
1899

Int J Ophthalmol,    Vol. 16,    No. 11,  Nov. 18,  2023      www.ijo.cn
Tel: 8629-82245172     8629-82210956      Email: ijopress@163.com

·Review Article·

Therapeutic potential of iron chelators in retinal vascular 
diseases

Yan Li1,2, Zi-Xuan Cheng1, Ting Luo1,2, Hong-Bin Lyu1

1Department of Ophthalmology, the Affiliated Hospital of 
Southwest Medical University, Luzhou 646000, Sichuan 
Province, China
2Department of Ophthalmology, the People’s Hospital of 
Jianyang, Chengdu 641400, Sichuan Province, China
Correspondence to: Hong-Bin Lyu. Department of 
Ophthalmology, the Affiliated Hospital of Southwest Medical 
University, Street Taiping No.25, Region Jiangyang, Luzhou 
646000, Sichuan Province, China. oculistlvhongbin@swmu.
edu.cn
Received: 2023-04-27        Accepted: 2023-08-24

Abstract
● Iron is one of the necessary metal elements in the human 
body. There are numerous factors that control the balance 
of iron metabolism, and its storage and transportation 
mechanisms are intricate. As one of the most energy-
intensive tissues in the body, the retina is susceptible to iron 
imbalance. The occurrence of iron overload in the retina 
leads to the generation of a significant quantity of reactive 
oxygen species. This will aggravate local oxidative stress 
and inflammatory reactions and even lead to ferroptosis, 
eventually resulting in retinal dysfunction. The blood-retina-
retinal barrier is eventually harmed by oxidative stress and 
elevated inflammation, which are characteristics of retinal 
vascular disorders. The pathophysiology of retinal vascular 
disorders may be significantly influenced by iron. Recently, 
iron-chelating agents have been found to have antioxidative 
and anti-inflammatory actions in addition to iron chelating. 
Therefore, iron neutralization is considered to be a new and 
potentially useful therapeutic strategy. This article reviews 
the iron overload in retinal vascular diseases and discusses 
the therapeutic potential of iron-chelating agents.
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INTRODUCTION

I ron is the basic component of hemoglobin and ferrithin 
protein, which is responsible for oxygen transport, cellular 

metabolism, and deoxyribonucleic acid synthesis in the human 
system. Iron can complete electron transfer while transiting 
between ferrous (Fe2+) and ferric (Fe3+) states, enabling it to be 
widely involved in various metabolic pathways[1], such as the 
production, differentiation, and proliferation of cellular energy, 
and as a helper cofactor of mass enzymes[2]. Iron is crucial 
for the retina since it is one of the body’s most metabolically 
active tissues. Trace amounts of iron are essential for cell 
survival. However, excessive iron will promote a large amount 
of reactive oxygen species (ROS) through the Fenton reaction, 
which can augment the activation of the hypoxia-inducible 
factor 1α (HIF-1α). ROS includes superoxide anions (O2-), 
hydrogen peroxide (H2O2), superoxide radicals (ROO·), and 
hydroxyl radicals (-OH), which are commonly considered 
toxic to cells[3]. The other major aspect of iron toxicity is nuclear 
factor kappa B (NF-κB) activation[4]. NF-κB promotes the 
production of cytokines, adhesion molecules, and growth 
factors, ultimately triggering inflammation. The transcription 
factor NF-κB is recognized as a crucial transcription factor that 
is effectively activated by HIF-1α[3]. HIF-1α induces genes, 
such as vascular endothelial growth factor (VEGF), which 
is needed to maintain retinal homeostasis under hypoxia. 
VEGF is widely acknowledged as a significant component 
that triggers pathological neoangiogenesis in the retina[5]. 
The accumulation of free Fe2+ in the cell membrane can lead 
to ferroptosis, a type of iron-dependent regulatory cell death 
named in 2012, characterized by excessive accumulation 
of iron, excessive peroxidation of phospholipids containing 
polyunsaturated fatty acids (PUFAs), increased ROS and 
decreased glutathione (GSH) and glutathione peroxidase 4 
(GPX4) levels[6-7]. Iron chelators [e.g., desferriamine (DFE), 
deferasirox (DFX), etc.] as well as lipid ROS scavengers (e.g., 
ferrostatin 1) have been shown to possess inhibitory effects 
on this form of cell death[8-11]. Currently, there is evidence 
of iron overload and ferroptosis in several retinal vascular 
illnesses[12-15]. It is suggested that ferroptosis might have a 
significant impact on inflammation and damage to retinal 
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vascular endothelial cells generated by oxidative stress[12]. Iron 
chelators have the ability to hinder the Fe2+-induced Fenton 
reaction, hence mitigating oxidative stress[16]. Furthermore, the 
anti-inflammatory properties of iron chelation safeguard the 
retina, even when iron toxicity is not the primary factor[17]. So, 
using iron chelators to improve problems with retinal vascular 
endothelial dysfunction has a lot of potential[18-19]. 
IRON IN RETINA
Absorption and Transport of Iron in Retina  Two blood-
retinal barriers (BRB) separate the retina from blood 
circulation. The inner BRB is composed of the tight connection 
between retinal capillary endothelial cells, pericytes, 
astrocytes, Müller glial cells, and microglials[20]. Retinal 
pigment epithelium (RPE) cells are in close contact with villus 
capillaries, and the tight monolayer connection between them 
constitutes the outer BRB (Figure 1)[12,21]. Additionally, both 
the inner and outer BRBs serve to prevent excessive iron influx 
into the eye in instances of cyclic iron overload[12]. Through 
[transferrin (TF) receptor 1] (TFR1) on the RPE basement 
membrane, chorionic capillaries send iron that is bound to 
TF to the RPE. The outer segment of photoreceptors (PRs) 
contains a large amount of iron. Another way for RPE to ingest 
iron is to phagocytize the outer segment of the PRs[22]. After 
entering the RPE cytoplasm, iron is stored in melanosomes and 
ferritin[23]. In the inner layer of the retina, TFR1 is expressed 
on the lumen side of retinal endothelial cells, and iron is 
transported to the cell through TFR1[24]. Iron output depends 
on the release of iron and ferroportin (FPN) from the core[25]. 
There are two distinct levels at which iron homeostasis occurs: 
cellular and systemic[26]. The iron regulatory proteins (IRPs), 
specifically IRP1 and IRP2, have a significant function in 
cellular iron homeostasis through their regulation of key iron-

related proteins, including TFR-1, divalent metal transporter-1 
(DMT1), FPN1, and ferritin. When cellular iron levels are 
depleted, IRP1 and IRP2 identify and attach to iron responsive 
elements (IREs) located in the untranslated regions (UTRs) 
of messenger RNAs (mRNAs), which encode the translation 
of various proteins involved in regulating iron metabolism[27]. 
In contrast, it has been observed that IRP is unable to form 
a complex with IRE42 located in the UTR of these mRNA 
molecules under conditions of elevated cellular iron leves[28]. 
The local homeostasis of retinal iron is independent of 
systemic regulation due to the separation of the BRB.
Physiological Role of Iron in Retina  Iron in the retina 
is mainly located in the RPE, PR, and choroid[29]. Iron is 
one of the important metals in the retina[30], involved in 
the energy metabolism of retinal cells[31] and the secretion 
of neurotransmitters[32]. Iron is a key component of many 
retinal enzymes, which are essential for maintaining retinal 
function[33]. It is an important cofactor of the RPE-specific 
65 kDa protein, which is involved in phototransduction and 
visual adaptation by regulating the metabolism of retinoids 
to modulate chromophore levels in light-harvesting PRs[34]. 
Fe2+, as a cofactor of prolyl hydroxylase, participates in the 
expression and degradation of HIF[18,35]. Conversely, HIF acts 
as a transcription factor for some iron homeostasis genes 
(e.g., TF, TFR1, DMT1, FPN, and ceruloplasmin genes) to 
participate in iron metabolism by binding to specific hypoxia 
response element (HRE) sites on mRNA[12]. HIF induces 
VEGF to participate in the physiological and pathological 
angiogenesis of retina[5,36]. Health and pathological retinal 
status exhibit a strong correlation with iron levels[2,22].
Iron Overload and Retinal Vascular Injury  Oxidative 
stress, inflammation, ferroptosis, and angiogenesis may be the 

Figure 1 The iBRB and oBRB in the retina  A: The structure of the retina; B: The iBRB is composed of the tight connection between retinal 

capillary endothelial cells, pericytes, astrocytes, Müller glial cell, and microglials; C: The monolayer tight connection between RPE cells and 

villous capillaries constitutes of the oBRB. iBRB: Inner blood-retinal barriers; oBRB: Outer blood-retinal barriers; NFL: Nerve fiber layer; GCL: 

Ganglion cell layer; IPL: Inner plexiform layer; INL: Inner nuclear layer; OPL: Outer plexiform layer; ONL: Outer nuclear layer; RPE: Retinal 

pigment epithelium.

Iron chelators in retinal vascular diseases
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main causes of the increased retinal iron and the damage to the 
BRB that follows.
Iron overload and retinal oxidative stress  Elevated levels 
of iron within the eye have been observed to contribute to the 
occurrence of oxidative stress and subsequent inflammatory 
damage. The retina is a lipid-dense tissue containing high 
concentrations of PUFAs[37], making it particularly vulnerable 
to ROS-induced oxidative damage[13]. On the one hand, 
hypoxia leads to increased iron uptake through the increased 
expression of cell iron input genes DMT1 and TFR1 mediated 
by HIF[38]. Oxidative stress can also upregulate TFR1[39]. 
The inflammatory factor interleukin (IL)-6 has been proven 
to mediate the upregulation of hepcidin to induce cell iron 
isolation[40]. Conversely, cellular conditions characterized 
by low pH and elevated concentrations of superoxide and 
peroxides can induce the liberation of iron from its storage 
protein. Consequently, this process results in an augmentation 
of the labile iron pool (LIP), primarily consisting of redoxactive 
Fe2+, which will intensify the production of harmful ROS[41]. 
In a particular investigation, Rogers et al[42] administered 
intravitreal injections of iron into the ocular region of adult 
C57BL/6 mice. The results revealed an elevation in retinal 
ROS levels, disruption of the outer retinal nuclear layer 
nucleus, rapid PR cell death, and the subsequent development 
of both map atrophy and sympathetic ophthalmia[43]. Hope-
Ross et al[44] studied eight patients with iron foreign bodies 
retained in the eyes after trauma. The presence of iron can lead 
to the generation of free radicals, resulting in the occurrence 
of oxidative stress. All of the patients have varied degrees of 
impaired vision. Due to proliferative vitreoretinopathy, the 
last vestiges of eyesight in two individuals were limited to 
light perception. Research has shown that retinal endothelial 
cells are more susceptible to oxidative damage compared to 
endothelial cells in other locations[45].
Iron and retinal inflammation  Various inflammatory and 
immunological diseases are caused by problems in iron 
metabolism, which can raise the quantity of iron inside cells[46]. 
The NF-κB signal pathway can be activated by excess iron[47-48], 
which encourages the creation and release of inflammatory 
cytokines such as tumor necrosis factor-α (TNF-α) and IL-1β[49]. 
TNF-α injections into the eye can significantly damage 
the BRB and raise endothelial cell permeability[50]. Due to 
research, IL-1β has an aspect in how the inner BRB breaks 
down[51]. Elevated levels of IL-6 promote an upregulation in 
the synthesis of hepcidin, resulting in the destruction of iron 
transport proteins and subsequently causing an augmentation in 
intracellular iron levels[46]. The NRLP3 inflammasome pathway 
is activated in RPE cell due to an abundance of intracellular 
iron. This activation occurs as a result of the inhibition of 
aluRNA degradation by double-stranded RNA-specific 

endoribonuclease. There may be a reciprocal connection 
between iron metabolism problems and inflammation.
Iron overload and retinal programmed cell death  Apoptosis 
was produced experimentally by injecting iron particles into 
the vitreous cavity of rats, as evidenced by the presence of 
TUNEL-positive nuclei, particularly in the outer nuclear layer, 
after 48h. In a mouse model of retinal ischemia reperfusion 
(IR), TF dramatically rose 2h after ischemia, peaked at 12h, 
and then progressively dropped, indicating that intracellular 
iron excess occurred at an early stage. Retinal ganglion cells 
(RGCs) initially experience necrosis during the process of 
retinal IR damage, followed by apoptosis after some time, and 
subsequently ferroptosis completes the process[52]. Blocking 
the ferroptosis genes can significantly reduce the damage 
and enhance the survival of RGCs. Apoptosis inhibitors 
(z-VAD-FMK), necrosis inhibitors (necrostatin-1), and 
ferroptosis inhibitors (ferristatin-1) were used to interfere with 
experimental mice and primary cultured RGCs, respectively. 
They showed a significant anti-IR protective effect of RGCs, 
among which ferristatin-1 had the best therapeutic effect, 
suggesting that ferroptosis plays a more important role in the 
death process of RGCs[53].
Iron overload and retinal vascular angiogenesis The Fe2+ 
ion serves as a cofactor for proline hydroxylase, contributing 
to the regulation of HIF expression and degradation 
and so exerting a significant influence on the process of 
angiogenesis[18]. The elevation in iron concentrations in the 
retina might potentially facilitate the upregulation of succinate 
receptor 1 through the suppression of the anti-angiogenic 
properties of cleared high-molecular-weigh kininogen (Hka). 
Consequently, this mechanism may induce the synthesis of 
angiogenic molecules. The involvement of ROS-induced 
elevation of VEGF level is crucial in the pathogenesis of 
ocular diseases, leading to increased vascular permeability 
and disruption of the BRB[54]. Excessive ROS leads to the 
elevation of HIF-1α via oxidative stress. Consequently, the 
enhanced transcriptional control exerted by HIF-1α results 
in the upregulation of VEGF expression[55]. The excessive 
generation of ROS and the overexpression might result in the 
impairment of both paracellular and transcellular endothelial 
transport mechanisms[56]. VEGF exerts its inhibitory effect on 
tight junctions by binding and activating two specific tyrosine 
kinase receptors, namely VEGFR1 (Flt-1) and VEGFR2 
(KDR/FLk-1). This activation then leads to a reduction in 
the expression levels of relevant proteins. VEGF assumes a 
significant role in the pathogenesis of BRB dysfunction[57] as 
well as in the regulation of pathological angiogenesis[58]. VEGF 
and inflammatory factors have been shown to upregulate the 
expression of vascular cell adhesion molecule-1 (VCAM-1) 
and intercellular adhesion molecule-1 (ICAM-1), therefore 
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promoting the adherence of leukocytes to the vascular wall[47-51]. 
Furthermore, the process of rearrangement and migration of 
endothelial connexins, including vascular endothelial cadherin 
and tight junction proteins, into tissues is facilitated by 
VCAM-1 and ICAM-1[59]. This phenomenon ultimately results 
in endothelial cell damage and the destruction of BRB[60]. 
Retinal edema and visual loss occur after increased retinal 
vascular permeability[61]. Retinal iron excess has been linked to 
direct BRB injury in studies  (Figure 2)[62]. Compared with non-
diabetic mice, diabetic mice have increased iron content in the 
retina, loss of retinal barrier integrity, and abnormal vascular 
changes such as vascular curvature, arteriovenous crossing, 
and retinal vein occlusion[62]. Mice lacking ceruloplasmin 
have subretinal neovascularization, retinal degeneration, and 
retinal iron overload[63]. In a recent study on oxygen-induced 
retinopathy[52-53,64], it was established that ferroptosis has a role 
in the process of pathological angiogenesis[52-53,64]. Therefore, 
the targeted inhibition of ferroptosis can effectively protect the 
retina[65].
IRON OVERLOAD IN RETINAL VASCULAR DISEASE
Diabetic Retinopathy  Diabetic retinopathy (DR) is the main 
cause of vision loss worldwide and represents a significant 
consequence associated with diabetes[66]. Clinically, DR can be 
divided into non-proliferative DR (NPDR) and proliferative 
DR (PDR) according to whether retinal neovascularization 
occurs. In diabetes, long-term hyperglycemia leads to the 
accumulation of many metabolic substances in cells, such 
as advanced glycation end-products (AGEs) and protein 
kinase C, as well as the renin-angiotensin system, and the 
release of a large number of inflammatory factors, including 
IL-1β, IL-6, IL-8, and TNF-α. The increased inflammatory 
factors can damage the retina by promoting angiogenesis 
and neurodegeneration, accompanied capillary occlusion, 
vascular leakage, retinal ischemia and injury, and hypoxia[67]. 
Studies have shown that oxidative stress increases HIF-1α 
by producing a large amount of ROS in hyperglycemia to 
release VEGF[68]. Increased retinal VEGF expression causes 
BRB damage, leading to increased vascular permeability, 
ischemia-induced formation of new blood vessels, ultimately, 
PDR[69]. It is reported that the retinal iron content is increased 
in postmortem retinal samples collected from patients with 
diabetes and diabetic animal models[62]. Clinical samples also 
suggest a close relationship between iron content in vitro and 
PDR[70]. Previous studies have proved that vascular endothelial 
cells are sensitive targets of hyperglycemia[71]. Intriguingly, 
the process of ferroptosis and the endothelial dysfunction 
induced by diabetes have many similar characteristics, such as 
the accumulation of ROS and the enhancement of oxidative 
stress[72]. Under hyperglycemia, the total ROS and intercellular 
ROS in human retinal vascular endothelial cells (HRECs) are 

increased, and the expression of GPX4 is significantly reduced, 
suggesting that endothelial cells have oxidative stress under 
high glucose and that ROS-induced lipid peroxidation initiates 
ferroptosis[73]. HRECs treated with high glucose promote 
GPX4 ubiquitination by increasing tripartite motif-containing 
protein 46 (TRIM46) expression, contributing to the ferroptosis 
of HRECs induced by high glucose[74]. This programmed cell 
death can be reversed by a ferroptotic inhibitor. The ferroptosis 
inhibitor liproxstantin-1 (LX-1) has a strong protective effect 
on retinal function in diabetes rats[75]. The observation of strong 
iron markers in RPE and the outer reticular layer in patients 
with DR is strong evidence of the iron-related death of PRE[76]. 
High glucose increases intracellular Fe2+ concentrations to 
induce ferroptosis in ARPE-19[77], as indicated by decreased 
glutathione, increased malondialdehyde, and decreased 
cell survival[78]. At present, ferroptosis has been studied as 
an early treatment target for DR[15]. DR is a metabolically 
related disease regulated by multiple genes in which multiple 
metabolic processes, including iron metabolism, glucose 

Figure 2 Iron chelators reduce oxidative stress and inflammation 

caused by iron overload, protect BRB and inhibit pathological 

angiogenesis  HIF-1α: Hypoxia-inducible factor 1α; ROS: Reactive 

oxygen species; NF-κB: Nuclear factor kappa B; VEGF: Vascular 

endothelial-derived growth factor; GPX4: Glutathione peroxidase 4; 

GSH: Glutathione; IL-1: Interleukin-1; TNF-α: Tumor necrosis factor-

alpha; VCAM-1: Cell adhesion molecule-1; ICAM-1: Intercellular 

adhesion molecule-1; BRB: Blood-retinal barriers.

Iron chelators in retinal vascular diseases
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metabolism, and lipid metabolism, are also involved. The 
molecules and pathways related to ferroptosis are complex and 
require further research.
Retinal Vascular Occlusions  Retinal vein occlusion (RVO) 
is the second most prevalent cause of visual deterioration 
among retinal vascular diseases, ranking only after DR[79]. In 
a study comparing the retinal blood flow velocity of healthy 
individuals and branch retinal vein occlusion (BRVO) or 
central retinal vein occlusion (CRVO) patients, the researchers 
found that the lower the blood flow velocity, the more serious 
the RVO[80]. Decreased blood flow may induce inflammation, 
leukocyte adhesion, and retinal endothelial barrier damage 
through the activation of the Krüppel-like factor of B cells, 
NF-κB, and other mediators[51]. In 1995, Ito et al[81] incubated 
methemoglobin with retinal homogenate in vitro. Atomic 
absorption analysis showed that methemoglobin released 
iron ions into the retina and caused retinal lipid peroxidation. 
Fresh autologous blood was injected into the subretinal 
space of rabbits, which caused gradual PR degradation and 
edema. The iron in PRs and RPE was detected by Perls 
staining. The strongest mark was directly covered in the 
subretinal hemorrhage and disappeared farther from the blood 
accumulation point[63,82]. According to electroretinogram 
measurements, the iron chelator desferrilamine was shown 
to protect these rabbits[82]. The analysis of water samples 
collected from healthy people and patients with RVO 
showed that both VEGF-A and placental growth factor were 
significantly increased and significantly positively correlated 
with the increase and ischemic level[83]. The main features of 
RVO include increased vascular permeability and continuous 
retinal ischemia; the more obvious retinal ischemia, the 
earlier neovascular occurs. The main features of RVO include 
increased vascular permeability and continuous retinal 
ischemia, wherein the more obvious the retinal ischemia, 
the earlier that neovascular occurs[84]. In particular, the 
ischemic CRVO has a sudden and large amount of bleeding, 
which causes serious damage to the retina. In particular, the 
ischemic CRVO has a sudden and large amount of bleeding, 
which causes serious damage to the retina[85]. The possible 
mechanisms of visual impairment caused by subretinal 
hemorrhage include mechanical damage to PRs and RPE, 
separation of PRs and RPE, formation of the fibrovascular 
membrane, and iron toxicity[86]. In BRB damage caused by 
RVO, iron may be one of the catalysts for oxidative stress and 
an inflammatory response that may be connected to VEGF 
production.
Retinopathy of Prematurity  Retinopathy of prematurity 
(ROP) has emerged as a major pathogenesis of loss of vision 
in kids around the globe[87]. Under normal circumstances, 
peripheral retinal vascularization will continue to develop 

before the fetus approaches term. ROP develops in two 
different stages, namely the vascular attenuation phase 
(phase I) and the fibrovascular proliferative phase (phase 
II). In both instances, VEGF performs a key role, but 
with contrasting effects[88]. In hyperoxic phase I, VEGF is 
suppressed, preventing normal retinal vascularization and 
causes some growing vessels to disappear. In the late stage of 
retinal development, oxygen demand increases, and hypoxia 
occurs. The outer boundary between vascularized and non-
vascularized retinas develops retinal neovascularization, 
when VEGF is increased in this anoxic state[89]. The severity 
of vascular occlusion in the first stage affects the subsequent 
neovascularization to a large extent. Note that in the first stage, 
a large amount of ROS will be produced, which will react with 
lipids and cause lipid peroxidation and deoxyribonucleic acid 
damage. In addition, due to the low content of antioxidants 
and chelatase in the retina at birth[89], premature infants are 
more vulnerable to ROS-mediated injury, which suggests that 
oxidative stress-induced injury may be a new and promising 
therapeutic target for ROP treatment[88,90]. Genes involved in 
iron metabolism are highly enriched under hypoxic conditions, 
according to global gene expression profiling of human fetus 
retinal microvascular endothelial cells (RMECs) cultured 
in vitro. This suggests that oxidative damage mediated by 
the dysregulation of genes involved in iron homeostasis 
may contribute to ROP[91]. Clinical studies have shown that 
transfusion iron loading is one of the risks of ROP in infants 
with a birth weight below 1250 g[92], and that transfusion 10d 
after birth is related to a nearly fourfold increased risk of severe 
ROP[93]. Increased Fe2+ in retinal vascular endothelial cells and 
mitochondria and increase in ROS levelswere detected in the 
ROP mouse model, which led to lipid peroxidation. Elabela 
significantly ameliorated mitochondria-dependent ferroptosis 
by mediating the cystine/glutamate antiporter [system x(c-)]/
GPX4 axis, revealing that iron overload and iron death may 
play important roles in the early phase of ROP[94]. 
Age-related Macular Degeneration  Age-related macular 
degeneration (AMD) is a retinal degenerative disease and the 
main cause of blindness in the elderly aged 65 years and older 
in industrialized nations[95-96]. The macula’s pathological aging 
can result in two forms of AMD: dry or non-neovascular AMD 
and wet or neovascular AMD. The pathogenesis of AMD 
mainly involves oxidative stress and inflammatory responses 
leading to retinal PR death, and AMD is characterized 
by iron accumulation in the RPE that may be associated 
with the induction of oxidative stress and inflammatory 
responses[97]. RPE causes iron to accumulate in RPE by 
phagocytosis of outer discs rich in iron and PUFAs[98]. The 
residues of phagocytic PRs will accumulate with age, forming 
lipofuscin particles with phototoxicity in RPE, which contain 
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carboxyethylpyrrole (CEP) and n-retinol-n-retinolamine (A2E)[99]. 
CEP and A2E eventually become part of drusen, which can 
induce inflammation, including leukocyte hyperplasia. These 
inflammatory responses may reduce choroidal blood flow, 
hinder the diffusion of metabolic substances, and produce 
cytotoxicity, ultimately leading to degenerative changes 
in PRs and RPE cells[100]. Polymorphisms in several genes 
involved in iron metabolism have been associated with risk 
factors for AMD, including TFR1, TFR2 (obesity, tobacco)[101],
Dmt1[102], IRP1 and IRP2[102], and heme oxygenases 1 and 2 
(HO1/2)[103]. A previous study found that ferritin light chain 
1 mRNA expression significantly increased with age in 
the retina, whereas no significant changes in ferritin heavy 
chain 1 mRNA expression were observed. The increase 
in iron content in the retina with age is localized and does 
not involve changes in blood iron levels[104]. High levels of 
iron have been found in the RPE, outer retina, and choroid 
among the elderly[105]. The elderly have a 3-fold increase 
in RPE iron content and a 1.3-fold increase in the neural 
retina compared to young individuals[13]. Iron accumulated 
in the RPE may contribute to the upregulation of VEGF 
production through the RPE by inducing oxidative stress and 
stimulating inflammation, thereby promoting the proliferation 
of aberrant blood vessels in the choroid[106-107]. Both in vitro 
and in vivo, ferroptosis was induced by light exposure in PR 
cells. Ferroptosis is characterized by elevated iron levels, 
mitochondrial contraction, glutathione consumption, elevated 
malondialdehyde (MDA), and reduced expression of the 
solute carrier family 7 member 11 and GPX4 proteins. PR 
cells expressed typical features of ferroptosis after exposure 
to light both in vitro and in vivo, including increased iron 
levels, mitochondrial contraction, glutathione consumption, 

and malondialdehyde, as well as decreased solute carrier 
family 7 member 11 and GPX4 protein expression[8]. The 
accumulation of iron caused by iron metabolism disorders can 
be distinguished from other oxidative stress pathways and has 
become a unique mechanism for inducing AMD.
IRON CHELATION THERAPY
Iron chelators were first used to treat patients with thalassemia 
who required repeated transfusions to cause systemic iron 
overload[108]. Given that iron chelators have antioxidant 
and anti-inflammatory effects, in recent years they have 
been found to present potential therapeutic effects in 
various nonsystemic iron overload diseases. Apart from 
cancer[109] and neurodegenerative and IR injury[110], acquired 
immunodeficiency syndrome (AIDS) treatment[111] and corona 
virus disease 2019 (COVID-19) therapy[112] are also included 
in the current research on iron chelators. High intracellular iron 
levels are necessary for ferroptosis, which may be prevented 
by iron chelators, whether it is brought on by cys2 deprivation, 
system XC-inhibition, or direct GPX4 inhibition[13]. 
Clinically Used Fe Chelators  At present, the FDA has 
approved clinically available iron chelates, including deferoxamine, 
deferoprone, and deferasirox[29] (Table 1)[2,12,17,113-115].
Desferrioxamine  Desferrioxamine is a bacterial siderophore 
produced by Streptomyces muciniphila[113]. It is a hydrophilic 
hexadentate iron chelator with a short biological half-
life, a large molecular weight, and difficulty permeating 
through cell membranes, thus binding iron mainly in the 
blood and eliminating the formed chelate through urin[17,113]. 
Deferoxamine has shown significant neuroprotective effects 
in animal models of intracerebral hemorrhage by forming 
stable complexes with hemosiderin, preventing iron entry 
into the Haber-Weiss reaction, and inhibiting oxidative stress, 

Table 1 Comparison of three iron chelating agents used in clinical practice

Generic name Deferoxamine Deferiprone Deferasirox

Brand’s name DESFERAL® FERRIPROX® EXJADE®/JADENU®

Iron binding[113] 1:1 3:1 2:1

Mechanism of action[2] Chelates iron from ferritin and 
hemosiderin but not readily from 

transferrin because it does not bind to 
iron in cytochrome and hemoglobin

Chelating agent with an affinity for Fe3+. 
It binds with Fe3+ to form neutral 3:1 
deferiprone: iron complexes. It has a 
lower binding affinity to zinc, copper, 
and aluminium than iron

Chelating agent selective for Fe3+. 
It binds iron with high affinity in a 
2:1 ratio. It has a very low affinity 

for zinc and copper

Route of administration[2]
Sub-cutaneous (every 8–12h) 

intravenous (IV)
(5d/wk)

Oral (t.i.d) Oral (q.d)

Half-life (after IV administration)[2] 20–30min 3–4h 8–16h

Excretion[17] Urinary/fecal Urinary Fecal

Usual doses (mg/kg·d) 25–60 75–100 20–40

Clinical use[114] Acute iron intoxication, chronic iron 
overload Chronic iron overload Chronic iron overload

Blood-neural[115] barrier penetrant No Yes No

Ocular side effects[2,12] Visual loss, impaired night vision, 
pigmentary retinopathy, optic neuritis 

and cataract

Cataract and possible retinal toxicity, 
diplopia

Retinal disorders, lensopacities  

Iron chelators in retinal vascular diseases
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inflammation, phagocytosis, and apoptosis[116]. Deferoxamine 
attenuates damage to RGCs and optic nerve fibers in mice 
with chronic ocular hypertension[115]. Desferrioxamine 
alleviates iron death in RPE induced by oxidative stress[11], 
while desferriamine regulation of the HIF-1α/VEGF-A 
pathway improves retinal hypoxia in rats with subarachnoid 
hemorrhage[19,117].
Deferiprone  Deferiprone is a synthetic bidentate 
hydroxypyridinone Fe chelator that forms a neutral 3:1 
chelator:Fe3+ complex and is orally active. Owing to its low 
molecular weight and lipophilic nature, it is able to cross 
cell membranes and, therefore, chelate iron from cells. 
Deferiprone can permeate the blood-brain barrier, and it has 
also been shown to reduce labile iron in the retina[115], without 
causing retinal toxicity in mice[118]. The activity of HIF prolyl-
hydroxylases can be reduced and the antihypoxic response 
increased by removing or displacing iron, thus improving the 
hypoxic state in patients with COVID-19[119]. 
Deferasirox  Deferasirox, a tridentate chelator with high 
affinity for Fe3+, binds to iron in a 2:1 ratio to form a complex 
with a long half-life of about 8-16h. Deferasirox was approved 
by the US FDA in 2005 and is the first drug used orally to treat 
iron overload caused by blood transfusion[114]. Deferasirox has 
the potential to be studied as a new drug to treat intracerebral 
hemorrhage, which can alleviate brain damage in ischemic 
stroke mouse models by chelating iron[120]. Deferasirox can 
also affect nuclear factor NF-κB activity, as adding iron to 
cells does not affect the inhibition of NF-κB, which is an 
independent effect[121]. Deferasirox combined with sorafenib-
induced programmed cell death enhances the anti-tumor effect 
against hepatocellular carcinoma[109] and inhibits the NF-κB/
HIF1α approach in leukemia[122].
Experimental Fe Chelators 
DIBI  DIBI is a modified hydroxypyridinone 3-hydroxy-1-(β-
methacrylamidoethyl)-2-methyl-1(1 H)-pyridinonepolymer 
with a relatively low molecular weight (9 kDa), which 
binds Fe3+ with greater selectivity than deferiprone[123]. In an 
experimental acute lung injury, DIBI showed a powerful anti-
inflammatory effect[124].
BHAPI  BHAPI ((N’-(1-(2-(4-(4,4,5,5-tetramethyl-1,3,2-
dioxaborolan-2-yl)benzyloxy)phenyl)ethylidene) is a derivate 
of the salicylaldehyde isonicotinoyl hydrazone analogue HAPI 
(N’-[1-(2-hydroxyphenyl)ethyliden]isonicotinoylhydrazide) 
boronate-masked iron pro-chelator that has no chelating 
ability by itself but chelates iron only after the oxidative 
cell environment eliminates the boron-based mask from 
transitioning to HAPI[125]. BHAPI via the Wnt-β/Catenin 
pathway, attenuates oxidative stress-protective HT22 cells 
induced with glutamate[126]. The coincubation of BHAPI with 

10 mm paraquat-treated ARPE-19 cells for 48h mitigated 
oxidative stress, improving cell viability, whereas cells not 
treated with BHAPI died completely[125]. HAPI treatment 
resulted in a fourfold increase in TFR mRNA levels compared 
to BHAPI, suggesting that HAPI caused low intracellular iron, 
whereas BHAPI did not significantly alter these levels. The 
advantage of pro-iron chelators is a small disturbance of body 
iron homeostasis that does not cause iron deficiency[127].
Phytochelators  There is potential for the development of 
several kinds of phytochelators and plant polyphenols that 
are comparable to chelating medications for therapeutic 
application. Mimosine and tropolone, two phytochelators, 
have been found to be orally active and efficient in animal 
models[128]. Green tea extract regulates lipid peroxidation by 
chelating Fe2+ and inhibiting β-oxidative tissue damage in 
thalassemic mice. Curcumin removes the LIP in hepatocytes 
and cardiomyocytes[129]. Maltol, mimosine, morin, tropolone, 
and esculetin have been proven to have the antioxidant effect 
of chelated iron[130]. 
CONCLUSIONS AND PROSPECTS
Despite the indispensable physiological significance of iron 
inside the human body, an excessive accumulation of iron has 
the potential to inflict harm on the retina. Consequently, the 
utilisation of chelating agents presents itself as a promising 
therapeutic or supplementary strategy for addressing this 
issue. The current application of iron chelators to treat retinal 
vascular diseases is still in the basic research stage, and there 
are many unsolved challenges, such as the disruption of 
systemic or local iron homeostasis, the stability of chelates 
within cells, and so on. Ideally, the chelator of choice would 
only bind iron but not other divalent metals of great biological 
importance, such as zinc (Zn2+). Additionally, iron chelators 
must be able to successfully cross the BRB. Research on 
iron chelation in the therapy of retinal vascular disease is 
notably lacking, thus more has to be learned about how iron 
chelators work in order to create safer medications or chelation 
techniques for the aim of safe iron reduction.
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