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Abstract
● AIM: To elucidate the profiles of commensal bacteria on 
the ocular surfaces of patients with varying severity of dry 
eye (DE).
● METHODS: The single-center, prospective, case-control, 
observational study categorized all participants into three 
distinct groups: 1) control group (n=61), 2) mild DE group 
(n=56), and 3) moderate-to-severe DE group (n=82). 
Schirmer’s tear secretion strips were used, and the bacterial 
microbiota was analyzed using 16S ribosomal ribonucleic 
acid gene sequencing.
● RESULTS: The three groups had significant differences 
in alpha diversity: the control group had the highest 
richness (Chao1, Faith’s phylogenetic diversity), the mild 
DE group showed the highest diversity (Shannon, Simpson), 
and the moderate-to-severe DE group had the lowest of 
the above-mentioned indices. DE severity was positively 
correlated with a reduction in beta diversity of the microbial 
community, with the moderate-to-severe DE group exhibiting 
the lowest beta diversity. Linear discriminant analysis effect 
size presented distinct dominant taxa that significantly 
differed between each. Furthermore, the exacerbation of 
DE corresponded with the enrichment of certain pathogenic 
bacteria, as determined by random forest analysis.
● CONCLUSION: As DE severity worsens, microbial 

community diversity tends to decrease. DE development 
corresponds with changes in microbial constituents, 
primarily characterized by reduced microbial diversity and a 
more homogenous species composition.
● KEYWORDS: dry eye; microbiota; ocular surface; tear 
film break up time 
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INTRODUCTION 

D ry eye (DE) is a globally prevalent disease[1] that 
damages the ocular surface (OS), seriously affecting 

vision and quality of life[2]. Various components of the OS 
microenvironment maintain OS stability, whereas changes in 
components such as immune cells, matrix cells, hormones, and 
the microbiome, may lead to disruption of OS homeostasis[3]. 
OS microbiota is another key component of the OS 
microenvironment, which maintains homeostasis and immune 
tolerance and eliminates pathogenic microorganisms[4]. 
Alterations in OS microbiota can significantly affect the 
dynamic balance of OS microecology through quorum-
sensing[5]. The ocular microbiota may be disrupted under 
certain conditions, such as DE, use of contact lenses, 
antibiotic treatment, and infections; additionally, impaired 
OS integrity in patients with DE promotes the pathogenic 
role of the microflora[6-9]. Some pathogenic bacteria such as 
Staphylococcus aureus and Propionibacterium are associated 
with DE[3,10]. Hence, changes in OS microbial diversity in 
patients with DE deserve more research.
The new definition of DE includes its multifactorial nature 
with loss of tear film homeostasis central to its pathology[1]. 
Recent epidemiological surveys have shown that shortened 
tear film break-up time (TFBUT) DE is the most common 
type of DE disease in clinical practice[11-13]. Asia Dry Eye 
Society proposed DE diagnostic criteria according to DE 
symptoms and TFBUT<5s[14]. Different severities of DE may 
lead to distinct clinical manifestations and consequences; thus, 
different remedial principles may be needed[1,15]. Therefore, it 
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is necessary to investigate DE according to its classification. 
The general objective of DE treatment is to restore OS 
microenvironment homeostasis. Restoration of normal OS 
commensal flora should be considered an indispensable part 
of DE therapy. Changes in the OS microbiota have been 
hypothesized to be involved in DE pathophysiology. However, 
previous studies did not classify DE according to disease 
severity[7,16-17]. 

In the present study, 16S ribosomal ribonucleic acid (rRNA) 
gene sequencing was performed to analyze the OS commensal 
bacteria profiles of patients with DE having different severities 
based on TFBUT values. We aimed to gain an improved 
understanding of the relationship between disease severity and 
microbial diversity.
SUBJECTS AND METHODS
Ethical Approval  The present study adhered to the ethical 
guidelines stated in the Declaration of Helsinki, and written 
informed consent was obtained from all participants. The study 
procedure was sanctioned by the Medical Ethics Committee 
of Fengcheng Hospital, Shanghai (approval number: FCYY-
2019-TK322-1). 
This single-center study included patients who sought 
treatment for DE-related symptoms at outpatient clinics of 
Fengcheng Hospital between December 2020 and June 2021. 
Prior to the investigation, two ophthalmologists collected 
participants’ medical history and enquired about subjective 
symptoms. Subsequently, participants underwent ocular 
examination using slit lamp microscopy; thereafter, other DE 
examinations were performed.
Subjects  The study involved three groups of participants: 
1) control group (TFBUT≥5s), 2) mild DE (MDE) group 
(2s<TFBUT<5s), and 3) moderate-to-severe DE (MSDE) 
group (TFBUT≤2s). These groups had no significant 
differences in age and sex. The Asia Dry Eye Society 2016 
guidelines were used to diagnose DE, which required the 
presence of subjective symptoms of DE and TFBUT<5s[14]. 
Additionally, a cut-off value of TFBUT≤2s was applied in a 
large Norwegian cohort to investigate the severity of TFBUT 
and DE disease[18].
DE symptoms were defined as done in our previous 
studies, including dryness, foreign body sensation, 
redness, burning sensation, and sensation of heaviness in 
the eyelids. Participants who experienced one or more of 
the abovementioned symptoms often or persistently were 
categorized as positive for DE symptoms[19].
The exclusion criteria included the following ocular disorders 
which may affect tear production or quality[20-21]: 1) eyelid 
diseases: ectropion, entropion, ptosis, trichiasis, eyelid 
paralysis; 2) conjunctival disorders: palpebral fissures, 
pterygium, and conjunctivochalasis; 3) contact lenses use, 

history of ocular and periocular infection in the past three 
months, ocular or systemic antibiotic treatment within three 
months, ocular surgeries within six months, prior history of 
ocular chemical injuries, or use of ocular prescriptions or 
artificial tears; 4) systemic diseases and autoimmune diseases 
including diabetes, Parkinson’s disease, Grave’s disease, 
rheumatoid arthritis, Sjögren’s syndrome, and systemic lupus 
erythematosus. All enrolled patients were at least 18 years of 
age. 
Tear Sample Collection  DE tests were performed in all 
subjects, including TFBUT measurement, Schirmer’s test 
without the use of anesthesia, and corneal fluorescence 
staining. The strips for Schirmer’s test (Jingming, Tianjin, 
China) were applied to the external third of the conjunctival 
sac in each lower eyelid and left for 5min. After removing 
the strips from both eyes, they were collected in sterilized 
centrifuge tubes as one specimen and immediately stored at 
−80°C for subsequent investigations as previously reported[21]. 

When placing and collecting strips, sterile gloves were worn, 
and the hand that touched the strips had no contact with the 
lower eyelid skin.
Total Bacterial Deoxyribonucleic Acid Extraction  The 
OMEGA Soil DNA Kit (M5635-02; Omega Bio-Tek, 
Norcross, GA, USA) was used to extract the entire bacterial 
DNA. The quality and quantity of the extracted DNA were 
evaluated using a NanoDrop NC2000 spectrophotometer 
(Thermo Fisher Scientific, Waltham, MA, USA). Agarose gel 
electrophoresis was also performed to confirm the integrity of 
the DNA.
16S rRNA Gene Amplicon Sequencing  The bacterial 16S 
rRNA genes V3–V4 region was amplified by polymerase 
chain reaction (PCR) using the forward primer 338F 
(5’-ACTCCTACGGGAGGCAGCA-3’) and the reverse 
primer 806R (5’-GGACTACHVGGGTWTCTAAT-3’). For 
multiplex sequencing, the primers used for PCR amplification 
of the bacterial 16S rRNA genes V3–V4 region were modified 
to include sample-specific 7 bp barcodes. Thereafter, Vazyme 
VAHTSTM DNA Clean Beads (Vazyme, Nanjing, China) 
were used to purify PCR amplicons. The Quant-iT PicoGreen 
dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA) was 
used to quantify the purified DNA. The PCR amplicons were 
individually quantified and combined in equal amounts before 
undergoing pair-end 2×250 bp sequencing on the Illumina 
NovaSeq platform with the NovaSeq 6000 SP Reagent Kit 
(500 cycles) at Shanghai Personal Biotechnology Co., Ltd. 
(Shanghai, China).
Sequence and Bioinformatics Analyses  Microbiome 
bioinformatics analysis was conducted using Quantitative 
Insights Into Microbial Ecology software (QIIME 2). The 
raw sequence data were first demultiplexed using the demux 
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plug-in in QIIME 2. The primers were then removed from 
the demultiplexed sequences using the cut-adapt plug-in. 
The quality-filtered sequences were processed using the 
DADA2 plug-in in QIIME 2, which includes denoising, the 
merging of paired-end reads, and the removal of chimeric 
sequences. The non-singleton amplicon sequence variants 
(ASVs) were aligned using MAFFT[22], and a phylogenetic 
tree was constructed using FASTTREE2[23]. The ASVs were 
taxonomically classified using the classify-sklearn naïve Bayes 
taxonomy classifier in the feature-classifier plug-in, which was 
trained against the Greengenes_13 database. 
The alpha-diversity and beta-diversity metrics were calculated 
using the diversity plug-in in QIIME2. The rarefaction 
threshold was set at 90 278 sequences per sample. QIIME2 
software was used to determine alpha-diversity indices for 
each sample group separately, including the Chao1 index and 
Faith’s phylogenetic diversity (Faith’s PD) index for richness, 
Shannon and Simpson index for diversity, and three additional 
indices, involving Good’s coverage, Pielou’s evenness, and 
observed species. Box line plots were generated to compare 
the richness and evenness of ASVs among each sample 
group. The UniFrac distance metric was employed to analyze 
the beta diversity of microbial communities and investigate 
the differences in microbial community structures between 
groups. To examine the compositional profiles of species at the 
genus level, both principal coordinate analysis and nonmetric 
multidimensional scaling analysis were performed, which 
enable the visualization of similarities and differences in 
microbial community composition between different groups. 
Principal component analysis was used to identify patterns 
and relationships in the data along with outliers and anomalies 
at the genus level. To assess the significance of differences 
in microbial community structure between groups, analysis 
of variance using distance matrices and analysis of similarity 
were utilized. 
QIIME2 was used to obtain composition and abundance tables 
at six taxonomic levels (phylum, class, order, family, genus, 
and species) for each sample. Bar graphs were generated 
to visualize the analysis results. Permutational multivariate 
analysis of variance was employed to assess the statistical 
significance of differences in the microbial community 
structure between groups. 
QIIME2 and R packages (v3.2.0) were applied to analyze 
the sequence data. Linear discriminant analysis effect size 
(LEfSe) was exploited with default parameters to distinguish 
differentially abundant taxonomic categories among groups. 
Random forest analysis within QIIME 2 with default settings 
was utilized to develop predictive models by distinguishing 
between samples from different groups based on their 
microbial composition. Metabolic pathways and functions 

were predicted based on random forest ASV results using 
Phylogenetic Investigation of Communities by Reconstruction 
of Unobserved States (PICRUSt2).
Statistical Analysis  Clinical data analysis was conducted 
using SPSS (V.25.0, SPSS Science, Chicago, IL, USA). 
Descriptive statistics were provided for all outcome 
measurements, means and standard deviations were presented 
for continuous variables that met the normality assumption, 
and medians with Q1/Q3 were presented for continuous 
variables that did not meet this assumption. For categorical 
variables, frequencies and proportions were reported. Chi-
square tests were operated to compare categorical outcomes, 
one-way analysis of variance (ANOVA) was conducted to 
compare continuous outcomes in compliance with a normal 
distribution (based on Shapiro–Wilk test), Kruskal–Wallis test 
was used to compare continuous outcomes with non-normal 
distribution, and the Nemenyi method was conducted for 
pairwise comparisons. The level of statistical significance was 
defined as P<0.05.
RESULTS 
Population  A total of 199 individuals were divided into three 
groups: the control, MDE, and MSDE groups with 61, 56, and 
82 subjects, respectively. Table 1 displays the demographic and 
clinical characteristics of the participants. Our results revealed 
no significant differences in age and gender distribution among 
the three groups (P>0.05). The TFBUT and Schirmer’s test 
values were highest in the control group and lowest in the 
MSDE group, with a significant difference observed among the 
three groups.
Alpha Diversities  Alpha diversity is a measure of the 
diversity and richness of species within a local or uniform 
habitat, which considers indicators such as species richness, 
diversity, coverage, and evenness. Significant differences in the 
following parameters were detected among the three groups: 
richness indices: Chao1 (P<0.001), Faith’s PD (P<0.001); 
diversity indices: Shannon index (P=0.0016), Simpson index 
(P=0.0086); Good’s coverage (P=0.0013); Pielou’s evenness 
(P=0.01). The control group displayed the highest richness 
(Chao1, Faith’s PD), and the MDE group showed the highest 
diversity (Shannon, Simpson), whereas the MSDE group had 
the lowest richness and diversity among the four indices 
(Figure 1A).
Beta Diversities  Both principal coordinate analysis 
(Figure 1B) and nonmetric multidimensional scaling analysis 
(Figure 1C) showed that the MSDE group had the lowest beta 
diversity. Principal component analysis at the genus level 
revealed that patients with DE in the MDE and MSDE groups 
presented different bacterial microbiome compositions from 
healthy participants in the control group (Figure 1D). There 
was a significant difference in beta diversity among these 
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Table 1 Demographic and clinical characteristics: distribution of age, sex, TFBUT, Schirmer’s test results, and fluorescent staining

Parameters CON MDE MSDE Statistics P
Age (y) 41.80±14.15 43.04±14.31 43.07±13.87 F=0.168 0.845
Sex χ2=0.186 0.911

Male 24 (39.3) 20 (35.7) 30 (36.6)
Female 37 (60.7) 36 (64.3) 52 (63.4)

TFBUT (s) 7.60 (6.60, 8.40) 3.00 (2.50, 3.50)a 1.60 (1.50, 1.70)a,b H=175.132 <0.001
S1T (mm) 12.00 (10.00, 15.00) 7.00 (5.00, 10.00)a 4.00 (2.00, 8.00)a,b H=57.664 <0.001
FL 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 4.00)a,b H=44.834 <0.001

CON: Control group; MDE: Mild dry eye group; MSDE: Moderate-to-severe dry eye group; TFBUT: Tear film break-up time; S1T: 

Schirmer’s test without the use of anesthesia; FL: Corneal fluorescence staining. Statistical tests for the variables included a one-

way ANOVA for age; Chi-square test for sex; and Kruskal-Wallis test for TFBUT, S1T, and FL. aP<0.05 vs CON, bP<0.05 vs MDE.

Figure 1 Alpha diversities and beta diversities of the three groups  A: Alpha-diversity indices of the three groups. The P-values are the 

overall P-values of the Kruskal-Wallis test among the three groups; aP<0.05, bP<0.01, and cP<0.001. B–D: Beta diversity of the three groups. B: 

Principal coordinate analysis; C: Nonmetric multidimensional scaling analysis; D: Principal component analysis at the genus level; E: Difference 

exploration among the three groups via analysis of variance using distance matrices. PCo1: Principal coordinate 1; PCo2: Principal coordinate 

2; NMDS1: Nonmetric multidimensional scale 1; NMDS2: Nonmetric multidimensional scale 2; PC1: Principal component 1; PC2: Principal 

component 2; MDE: Mild dry eye; MSDE: Moderate-to-severe dry eye.
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groups (ANOVA using distance matrices, P=0.001; Figure 1E), 
and analysis of similarity demonstrated the significant effect 
of DE on the diversity between groups (Table 2).
Bacterial Composition at the Phylum, Family, and Genus 
Levels  At the phylum level, there was a gradual increase in 
Proteobacteria from the control group to the MSDE group, 
whereas Actinobacteria, Firmicutes, and Bacteroidetes 
exhibited a decrease in abundance (Figure 2A). The 
composition of the top five phyla between the three groups 
showed significant differences (Figure 2D). 
At the family level, Xanthomonadaceae, Oxalobacteraceae, 
Beijerinckiaceae, and Acetobacteraceae gradually increased 
from the control group to the MSDE group, whereas 
Corynebacteriaceae, Moraxellaceae, and Staphylococcaceae 
decreased (Figure 2B). The composition of the top nine 
families in the three groups showed significant differences 
(Figure 2E). 
At the genus level, Cupriavidus and Chelatococcus steadily 
increased from the control group to the MSDE group, whereas 
Corynebacterium, Lactobacillus, and Staphylococcaceae 
Staphylococcus decreased (Figure 2C). Enhydrobacter and 
Thermus had the highest relative abundance in the control and 
MSDE groups, respectively (Figure 2C). The composition of 
the genera with significant differences in the three groups is 
displayed in Figure 2F. 
Linear Discriminant Analysis Effect Size  Species with 
significantly different abundances in different groups were 
presented via LEfSe. The taxa which had a greater influence 
on the difference between groups are shown in the LEfSe 
cladogram (Figure 3A). The representative top five taxa in the 
three groups at the family and genus levels were as follows: 
control group: family: Corynebacteriaceae, Lactobacillus, 
Moraxellaceae, Brucellaceae, and Propionibacteriaceae; 
genus: Corynebacterium, Lactobacillus, Enhydrobacter, 
Ochrobactrum, and Propionibacterium; MDE group: family: 
Pseudomonadaceae, Micrococcaceae, Sphingomonadales, 
Comamonadaceae, and Nostocaceae; genus: Sphingomonas, 
Ar throbac ter ,  Sporosarc ina ,  Nes terenkon ia ,  and 
Dolichospermum; MSDE group: family: Xanthomonaceae, 
Oxalobacteraceae, Beijerinckiaceae, Thermaceae, and 
Acetobacteraceae, genus: Cupriavidus, Chelatococcus, 
Thermus, Chelativorans, and Allobaculum.
Identification of Species Differences and Marker Species 
using Random Forest Analysis  The results from random 
forest analysis indicated significant differences (P<0.05) among 
the three groups (Figure 3B-3D). Notably, Proteobacteria 
and Thermi exhibited higher abundances in the MSDE group. 
Spirochaetes, Cyanobacteria, Acidobacteria, and Chloroflexi 
were highly abundant in the MDE group. At the family 
level, Pseudococcidae, Xanthomonadaceae, Beijerinckiaceae, 

Acetobacteraceae, Bacillaceae, and Planococcaceae were more 
abundant in the MSDE group. Pseudomonadaceae was more 
abundant in the MDE group. At the genus level, Cupriavidus, 
Chelatococcus, Sphingopyxis, Tremblaya, Allobaculum, and 
Arthrobacter were more abundant in the MSDE group.
The ASVs were found by random forest analysis (Figure 3E). The 
10 most abundant ASV annotations in the MDE and MSDE 
groups are listed in Table 3. The ASVs were mainly classified 
into the following phyla and families: Proteobacteria: 
Pseudomonadaceae, Moraxellaceae, and Pseudococcidae. 
Predicted Metabolic Pathways and Functions based on 
Random Forest Amplicon Sequence Variants with 
PICRUSt2  Prediction of metabolic pathways and functions 
was performed based on the top 20 random forest ASV results. 
Figure 4A shows the results of the differential analysis of 
KEGG metabolic pathways at Level 1. Differential analysis 
of Level 2 metabolic pathways belonging to human disease 
and metabolism in Level 1 pathways in the KEGG database 
are presented in Figures 4B and 4C. Human disease pathways 
included infectious diseases and neurodegenerative diseases 
with significant differences between the three groups. 
Metabolism pathways representing the metabolism of cofactors 
and vitamins, carbohydrate metabolism, lipid metabolism, and 
nucleotide metabolism exhibited significant differences and 
relative abundance between the three groups.
DISCUSSION
Some studies have explored the commensal microbiota on the 
OS through various methods, including traditional microbial 
cultures and 16S rRNA gene sequencing[24-26]. The microbiota 
plays a key role in maintaining the OS microenvironment 
balance under normal physiological conditions. The microbiota 
constitution can differ under certain conditions, such as 
DE, personal habits, rubbing eyes, antibiotic usage, use of 
contact lenses, infectious conditions, systemic diseases, and 
perioperative management[7,9,10,21,27-29]. Thus, this study aims to 
investigate the OS microbiota composition of patients with DE 
having different severities based on TFBUT values via 16S 
rRNA sequencing using Schirmer’s strips. DE development 
was accompanied by corresponding changes in OS microbial 
components and abundance. These findings may indicate 
that DE development is accompanied by decreased microbial 
diversity and more homogeneous species composition.

Table 2 Analysis of similarity for diversity between groups

Group 1 Group 2 Sample size R P
All -- 199 0.173 0.001
CON MDE 117 0.143 0.001
CON MSDE 143 0.286 0.001
MDE MSDE 138 0.084 0.003

CON: Control group; MDE: Mild dry eye group; MSDE: Moderate-to-

severe dry eye group.

Ocular surface microbiota in dry eye
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Figure 2 Bacterial composition of the three groups at the phylum, family, and genus levels  A: Comparison of bacterial composition at the 

phylum level across the three groups. B: Comparison of bacterial composition at the family level in the three groups. C: Comparison of bacterial 

composition at the genus level in the three groups. D: Box plots for difference test at the phylum level in the three groups. E: Box plots for 

difference test at the family level in the three groups. F: Box plots for difference test at the genus level in the three groups. The P-values are the 

overall P-values of the Kruskal–Wallis test among three groups; aP<0.05, bP<0.01, and cP<0.001. MDE: Mild dry eye; MSDE: Moderate-to-severe 

dry eye.
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DE alters the frequency and density of specific bacterial 
groups. In this study, the MSDE group had the lowest richness 
and diversity in four indices of alpha diversity, while the 
control group had the highest richness as measured by the 
Chao1 and Faith’s PD indices. These findings share a similarity 
with Li et al’s[8] study, in that they both observed higher alpha-
diversity indices, specifically Shannon and Simpson, in the 
non-DE group compared to the DE group. In contrast, their 
study did not find any significant differences in the other two 
indices, including Chao1 and observed species, between the 
DE and non-DE groups[30]. Additionally, the beta diversity of 

the microbial community decreased with increased DE severity 
(Figure 1B, 1C). Thus, the severity may be associated with a 
distinct assembly of the ocular bacterial community. Similarly, 
Andersson et al[7] discovered reduced microbiota diversity 
among patients suffering from aqueous tear-deficient DE, and 
when compared to normal individuals, these patients exhibited 
differences in microbiota composition. Song et al[30] reported a 
significant difference in beta diversity among the three groups. 
However, in contrast to our findings, their control group 
exhibited a more centralized distribution of samples, whereas 
the samples in the two DE groups were more dispersed. The 

Table 3 Classification annotation information about the ASVs of the marker group

ASVs Phylum Class Order Family Genus Species

ASV_3611 Proteobacteria Betaproteobacteria Hemiptera Pseudococcidae Tremblaya Tremblaya_phenacola

ASV_15624 Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter Acinetobacter_guillouiae

ASV_69126 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Unclassified 
Pseudomonadaceae

ASV_170446 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Unclassified 
Pseudomonadaceae

ASV_46050 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Unclassified 
Pseudomonadaceae

ASV_136142 Proteobacteria Gammaproteobacteria Unclassified
Gammaproteobacteria

Unclassified 
Gammaproteobacteria

ASV_39748 Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter Unclassified Acinetobacter

ASV_198943 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Unclassified
Pseudomonadaceae

ASVs: Amplicon sequence variants.

Figure 3 Linear discriminant analysis and random forest analysis of the three groups  A: Linear discriminant analysis effect size cladogram 

showing the taxa with significantly different abundances between different groups. B: Random forest analysis at the phylum level. C: Random 

forest analysis at the family level. D: Random forest analysis at the genus level. E: Random forest analysis of ASVs. MDE: Mild dry eye; MSDE: 

Moderate-to-severe dry eye. ASVs: Amplicon sequence variants.

Ocular surface microbiota in dry eye
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differentiation may be caused by the difference in the DE 
classification methods used in their study and the present study. 
A study examining oral microbial diversity in individuals 
with atrophic glossitis and healthy controls revealed that the 
former group exhibited lower levels of bacterial diversity than 
the latter[31]. This study was analogous to our findings, which 
suggest a decrease in bacterial diversity in patients compared 
to healthy individuals. Therefore, it can be concluded that 
patients with more severe DE also exhibit lower levels of 
bacterial diversity. 
Alterations in bacterial composition were discovered among 
the three groups. At the phylum levels, Proteobacteria and 
Thermi abundance increased in the MSDE group compared 
with the MDE and control groups, whereas Actinobacteria 
and Firmicutes showed the opposite trend in the same 
groups. In addition, the random forest analysis at the phylum 
level was consistent with the bacterial composition, that is, 
Proteobacteria and Thermi showed significant importance in 
the MSDE group. Proteobacteria, Actinobacteria, Firmicutes, 
and Deinococcus-Thermus are reported to be representative 
clones of human conjunctiva[26]. Thermus is a widely 
distributed genus of thermophilic bacteria that can be isolated 
from both natural and man-made thermal environments[32]. 
Based on the information presented, it is possible that the 
increased proportion of core taxa, such as Proteobacteria 
and Thermi, in the MSDE group may negatively impact the 
microbiota homeostasis of the OS. Therefore, changes in the 
composition of these taxa in the OS could be closely related to 
DE development. 
The discriminating genera in the control group were mainly 
harmless normal flora. For instance, Corynebacterium is 
widely distributed in nature in the microbiota of animals and 

humans. Furthermore, they are the most common commensal 
flora that exists with their hosts due to their mostly harmless 
nature[33]. In a study by Ge et al[28], Corynebacterium exhibited 
the highest relative abundance in the OS of healthy eyes 
from the control group. Moreover, Enhydrobacter was also a 
core OS microbiota in most participants[7]. In the MDE and 
MSDE groups, multiple pathogenic bacteria were detected. 
Pseudomonadaceae showed significant importance at the 
family level in the MDE group via random forest analysis. The 
ASVs found in the current study were also mainly included in 
Pseudomonadaceae at the family level. Pseudomonadaceae 
is a family of gram-negative bacteria, including the genus 
Pseudomonas, which is pathogenic to humans[34]. Pseudomonas 
aeruginosa is a common pathogen that may induce severe 
ocular infection with possible vision loss[35-36], but the 
Pseudomonadaceae detected in this study with no classified 
information may belong to different species with dissimilar 
characteristics. Bacillaceae, which includes additional species 
with pathogenic potential, was vital at the family level in 
the MSDE group. Certain strains of Bacillus cereus have the 
potential to cause a range of infections, including localized 
wounds and ocular infections[37]. Furthermore, a differential 
analysis of Level 2 metabolic pathways indicated that the 
infectious disease pathway exhibits significant differences. 
Thus, it can be inferred that the exacerbation of DE disease is 
accompanied by the enrichment of some pathogenic bacteria. 
Further investigations of the relationship between these 
pathogenic bacteria and DE are needed. 
Some studies demonstrate that the effectiveness of 
supplementation with prebiotics or probiotics in reducing DE 
is associated with improved tear film function and restored OS 
microbiological activity in patients with DE[38-39]. This may 

Figure 4 Prediction of metabolic pathways and functions using PICRUSt2 based on random forest ASV results  A: Differential analysis of 

Level 1 metabolic pathways in the KEGG database. B: Differential analysis of Level 2 metabolic pathways belonging to human disease (Level 1) 

pathway in the KEGG database. C: Differential analysis of Level 2 metabolic pathways belonging to metabolism (Level 1) pathway in the KEGG 

database. PICRUSt: Phylogenetic investigation of communities by reconstruction of unobserved states; ASVs: Amplicon sequence variants; MDE: 

Mild dry eye; MSDE: Moderate-to-severe dry eye.
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also be an option for future DE treatment, as there have been 
studies confirming the existence of a gut-eye axis[40-41]. The OS 
microbiome is an extremely complicated issue that requires 
extensive research. Additionally, a more comprehensive 
longitudinal study may be considered for future analyses 
to examine how microbial composition changes after DE 
treatment and whether it returns to the control group level.
This study has some limitations. First, a separate group 
of subjects with TFBUT>10s was not set up; therefore, 
information about the OS microbiome of this group may have 
been missed. Second, as DE classification mainly depended 
on TFBUT values, the result does not fully reflect all types 
of DE conditions. Third, considering the geographical and 
sample size restrictions, there may be bias in the subjects that 
participated in the study. Different bacteria from other reports 
appeared in this study, and given that the OS is constantly 
exposed to bacteria from the external environment, it is highly 
probable that the microbiome present on the OS originates 
from external sources, such as water, earth, and air, as well 
as internal sources such as the body itself, including the lids, 
nasopharynx, obstetric canal, and skin[42]. Therefore, different 
species with significantly different abundances found in each 
group in this study had their own regional characteristics, and 
further investigation of OS microbiota is needed. Lastly, aside 
from the identified bacteria, additional factors beyond the 
scope of the current study may have contributed to DE. For 
instance, latent infections such as infections with Chlamydia 
trachomatis and Ureaplasma urealyticum have been observed 
in individuals with DE[43-44]. Further exploration is necessary to 
comprehensively understand the causes of the complexity of DE.
This study showed that patients with varying severities of 
DE had dissimilar bacterial diversities and OS microbial 
compositions. As DE severity worsens, microbial community 
diversity decreases, resulting in a more homogeneous ocular 
bacterial community structure that may be enriched with 
certain pathogenic bacteria. In this study, we investigated the 
microbial profile of patients with DE having different severities 
according to TFBUT values. Assessing alterations in the 
microecological OS environment across varying degrees of DE 
severity can provide valuable insights into the DE microbiome 
and potentially guide the development of effective treatment 
strategies.
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