetrating 
incision injury, and alkali burn in both OPN-KO and OPN-WT 
mice. In WT mice, the injured stroma is covered by granulation 
tissue by day 7 and becomes fibrotic after 21d. However, in the 
KO group, there is minimal extracellular matrix deposition for 
14d, and the wounds remain unhealed until 21d later. KO mice 
show lower levels of myofibroblasts and reduced expression 
of TGFβ1. Furthermore, the higher incidence of ulceration 
and perforation in the alkali-burned eyes of KO mice can be 
attributed to impaired adhesion and migration of fibroblasts.
Tenascin is a family of oligomeric glycoproteins that exhibit a 
distinctive hexameric structure, comprising five isomers known 
as tenascin R, X, Y, and W. Tenascin-C, similar to OPN, serves 
as a ligand for A9 integrin and contributes to traumatic corneal 
fibrosis and neovascularization. In comparison to WT mice, 
Tenascin C-KO mice experience significantly prolonged repair 
time for corneal stromal incisions. Moreover, there is a notable 
decrease in the number of myofibroblasts, the infiltration 
capacity of macrophages, and the expression levels of collagen 
Ia1, fibronectin, and TGF-β1 in Tenascin C-KO mice. It is 
suggested that Tenascin C may regulate the expression of 
fibrotic genes in ocular tissues and the repair process of stage I 
corneal stroma[14].
Decorin is a proteoglycan that regulates keratinocyte-collagen 
matrix assembly and corneal wound healing. Gupta et al[53] 
have demonstrated that injured decorin null corneas had poorly 
organized collagen fibrils compared to WT mice using a 
standard injury technique.
V-myc avian myelocytomatosis viral oncogene neuroblastoma 
derived homolog (MYCN), a member of the MYC proto-
oncogene family, plays a role in various cellular processes, 
including cell proliferation, differentiation, and tumorigenesis. 
In neuroblastoma, MYCN amplification is associated with 
a poor prognosis. Furthermore, MYCN gene expression 

is dynamically observed in EpCAM cancer stem cells of 
hepatocellular carcinoma, serving as a biomarker for tumor 
stemness and plasticity[55]. Current research on MYCN in the 
eye primarily focuses on retinal and lens development.
To study the role of MYCN in the cornea, researchers have 
induced a chemical mutation in the MYCN gene using the 
mutagen ethylnitrosourea (ENU), resulting in mice with 
corneal opacity. MYCN-KO mice were generated by crossing 
MYCNtm1psk/J (MYCNflox/+) mice with EllaCre transgenic 
mice expressing the Cre enzyme, following the principles of 
the Cre-loxP system. Approximately 68.4% of MYCN-KO 
mice exhibit corneal opacity, and some mice are born with 
open eyelids and microphthalmia. The findings demonstrate 
that the epithelial thickness of MYCN-KO mice is variably 
altered. This mechanism may be associated with increased 
expression levels of integrin β1, integrin β4, and CyclinD1 in 
the corneal epithelium of these mice.
S100A4 protein, a multifunctional calcium-binding protein, 
belongs to the S100 family. It plays a role not only in tumor 
formation and metastasis but also in the progression of 
inflammation and the promotion of organ fibrosis pathways[55]. 
In a study conducted by Wang et al[56], alkali burn models are 
established in rabbits by placing a 10-mm diameter Whatman 
II filter paper soaked in 1 mol/L NaOH on the eyes for 30s. 
To investigate the effects of S100A4 depletion, a transfection 
solution consisting of an equal amount of S100A4 siRNA 
expression plasmid and liposome Lipofectamine 2000 is 
injected into the empty vector group and the S100A4 siRNA 
group, respectively. Real-time quantitative assays show 
that the mRNA expressions of S100A4, VEGF, and tumor 
necrosis factor (TNF)-α are down-regulated in the S100A4 
siRNA group compared to the empty vector group. This 
suggests that depletion of the S100A4 gene can inhibit corneal 
neovascularization induced by alkali burn. The inhibition 
of corneal wound healing by S100A4 is attributed to the 
activation of the PI3K/Akt/mTOR signaling pathway[57].
Integrins are a prominent family of cell surface glycoproteins 
that facilitate cell adhesion to the extracellular matrix. 
Integrin αvβ6 is primarily expressed in epithelial cells and is 
normally expressed at low levels in healthy tissues. However, 
its expression is up-regulated during wound healing and 
in cancer. Its main function is to activate TGF-β1 through 
thrombospondin-1 (TSP-1)[58]. Under pathological conditions 
involving TGFβ1-mediated repair, excessive collagen 
deposition and fibrosis can occur, impairing organ function and 
potentially leading to organ failure[59].
Studies using β6-/- mice have revealed slowed wound healing 
and reduced production of laminin. These mice also exhibit 
persistent stromal edema due to the absence of Descemet’s 
membrane and corneal endothelium. Additionally, they 



1896

experience prolonged wound gaping due to impaired 
myofibroblast formation after total penetrating corneal injury 
(1.5 mm in length). Similarly, Thbs1-/- mice lacking TSP-1 show 
impaired corneal wound healing, characterized by delayed 
closure and persistent inflammation.
Wu et al[58] have conducted a study using C57BL/6-Itgb6 KO 
(β6-/-) mice and created an incisional wound to investigate the 
role of αvβ6 integrin in wound healing. Their findings suggest 
that αvβ6 integrin may play a role in initiating rapid fibrosis 
during the early stages of wound healing, while TSP-1 acts as 
an amplification factor in this process.
Although knockout mice have been valuable tools in studying 
corneal injury, there are certain limitations associated with their 
use. First, the depletion of essential genes can lead to animal 
death, limiting the ability to study their specific functions. 
Second, the relationship between specific genes and complex 
phenotypes is not always one-to-one, necessitating the 
reintroduction of foreign genes or proteins to clarify causality. 
Third, the loss of knockout genes can trigger compensatory 
processes, leading to secondary changes in gene expression. At 
last, gene ablation does not fully mimic the disease processes 
caused by specific base mutations. These factors should be 
taken into consideration when interpreting the results obtained 
from knockout mouse models.
Transgenic mice  Transgenic technology is a powerful 
tool that allows for the introduction of artificially isolated 
or modified genes into an organism’s genome, resulting in 
predictable and directed genetic changes. Various techniques 
are employed in generating transgenic animals, including 
nuclear microinjection, sperm-mediated gene transfer, nuclear 
transfer, and retroviral methods. Unlike gene knockout 
approaches, transgenic technology enables site-directed 
mutagenesis of the target gene, connection with tissue-specific 
expression promoters, and simultaneous observation of gene 
expression function, regulation, and phenotypic effects from 
both temporal and spatial perspectives.
In the study by Khandaker et al[60], the researchers have 
constructed and modified the mouse genotype by introducing 
multiple copies of a modified bacterial artificial chromosome 
(BAC), directly inserting the enhanced green fluorescent 
protein (EGFP) reporter gene upstream of the COL3A1 
coding sequence, and incorporating the DNA into the mouse 
genome through nuclear microinjection. Through screening 
and breeding, they have successfully established a transgenic 
mouse line called Tg (Col3a1EGFP) DJ124Gsat to simulate 
corneal fibrosis and scar formation. The transgenic mice 
exhibit similar stromal responses to corneal mechanical injury 
and alkali burn as WT mice. Over time after corneal injury, the 
expressions of both EGFP and Col3a1 are increased, consistent 
with the expressions of other related genes such as α-SMA, 

fibronectin, and Tenascin C. The number and fluorescence 
intensity of EGFP-expressing cells corresponds to changes in 
corneal thickening and scar volume. This transgenic model 
allows for in vivo real-time detection of corneal fibers and 
scarring visibility, providing insights into the dose-phenotype 
association and identification of potential therapeutic targets 
before human trials.
To maintain the genetic integrity of transgenic mouse lines, it 
is important to produce them in a pure genetic background or 
repeatedly backcross them to standard inbred lines to avoid 
the creation of non-homozygous lines. Additionally, to prevent 
gene drift in transgenic mice and ensure strict control of the 
genetic background, it is necessary to regularly crossbreed 
mutant mice with controls and heterozygotes. However, this 
process requires significant human and resource investments.
Currently, genetically modified animal models predominantly 
find utility in studying single-gene genetic diseases and 
tumors characterized by distinct genetic patterns. Mechanical, 
chemical, and other environmental factors largely contribute 
to corneal epithelial-stromal injury. However, the presence of 
non-healing, delayed healing, or scar formation subsequent 
to corneal injury, as well as stromal neovascularization, may 
be linked to pathogenic genes. The vast array and intricacy 
of corneal healing genes necessitate time-consuming gene 
screening. Additionally, there is often an interplay between 
environmental and genetic factors in corneal stromal defects, 
prompting further investigation into the potential influence of 
environmental factors on the regulation of transcription and 
expression of associated genes.
CONCLUSIONS & FUTURE PERSPECTIVES 
Corneal epithelial-stromal injury is a prevalent condition 
characterized by extracellular matrix remodeling, abnormal 
protein accumulation, and localized scarring during the healing 
process. These scars can impair vision, reduce corneal clarity, 
and in severe cases, necessitate corneal transplantation. To 
investigate corneal stromal regeneration, the development 
of repair materials, and donor keratoplasty, researchers have 
established various animal models simulating mechanical, 
chemical, and refractive surgery-induced corneal injuries. 
However, an ideal animal model that fully replicates the 
occurrence and progression of corneal epithelial-stromal injury 
is currently lacking.
In this review, we provide an overview of commonly employed 
corneal epithelial-stromal injury models, focusing on four 
perspectives: mechanical injury, chemical burns, infection 
following keratoconus surgery, and genetically engineered 
animal models. Animal models serve as valuable tools for 
studying the pathogenesis of human diseases. While each 
model has its advantages and limitations, researchers should 
select the appropriate modeling method based on their specific 
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research goals. Moreover, they should possess a thorough 
understanding of animal model creation techniques that ensure 
high success rates, as well as similarities and consistency 
between the modeled disease and human corneal injury. These 
measures are crucial to ensure the objectivity, reliability, and 
reproducibility of experimental results.
In clinical practice, continuous improvement of existing 
models, development of new models, and conducting 
animal experiments are essential. These efforts aim to 
investigate wound healing mechanisms and the prevention 
of complications, such as fibrosis and infection. By timely 
controlling disease progression and reducing the rate of 
blindness, the medical community can effectively address the 
challenges posed by corneal epithelial-stromal injuries.
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