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Abstract
● AIM: To develop an artificial intelligence (AI) diagnosis 
model based on deep learning (DL) algorithm to diagnose 
different types of retinal vein occlusion (RVO) by recognizing 
color fundus photographs (CFPs).
● METHODS: Totally 914 CFPs of healthy people and 
patients with RVO were collected as experimental data 
sets, and used to train, verify and test the diagnostic model 
of RVO. All the images were divided into four categories 
[normal, central retinal vein occlusion (CRVO), branch retinal 
vein occlusion (BRVO), and macular retinal vein occlusion 
(MRVO)] by three fundus disease experts. Swin Transformer 
was used to build the RVO diagnosis model, and different 
types of RVO diagnosis experiments were conducted. The 
model’s performance was compared to that of the experts.
● RESULTS: The accuracy of the model in the diagnosis 
of normal, CRVO, BRVO, and MRVO reached 1.000, 0.978, 
0.957, and 0.978; the specificity reached 1.000, 0.986, 
0.982, and 0.976; the sensitivity reached 1.000, 0.955, 
0.917, and 1.000; the F1-Sore reached 1.000, 0.955 
0.943, and 0.887 respectively. In addition, the area under 
curve of normal, CRVO, BRVO, and MRVO diagnosed by the 
diagnostic model were 1.000, 0.900, 0.959 and 0.970, 
respectively. The diagnostic results were highly consistent 
with those of fundus disease experts, and the diagnostic 
performance was superior.
● CONCLUSION: The diagnostic model developed in this 
study can well diagnose different types of RVO, effectively 

relieve the work pressure of clinicians, and provide help 
for the follow-up clinical diagnosis and treatment of RVO 
patients.
● KEYWORDS: deep learning; artificial intelligence; Swin 
Transformer; diagnostic model; retinal vein occlusion; color 
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INTRODUCTION 

A s the second common retinal vascular disease, the 
incidence rate of retinal vein occlusion (RVO) is 

second only to diabetic retinopathy (DR)[1]. According to the 
location of RVO, RVO is mainly divided into central retinal 
vein occlusion (CRVO), branch retinal vein occlusion (BRVO) 
and macular retinal vein occlusion (MRVO)[2], of which 
BRVO is the most common. If RVO is not treated promptly 
and effectively, it is likely to cause serious complications, 
resulting in severe and irreversible visual impairment and even 
blindness[3-4].
The main fundus changes on color fundus photographs (CFPs) 
of patients with RVO include retinal hemorrhage, abnormal 
tortuous dilatation of retinal vessels, cotton velvet spots, and 
hard exudation[5-6]. The disease can also cause a variety of 
eye complications, such as retinal macular edema (RME), 
optic neuropathy, neovascular glaucoma, and traction retinal 
detachment[3-4,7-9]. RME is the main cause of severe visual 
impairment in patients with RVO[10]. Currently, the primary 
treatments for patients with RVO are vitreous injection, laser 
photocoagulation, and vitrectomy[11-13]. Intravitreal injection 
of anti-vascular endothelial growth factor (VEGF) drugs can 
significantly improve visual acuity loss caused by RME[14], 
and laser photocoagulation is often performed in patients with 
intraocular neovascularization[15]. For RVO patients, timely and 
effective treatment is particularly important to protect vision. 
Additionally, several studies have reported that the incidence 
of RVO increases with age. In light of the serious threat the 
disease poses for the vision of patients, it is very important 
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for the screening and diagnosis of RVO. This requires us to 
find new methods to improve the efficiency of screening and 
diagnosis of RVO.
The concept of artificial intelligence (AI) was proposed in 
1956, marking the birth of a new discipline. After entering 
the 21st century, AI technology has developed rapidly, and 
many research results have been achieved in data developing, 
image processing and recognition[16]. Deep learning (DL), 
which is a subfield of AI, is a neural network-based method 
to extract features from a large amount of labeled sample data 
and can complete complex tasks[17]. In addition, a single DL 
network can carry out two classification tasks simultaneously 
by extracting the relevant features of a given classification 
task. After entering the 21st century, DL algorithms and AI 
technology have been consistently developed to promote their 
application in medicine[18], and many studies have demonstrated 
that AI technology can aid in the screening, diagnosis, and 
treatment of diseases. At present, in the field of ophthalmology, 
AI technology has made remarkable achievements in the 
study of ocular surface diseases such as dry eye, pterygium, 
keratitis[19-22], retinal vascular diseases such as DR, retinopathy 
of prematurity (ROP)[23-28], age-related macular degeneration 
(AMD)[29-31], and glaucoma[32-34]. However, few studies have 
investigated its application in the auxiliary diagnosis of RVO. 
Therefore, in this study, we used Swin Transformer to develop 
a diagnostic model based on CFPs to diagnose different types 
of RVO, and discuss the feasibility of the model application in 
the clinical diagnosis and treatment of RVO.
MATERIALS AND METHODS
Ethical Approval  In this study, all CFPs were obtained from 
the Affiliated Eye Hospital of Nanjing Medical University and 
the Shenzhen Eye Hospital of Jinan University. To prevent 
the leakage of patients’ personal information, all photographs 
in this study were assessed anonymously and were devoid of 
information about the patient, except for the diagnosis.
Study Process  Figure 1 shows the general study process 
of this study, which was divided into five stages: image 
collection, image processing, database construction, model 
training and verification, and model testing. First, the CFPs of 
healthy individuals and patients with RVO were collected, the 
collected images were marked and classified by three fundus 
disease experts, and image processing and adjustment were 
applied; then, they were randomly divided into a training 
dataset, a verification dataset, and a testing dataset. The 
diagnostic model was built using the training and verification 
datasets, the parameters of the model were adjusted according 
to its output performance; final, the testing dataset was then 
used to assess the model’s performance in diagnosing RVO.
Image Collection and Processing  The initial data used in 
this study were obtained from the Affiliated Eye Hospital of 

Nanjing Medical University and the Shenzhen Eye Hospital 
of Jinan University and included 914 CFPs. All CFPs were 
selected and labeled by three fundus disease experts and 
marked according to Chinese fundus color photo annotations 
and quality control specifications. In this process, we exclude 
poor-quality CFPs, such as unclear photos and photos with 
incomplete fundus, and only keep high-quality CFPs. During 
the CFPs labeling process, all CFPs were labeled once by 
two fundus disease experts each. The two experts annotated 
the CFPs in a double-blind way. If the annotation results are 
consistent, it is recognized as the expert annotation results of 
the CFPs. If the results of the two experts are inconsistent, a 
third and more advanced fundus disease expert would label the 
inconsistent image. All the experimental data were processed 
anonymously before the study. The CFPs were divided into 
four categories by the three fundus disease experts: normal, 
CRVO, BRVO, and MRVO (Figure 2); the dataset included 
259 normal, 215 CRVO, 356 BRVO, and 84 MRVO CFPs. 
The processing and adjustment methods for the fundus 
images were as follows: image standardization, unified image 
resolution, and image rotation.
Dataset Construction  The experimental dataset was divided 
into three datasets (training dataset, verification dataset, and 
testing dataset). The training dataset was used to reduce the 
error of the intelligent diagnosis model, the verification dataset 
was used for the preliminary evaluation of its effectiveness, 
and the testing dataset was used for external verification. The 
training dataset contained 730 CFPs, the verification dataset 92 
CFPs, and the testing dataset 92 CFPs. The four types of CFPs 
were randomly allocated to the three datasets and the three 
datasets all contain four types of CFPs (Table 1).
Model Training  We used a Swin Transformer[35] to build the 
RVO diagnosis model. Swin Transformers use a hierarchical 
construction method similar to that used in convolutional 
neural networks (CNNs). As shown in Figure 3, its main 
structure consists of four stages (stage 1–4), and each stage 
consists of two parts: patch merging (stage 1 is linear embedding) 
and a Swin Transformer block. In addition, two structures, 
a Windows Multihead Self-Attention (W-MSA) and a 
Shifted Windows Multihead Self-Attention (SW-MSA) 
module, are introduced into this stage. The W-MSA can 
significantly reduce the computational complexity and amount 
of calculations, but it cannot transfer information between 
different windows, whereas the SW-MSA can do the latter, 
which solves a crucial problem. The general flow of the Swin 
Transformer is as follows: first, the input image is divided 
into blocks in the patch partition module; it is then flattened 
in the channel direction; and feature images of different sizes 
are constructed in Stages 1–4; finally, a classifier is used to 
classify the results.

AI-assisted RVO diagnosis
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Model Evaluation  In order to evaluate the diagnostic 
performance of the diagnostic model[36], we selected some 
performance indicators, including accuracy, sensitivity, 
specificity, precision, the F1-score and recall. Our calculation 
method is depicted in Figure 4.
RESULTS
After training and verification, we assessed our model with 
the test dataset of 92 CFPs; Figure 5 depicts the confusion 
matrix of the results, with the horizontal axis representing 
the real label and the vertical axis representing the test label. 
The diagnostic results are showed in Table 2. The accuracy 
of the model for diagnosing normal, CRVO, BRVO, and 
MRVO reached 1.000, 0.978, 0.957, and 0.978, respectively, 
while the model sensitivity reached 1.000, 0.955, 0.917, and 
1.000. Specificity reached 1.000, 0.986, 0.982, and 0.976, and 
precision stood at 1.000, 0.955, 0.971, and 0.800. The 
F1-score reached 1.000, 0.955, 0.943, and 0.887. In addition, 
we created the receiver operating characteristic (ROC) curve 
of the diagnostic model (Figure 6). The result showed that the 
area under the curve (AUC) values for normal, CRVO, BRVO, 
and MRVO diagnosed by the model were 1.000, 0.900, 0.959, 

Figure 1 General study process  CRVO: Central retinal vein occlusion; BRVO: Branch retinal vein occlusion; MRVO: Macular retinal vein.

Figure 2 Retinal vein occlusion color fundus photographs classification  CRVO: Central retinal vein occlusion; BRVO: Branch retinal vein 

occlusion; MRVO: Macular retinal vein occlusion.

Table 1 Composition of the three datasets

Parameters Training 
dataset

Verification 
dataset

Testing 
dataset Total

Normal 207 26 26 259
CRVO 171 22 22 215
BRVO 284 36 36 356
MRVO 68 8 8 84
Total 730 92 92 914

CRVO: Central retinal vein occlusion; BRVO: Branch retinal vein occlusion; 

MRVO: Macular retinal vein occlusion.

Figure 3 Main frame structure of the Swin Transformer.
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and 0.970, respectively. These results show that the diagnostic 
performance of our diagnosis model was superior, the 
diagnostic effect of the different types of RVO was good, and 
the diagnostic results were highly consistent with those of the 
fundus disease expert. The model can thus complete the task of 
diagnosing different types of RVO and thereby help clinicians.
DISCUSSION
The main purpose of this study was to develop an RVO 
diagnosis model based on AI and to explore its applicability to 
the diagnosis of different types of RVO in the clinical practice. 
At present, the process of clinical diagnosis and treatment 
imposes considerable challenges and tremendous pressure 
on clinicians every day, which seriously affects their work 
efficiency. The development of an intelligent diagnostic model 
that can assist in the diagnosis of clinical diseases would 
greatly reduce the burden on clinicians, which improves not 
only their efficiency but also the best treatment provision to 
patients. 
By combining CFPs with a DL algorithm, Chen et al[37] 
constructed the Inception-v3 and DeepLab-v3 models and 
applied them to RVO screening and lesion segmentation. The 
Inception-v3 model had a sensitivity, specificity, F1-score, 
and AUC of 0.93, 0.99, 0.95, and 0.99, respectively, whereas 
the sensitivity, specificity, and AUC of the DeepLabure v3 
model were 0.74, 0.97, and 0.83. Abitbol et al[38], in order 
to distinguish healthy eyes from those with RVO and other 
fundus diseases, developed an AI model using a DL algorithm 
and ultra-wide CFPs. After many rounds of verification, the 
accuracy and AUC of their model for the diagnosis of RVO 
reached 0.884 and 0.912. Nagasato et al[39] constructed a 
BRVO-detection model using VGG-16 networks and CFPs. 
Their experimental results showed good BRVO diagnosis 
performance. The retinal nonperfusion area (RNP) exhibits 
one of the characteristic changes in RVO that has an important 
impact on the visual acuity of patients. Tang et al[40] developed 
a CNN model that can automatically segment the RNP on 
fluorescein angiography images to evaluate the ischemic state 
of RVO. The accuracy of their model stood at 0.883±0.166 
after several rounds of verification. Kang et al[41] likewise 
realized the intelligent diagnosis of RVO using a CNN. Their 
AI model had an AUC of 0.959 for diagnosing BRVO and 

one of 0.988 for diagnosing CRVO. These studies suggest 
that AI models based on DL algorithms have achieved many 
research results in the identification and diagnosis of RVO, 

Table 2 Diagnosis of different types of RVO using our Swin 

Transformer model
Parameters Accuracy Sensitivity Specificity Precision F1-Score
Normal 1.000 1.000 1.000 1.000 1.000
CRVO 0.978 0.955 0.986 0.955 0.955
BRVO 0.957 0.917 0.982 0.971 0.943
MRVO 0.978 1.000 0.976 0.800 0.887

RVO: Retinal vein occlusion; CRVO: Central retinal vein occlusion; BRVO: 

Branch retinal vein occlusion; MRVO: Macular retinal vein occlusion.

Figure 4 Calculation method of each performance index  TP: True 

positives; TN: True negatives; FP: False positives; FN: False negatives.

Figure 5 Diagnostic effect of the Swin Transformer model, illustrated 

by its confusion matrix  CRVO: Central retinal vein occlusion; BRVO: 

Branch retinal vein occlusion; MRVO: Macular retinal vein occlusion.

Figure 6 ROC curves for our Swin Transformer model diagnosing 

different types of RVO  ROC: Receiver operating characteristic; RVO: 

Retinal vein occlusion; CRVO: Central retinal vein occlusion; BRVO: 

Branch retinal vein occlusion; MRVO: Macular retinal vein occlusion.

AI-assisted RVO diagnosis



5

Int J Ophthalmol,    Vol. 17,    No. 1,  Jan. 18,  2024        www.ijo.cn
Tel: 8629-82245172     8629-82210956      Email: ijopress@163.com

demonstrating the great potential of AI models in clinical 
diagnosis and treatment in the future. In this study, we used 
a Swin Transformer to build an RVO diagnosis model that 
can distinguish between normal, CRVO, BRVO, and MRVO. 
Different from the previously published intelligent diagnosis 
study of RVO, our division of RVO into three subcategories 
and studied MRVO as a separate disease. This study therefore 
provides a more detailed classification of RVO, which will 
be helpful for clinicians to make accurate and effective 
treatment plans for their patients, according to the pathological 
characteristics and clinical manifestations of different RVO 
types. Finally, results show that the Swin Transformer model 
offers high accuracy in the diagnosis of different types of 
RVO, and that its diagnostic level is equivalent to that of 
ophthalmologists. Therefore, with the diagnostic advantages 
of the Swin Transformer model in different types of RVO, the 
model is very likely to be applied in clinical practice to assist 
clinicians in completing the clinical screening and diagnosis 
of RVO, providing great help to doctors, thereby reducing 
the work pressure of doctors , improve work efficiency and 
provide assistance in the treatment of RVO patients.
Although our diagnostic model shows good performance, this 
study has certain limitations. First, our datasets were relatively 
small, particularly the external testing dataset. Second, the 
quality of some CFPs in the dataset was poor, potentially due 
to the examination device, patients suffering from cataracts, 
vitreous hemorrhage, and other reasons resulting in some 
CFPs not being sufficiently clear. This might have affected 
our experimental results. Therefore, in future research, larger 
datasets should be used to improve image quality and thereby 
ensure experimental accuracy and effectiveness.
In conclusion, in this study, we built an RVO diagnosis model 
based on the Swin Transformer to realize the intelligent 
classification and diagnosis of normal, CRVO, BRVO, and 
MRVO CFPs, which can be used to diagnose RVO. The 
diagnostic performance of our model was highly consistent 
with that of expert ophthalmologists. Our model can thus 
effectively complete the task of diagnosing RVO, which 
can not only help solve the problem of shortages of medical 
resources in underdeveloped areas but also effectively 
alleviates the pressure imposed on clinicians to provide better 
treatment to patients. In addition, unlike most earlier research, 
we studies MRVO as a separate disease, in view of its 
characteristics and prognosis that differ from those of CRVO 
and BRVO, thereby achieving a more accurate diagnosis of 
RVO. Based on the experimental results of this study and 
current rapid developments in AI technology, we believe that 
AI can be fully applied in the process of clinical diagnosis and 
treatment in the near future to better assist clinicians.
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