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Abstract
● AIM: To investigate the impacts of angiotensin II (Ang II) 
on retinal artery changes in apolipoprotein E deficient 
(apoE -/-) mice.
● METHODS: ApoE -/- male mice were infused by minipumps 
with Ang II at 1000 ng/kg·min (Ang II group) or saline 
(control group) for 28d. They were underwent ophthalmic 
fundus examination on day 0, 14, and 28 of infusion. 
Histopathologic examination, ribonucleic acid (RNA) 
sequencing and local Ang II measurement of retinas were 
conducted.
● RESULTS: Ophthalmic fundus examination showed 
Ang II infusion promoted the formation of retinal arterial 
aneurysm-like lesions on day 28. Optical coherence 
tomography revealed the ganglion cell and inner plexiform 
layer (GCIPL) thickness in the control group was significantly 
thinner than that in Ang II group (P<0.001). Hematoxylin-
eosin staining demonstrated dif fused swell ing of 
GCIPL layer and its disordered structure in Ang II group. 
Transmission electron microscopy showed Ang II infusion 
caused aggravation of atherosclerotic lesions, including 
increased swelling, roughness, disorganization of the retinal 
vasculature, and vacuoles formation. RNA-sequencing 
and gene ontology enrichment analysis demonstrated that 
the structure and function of cellular membrane might be 
disturbed and visual function might be compromised by Ang 
II. The local level of Ang II was higher in Ang II infusion group 

but did not show significant differences compared to the 
control group (P=0.086).
● CONCLUSION: Ang II infusion promotes the formation 
of retinal arterial aneurysm-like lesions in apoE -/- mice, 
causing aggravation of atherosclerotic lesions, more severe 
disorganization of the retinal vasculature and disturbance of 
the cellular membrane.
● KEYWORDS: angiotensin II; retinal artery; aneurysm; 
apoE -/- mice
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INTRODUCTION

R etinal arterial macroaneurysm (RAM) is an acquired 
pathological condition characterized by saccular or 

fusiform dilatation of a retinal artery, relatively common in 
elderly females with systemic hypertension and arteriosclerotic 
vascular changes[1-2]. 
RAM is usually asymptomatic and resolves spontaneously 
in most cases. However, when hemorrhage and/or exudation 
affect the macula, severe vision loss occurs despite aggressive 
treatments including photocoagulation, vitrectomy, or anti-
vascular endothelial growth factor intravitreal injections[3-5]. 
The main pathophysiology of RAM involves weakness of the 
vascular wall owing to aging and arteriosclerosis, which makes 
it more susceptible to the increased hydrostatic pressure seen 
in hypertension, leading to the dilatation of a major retinal 
arteriole[6-8].
For several decades, the renin-angiotensin system (RAS) 
has been considered to be crucial in the pathogenesis of 
many types of vascular diseases, such as hypertension, 
aneurysms, and vascular injury[9-10]. The main effector peptide 
of the RAS, angiotensin II (Ang II) plays a critical role in 
facilitating cell proliferation, apoptosis, fibrosis, oxidative 
stress, and inflammation which contribute to the remodeling 
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of the vasculature[11-12]. It also promotes the development and 
progression of retinal vascular diseases without exception, 
presumably through local changes in blood flow and initiation 
of components of the inflammatory cascade to induce 
vascular damage[13-14]. Experimental studies have shown 
that the occurrence of RAM is associated with increased 
Ang II. Chen et al[15] found that infusion of Ang II induced 
aneurysm formation in the mouse retina, contributing to 
increased vascular permeability, thickening of ganglion cell 
and inner plexiform layer (GCIPL), and upregulation of 
interleukin-1β, platelet-derived growth factor receptor-β, 
and metalloproteinase-9 expression. However, the specific 
mechanism of how Ang II causes aneurysms remains elusive 
and needs further study.
Apolipoprotein E (apoE) that locates on chromosome 19 
encodes a secreted protein with canonical roles in lipid 
metabolism[16]. While apoE deficient (apoE-/-) mice may 
develop spontaneous hyperlipidemia and atherosclerosis on 
chow diet[17]. It is well known that chronic infusion of 
Ang II in the apoE-/- mice could induce the formation of 
typical abdominal aortic aneurysms (AAA)[18]. However, there 
has been no research focusing on the role of Ang II in retinal 
changes of apoE-/- mice. 
Therefore, the present study was designed to explore whether 
Ang II would be important in the development of dilatation 
of retinal blood vessels and other related changes of the retina 
in the Ang II-infused apoE-/- mouse model. Hopefully, it 
could provide clues or reference for further studies about the 
pathogenesis of RAM.
MATERIALS AND METHODS
Ethical Approval  All experimental procedures involving 
animals were approved by the Animal Care and Use 
Committee of Peking Union Medical College Hospital 
(approval number: XHDW-2020-009).
Animals  ApoE-/- mice with a C57BL/6J background and 
male gender were obtained from Charles River Laboratories 
(Beijing, China). Forty mice at 7mo of age were used in this 
study. All mice were maintained under barrier conditions 
with water and a normal laboratory diet available ad libitum. 
Infusion of Ang II  Infusion of saline or 1000 ng/min·kg 
of Ang II (Sigma, Missouri, USA) delivered for 28d was 
accomplished by implantation of Alzet osmotic minipumps 

(Model 2004; ALZA Scientific Products, California, USA) 
subcutaneously between two scapulae at the back. Ten mice in 
the control group were infused with saline, and the other 30 in 
the experimental group were infused with Ang II (Figure 1).
Determination of Body Weight and Blood Pressure  
Body weight and blood pressure were measured in all mice 
at the baseline (day 0) and on day 14 and 28 of infusion. 
A noninvasive tail-cuff system (MadLab-4C/5H, Beijing, 
China) was used to measure blood pressure. The mice were 
trained first to adapt to the device to ensure reproducible 
measurements. The blood pressure in each mouse was recorded 
as the average of three consecutive measurements.
Ophthalmic Examination and Images Evaluation  Mice 
were underwent ophthalmic fundus examination on day 0, 14, 
and 28 of infusion. They were anesthetized and their pupils 
were dilated before the examination. The fundus photographs 
were taken first using the MCOLOR mode of Confocal Retina 
Ophthalmoscope (Suzhou MicroClear Medical Instruments 
Co., Ltd, Jiangsu, China). Then the optical coherence 
tomography (OCT) images were obtained with a swept-source 
OCT device (VG200, SVision Imaging, Ltd., Luoyang, China). 
At last, 5% fluorescein sodium (50 μL/30 g) was injected 
intraperitoneally into mice and consecutive fundus fluorescein 
angiography (FFA) imaging was conducted immediately 
(Heidelberg Engineering, Heidelberg, Germany). Each mouse 
had both eyes examined. 
The images of these fundus examinations were evaluated by 
two independent ophthalmologists (Meng LH and Cheng SY) 
to assess the incidence of retinal aneurysms, vascular changes, 
and characteristics. The thickness GCIPL was measured by 
these two ophthalmologists of the central retina on day 28 of 
infusion. The whole process of evaluation was blinded to the 
study groups.
Histopathology  The whole eyes were fixed with 4% 
paraformaldehyde and embedded in paraffin. Then 3- to 
4-µm histological sections along the cornea-optic nerve axis 
were cut and stained with hematoxylin-eosin (H&E). The 
histological slides were coded for blind assessment by two 
ophthalmologists independently.
Transmission Electron Microscopy  After the eyes were 
enucleated, the cornea was perforated using a needle to create 
a small hole. The eyes were fixed with 2.5% glutaraldehyde 

Figure 1 The diagram of the angiotensin II (Ang II)/saline infusion system  Sustained-release of saline or 1000 ng/min·kg of Ang II for 28d was 

accomplished by implantation of minipumps subcutaneously between two scapulae at the back.
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in 0.1 mol/L cacodylate buffer (pH 7.4). Subsequently, the 
eyes were post-fixed in 1% OsO4 for 1h and were then stained 
with uranyl acetate and resin-embedded. Then eye blocks 
were sectioned into 90 nm ultra-thin sections and imaged 
under JEM-1400 electron microscope at 80 kV (JEOL, Japan). 
The ultrastructure of retinal arteries was assessed by two 
independent ophthalmologists.
RNA Extraction and Sequencing  The whole mouse retinas 
were harvested from freshly enucleated eyes and immediately 
frozen in liquid nitrogen. Then the samples were stored at 
-80℃ until ribonucleic acid (RNA) extraction using the 
RNeasy kit from Qiagen (Qiagen, Hilden, Germany). Total 
amounts and integrity of RNA were assessed using the RNA 
Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent 
Technol) before sequencing. 
Next, complementary DNA libraries were constructed 
and quantified by Qubit2.0 Fluorometer and Agilent 2100 
bioanalyzer to ensure their quality. Then the library was 
sequenced on the NovaSeq 6000 System with the basic 
principle of Sequencing by Synthesis, generating 100-bp 
paired-end reads. Data was provided in FASTQ format.
For statistical analysis, the clean data were obtained by 
removing reads that contained adapter, N base and low-
quality reads from raw data. All the subsequent analyses were 
based on clean data with high quality. The RNA sequencing 
(RNA-seq) reads were mapped on the mouse reference 
genome (GRCm38) using the program Hisat2 (v 2.0.5). Then 
the reads numbers mapped to each gene were counted by 
featureCounts (v 1.5.0-p3). Differential expression analysis 
of two groups was performed using the DESeq2 R package 
(1.20.0). For the continuation of subsequent analyses, P≤0.05 
and |log2(foldchange)|≥0.0 were set as the threshold for 
significantly differential expression. Gene ontology (GO) 
enrichment analysis of differentially expressed genes (DEGs) 
was implemented by the clusterProfiler R package (3.8.1). 
P≤0.05 were considered statistically significant.
Enzyme-linked Immunoabsorbent Assay  The eyeballs were 
quickly extracted after the mice were killed. The whole mouse 
retinas were gently isolated and stored in the -80℃ refrigerator 
until protein extraction. The retinas were homogenized under 
liquid nitrogen in RIPA Lysis Buffer (Servicebio) which 
contained 100 mmol phenylmethylsulphonyl fluoride. Then 
samples were sonicated on ice for 20min and then centrifuged 
at 6000 g for 10min. The supernatants were collected and 
placed on a 48-well plate. The concentrations of Ang II 
were measured using the mouse (Ang ІІ) enzyme-linked 
immunoabsorbent assay (ELISA) kit (#DRE30154, Daucell 
Biotechnology Co., Ltd).
Statistical Analysis  Other statistical analyses except 
sequencing data was conducted with SPSS software version 

22.0 (IBM-SPSS, Chicago, IL, USA). Data were presented 
as mean±SD. The Student’s t-test or Mann-Whitney test was 
performed to compare two sample groups. A P value <0.05 
was considered statistically significant. 
RESULTS
Body Weight and Blood Pressure Changes  The weight 
and blood pressure was monitored on day 0, 14 and 28. As is 
shown in Table 1, the body weight gradually increased during 
the experiment period but did not have significant differences 
between the two groups. While the infusion of Ang II caused a 
significant increase in systolic blood pressure compared with 
the control group and baseline value. 
Retinal Arterial Aneurysm-like Lesions in apoE-/- Mice 
Induced by Ang II Infusion  Vascular beading indicates 
alternating areas of constriction in the retinal arteries that 
appear on the FFA with a repeating pattern of bulging then 
narrowing. In our study, we found that Ang II infusion could 
lead to retinal arterial beading in apoE-/- mice (Figure 2), 
whereas nothing occurred in mice infused with saline (Figure 3). 
In total, 10% (3/30) of apoE-/- mice with Ang II infusion 
developed retinal arterial beadings at day 28. Noteworthy, all 
of these beads occurred along the major arterial trunks and 
they became prominent after day 14. The beads were detected 
by FFA, while color fundus photography and OCT did not 
show obvious signs. And no obvious vascular leakage was 
detected during the FFA examination.
Changes of GCIPL Induced by Ang II Infusion  Besides, 
we observed that the thickness of GCIPL was significantly 
increased by Ang II infusion compared with the control group 
on OCT images (Figure 4A, 4C, and 4E). The thickness 
of GCIPL had no significant difference on day 0 between 
control group (64.35±1.33 μm, n=10) and Ang II group 
(65.31±1.74 μm, n=30). While it was significantly thinner 
in control group than that in Ang II group on day 14 
(65.27±2.31 μm, n=10 vs 71.42±0.87 μm, n=30, P<0.001) 
and day 28 (65.41±2.03 μm, n=10 vs 79.33±2.233 μm, n=30, 
P<0.001). Histological examination demonstrated diffused 
swelling of GCIPL layer and its disordered structure in Ang II 
infusion group (Figure 4B and 4D). 
Ultrastructure Abnormalities  As shown in Figure 5, 
TEM images revealed Ang II infusion caused aggravation of 

Table 1 The changes of body weight and blood pressure in Ang II 

infusion group and control group during 28d
Group Baseline 14d 28d
Body weight

Control 29.35±1.27 29.67±2.32 30.43±1.54
Ang II 30.15±1.29 30.46±1.49 30.56±0.47

Blood pressure
Control 81.49±1.29 82.82±0.31 82.4±0.51
Ang II 80.32±1.92 114.62±4.15a,b 121.49±6.78 a,b

aP<0.05 vs baseline; bP<0.05 vs control. Ang II: Angiotensin II.
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atherosclerotic lesion of the apoE-/- mice. In Ang II group, the 
retinal vascular wall became much more swelling and the inner 
surface of the vessels increased the roughness and irregularity. 
The basement membrane became thickening and disordered. 
And there was formation of many vacuoles around the vessels.

Differential Retinal Gene Expression Induced by Ang II 
Infusion  RNA-seq was conducted to identify DEGs between 
Ang II and control groups. The raw sequencing data can be 
found in GEO database (GSE206970). In total, 4 samples in 
Ang II group and 3 samples in control group were analyzed. A 

Figure 2 The retinal arterial aneurysm-like lesion (red arrows) in apolipoprotein E-deficient mice with Angiotensin II infusion  A: Fundus 

photograph on day 14; B: Fundus photograph on day 28; C, E: Fluorescein angiography on day 14; D, F: Fluorescein angiography on day 28.

Figure 3 Ophthalmic fundus examination of control group  A: Fundus photograph on day 0; B: Fluorescein angiography examination on day 14; 

C: Fluorescein angiography examination on day 28.

Figure 4 Optical coherence tomography (OCT) and histologic examination of retina on day 28  A: OCT examination of the control group on 

day 28; B: Hematoxylin-eosin (H&E) stained sections of the retina in the control group; C: OCT examination of the angiotensin II (Ang II) infusion 

group on day 28; D: H&E stained sections of the retina in the Ang II infusion group demonstrated disorganized ganglion cell and inner plexiform layer 

(GCIPL); E: The GCIPL thickness in control group was significantly thinner than that in Ang II group on day 14 (P<0.001) and day 28 (P<0.001). 

GCL: Ganglion cell layer; IPL: Inner plexiform layer; OPL: Outer plexiform layer; ONL: Outer nuclear layer; IS/OS: Inner segment/outer segment.

Figure 5 Ultrastructure of the retina on day 28  Transmission electron microscopy demonstrated the swelling retinal vascular wall (red arrow), 

the roughness of the inner surface (yellow arrow), the thickened and disordered basement membrane as well as formation of many vacuoles around 

the vessels (white arrow) in angiotensin II (Ang II) infusion group (C-F) compared to control group (A, B). Scale bars: 1 μm (A, C, D, E, F); 500 nm (B).
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total of 962 DEGs (P≤0.05 and |log2(foldchange)|≥0.0) were 
acquired, including 645 significantly upregulated DEGs and 
317 significantly downregulated DEGs. The top ten DEGs 
which were significantly upregulated by Ang II infusion were 
Tyr, Gm44250, Slc39a12, Slc22a8, Entpd4b, Slc4a5, Tbc1d1, 
Flvcr2, Wls and Apold1. And the downregulated were Ier2, 
Ckmt1, Gm3756, Vcp-rs, Egr1, Gm10154, Igfbp3, Hspd1-ps3, 
Slco4a1 and Gm9826.
Functional Enrichment Analyses of DEGs  GO enrichment 
analysis was performed to explore the functional characteristics 
of the DEGs. The results suggested that in upregulated DEGs, 
the top three GO terms that were most significantly enriched 
in Biological Process (BP) were “anion transport”, “organic 
anion transport”, and “camera-type eye development”. For 
Cellular Components (CC), the top three were “basolateral 
plasma membrane”, “extracellular matrix”, and “basement 
membrane”. And for Molecular Function (MF), they were 
“secondary active transmembrane transporter activity”, 
“symporter activity”, and “cytokine binding” (Figure 6A). 
In downregulated genes, the top three GO terms in BP were 
“visual perception”, “sensory perception of light stimulus”, and 
“purine ribonucleoside monophosphate metabolic process”. For 
CC, the top three terms were “photoreceptor outer segment”, 
“photoreceptor cell cilium”, and “9+0 non-motile cilium”. And 
for MF, they were “3’,5’-cyclic-nucleotide phosphodiesterase 
activity”, “cyclic-nucleotide phosphodiesterase activity”, and 
“3’,5’-cyclic-GMP phosphodiesterase activity” (Figure 6B). 
The GO enrichment dot plots of the significantly upregulated 
genes and the downregulated genes were shown in Figure 6C 
and 6D.
Levels of Ang II in the Retina  To evaluate the effect of 
systemic Ang II infusion on the local level of Ang II in retinas, 
we performed ELISA to detect its exact concentration in Ang 
II group and control group. As is demonstrated in Figure 7, the 
mean level of Ang II in control group (43.17±41.34 ng/L, n=5) 
was lower than that in Ang II group (82.84±18.39 ng/L, n=5) 
but the difference was not statistically significant (P=0.086). 
DISCUSSION
This study aimed to establish whether an infusion of Ang II is 
associated with retinal aneurysm formation. All experiments 
were performed in apoE-/- mice that presented hyperlipidemia 
when a normal diet was fed. Seven-month-old age mice were 
chosen since the previous study found that the development of 
aortic aneurysm lesions was most prominent at this time[17]. We 
hypothesized that hyperlipidemia in apoE-/- mice could cause 
atherosclerosis, which increases the rate of retinal aneurysm 
formation. However, the result showed that only 10% of mice 
eventually developed arterial bead-like changes and no definite 
retinal aneurysm formation was observed. Hyperlipidemia 
is not a necessary factor for RAM formation since it was 

also successfully induced in wild-type C57BL/6 mice with 
normal lipid metabolism[15]. Another possible cause is that 
the formation of RAMs may be longer in a hyperlipidemic 
state, as we only found bead-like changes after 28d of Ang II 
infusion, rather than typical aneurysm manifestations. Further 
studies are needed to investigate whether apoE-/- and wild-
type C57BL/6 mice affect the incidence, the size and the shape 
of RAMs. 
Ang II is a potent hypertensive agent, and 73% of patients 
with retinal aneurysms were reported to be accompanied by 
hypertension[1]. Our report showed a sustained increase in 
arterial blood pressure over 28d of Ang II infusion which was 
more pronounced in the first 14d than in the last 14d. However, 
this is in contrast to past studies in which the results of 
Daugherty et al[19] showed that Ang II infusion of anesthetized 
mice caused no significant change in systolic blood pressure 
compared with vehicle-infused controls. It is presumed 
that effects including elastin degradation and macrophage 
accumulation of Ang II would occur independently of 
elevations in blood pressure[20]. Studies of cerebral aneurysms 
have shown that more than 50% of aneurysms ruptures are 
associated with transient hypertension, emphasizing the 
significance of mechanical events and indicating that such 
events may play a part in RAM. Cassis et al[21] found that 
mean arterial pressure increased to a similar extent in 
apoE-/- mice infused with Ang II or norepinephrine and that 
50% of the Ang II-infused group developed AAA. In addition, 
hydralazine administration to the Ang II-infused group reduced 
systolic blood pressure without preventing AAA formation of 
atherosclerosis, suggesting that aneurysms formation induced 
by Ang II infusion is independent of the elevated blood 
pressure. Taken together, the role of hypertension in aneurysm 
formation remains to be explored, and it can be suggested 
that the elevated hemodynamic effect acts on the structurally 
abnormal vessels caused by Ang II, indirectly leading to the 
development of RAMs.
FFA is one of the most important diagnostic criteria for patients 
with RAMs. FFA of fusiform RAMs demonstrates rapid 
filling in the early arterial phase, while saccular RAMs show 
complete filling in the middle to late phases. The fluorescence 
of RAMs is generally irregular inhomogeneous filling, 
which is possibly related to clot formation or endothelial 
cell proliferation[22]. Our results showed significant arterial 
bead-like changes which became apparent over time without 
vascular leakage. The changes most commonly arise on the 
first or second order of the arterial tree, where the perfusion 
pressure is higher and thus causing the weak stretched vessels 
to relatively easily perforated. No significantly morphologic 
changes were found in fundus color photography and OCT. 
This study observed the segmental changes in arteries, which 
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is similar to the histopathologic findings in human RAMs in 
which many aneurysms of varying sizes are present along the 
retinal arteries morphologically[23].
Ang II-induced vascular abnormalities are well demonstrated. 
We have noticed thickening of the GCIPL through OCT 
measurement and H&E staining, hypothesizing a diffuse 
swelling as an early sign of Ang II-induced mice. The 
possible pathway of GCIPL thickening might be through 
the vasculature, that is, the development of leaking vessels 

and diffuse edema. Wang et al[24] found an increase in retinal 
vascular permeability and arteriolar tortuosity in Ang II-
infused wild-type mice, which caused central retina thickening, 
especially in the inner plexiform layer and inner nuclear layer. 
Histopathological studies revealed thickened vessel walls with 
hyaline, fibrin, and foamy macrophages in the RAM area. 
Aneurysms developed progressively from wall thickening to 
hemorrhagic aneurysms with linear division of the vessel wall, 
which elucidate the well-accepted clinical course of RAM[23]. 

Figure 6 Functional enrichment analysis of DEGs  A: GO enrichment analysis histogram of the significantly upregulated DEGs; B: GO enrichment 

analysis histogram of the significantly downregulated DEGs; C: GO enrichment dot plot of the significantly upregulated DEGs; D: GO enrichment 

dot plot of the significantly downregulated DEGs. BP: Biological Process; CC: Cellular Components; MF: Molecular Function; DEG: Differentially 

expressed gene; GO: Gene ontology.
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Ang II infusion was found to cause vascular inflammasome 
activation, leading to endothelial dysfunction and vascular 
remodeling through ex vivo and in vitro experiments[25]. 
Perumal et al[26] found that exogenous Ang II administration 
significantly induces dynamics of proteins implicated in actin 
cytoskeleton-mediated remodeling of the ophthalmic artery. 
Our results also showed that Ang II significantly leads to 
the vascular pathological structural features, including the 
degeneration of vascular wall and disruption of endothelial 
cells, as well as basement membrane structures, resulting 
in segmental weakness of the vessel wall. Despite the well-
characterized vascular injury induced by Ang II, many 
unresolved issues exist in the mechanisms involved.
The underlying mechanisms of Ang II infusion promoting 
retinal aneurysm-like lesions formation in apoE-/- mice are 
not well understood. To explore the mechanisms behind it, 
we conducted the RNA-seq and GO enrichment analysis to 
identify the DEGs and biological function enrichment genes. 
Our results showed that “anion transport”, “basolateral plasma 
membrane” and “secondary active transmembrane transporter 
activity” represented significant GO terms for the upregulated 
DEGs in aspects of BP, CC, and MF respectively. In the 
literature, there has been some direct and indirect evidence 
related to the changes in the above functions caused by 
Ang II. It has been reported that Ang II receptor antagonists 
had a potent inhibitory effect on the urate/anion transport 
in the human renal proximal tubule[27]. In the myocardium, 
researchers found Ang II could activate protein kinase C 
and increase anion exchange activity, contributing to the 
development of cardiac hypertrophy[28]. The epithelial cell 

lines from the proximal tubule of kidney showed that Na/H 
exchanger activity is regulated by Ang II[29]. As for the down-
regulated DEGs, “visual perception”, “photoreceptor outer 
segment” and “3’,5’-cyclic-nucleotide phosphodiesterase 
activity” represented significant GO terms in aspects of BP, CC 
and MF respectively. These terms have a close relationship to 
visual function, which suggested that the visual function might 
be impaired due to Ang II. In fact, RAS plays an important 
role in visual function from various aspects[30-32]. Researchers 
have found that RAS could promote age-related macular 
degeneration in mouse models and angiotensin II type 1 
receptor (AT1R) blocker could reversed the retinal pigmented 
epithelial cell condition and visual function[30]. AT1R blockade 
might prevent light-induced retinal neural tissue damage[33]. 
In retinal inflammation, retinal protein expression and visual 
function are disturbed. It was reported that AT1R blocker 
demonstrated neuroprotective effects and prevented these 
signs through the reduction of local Ang II expression[34]. Our 
results were consistent with these findings and hinted that 
the structure and dynamic changes of cellular membrane and 
visual function test like electroretinogram might be the future 
research directions.
In addition, we measured the Ang II concentrations in the 
retina. The results showed that the Ang II level in Ang II 
infusion group was higher than that in control group but there 
was no statistically significant difference between the two 
groups. Due to the small sample size, we could not discard 
one of the data which appeared probably abnormal. Besides, 
according to the reference by Senanayake et al[35], in human 
retinas, Ang II levels had a wider range compared with the 
vitreous, ranging from 1 to 329 pg/mL and 5 to 367 pg/mL in non-
diabetic and diabetic samples, respectively. We hypothesized 
the mice might have the same condition. Further research 
will be conducted to validate this with larger sample size. We 
deduced that his phenomenon might be due to the following 
reasons. On the one hand, systemic Ang II infusion had an 
impact on its local concentration in the retina. The elevated 
Ang II caused retinal arterial changes and aneurysm-like lesion 
formation in apoE-/- mice. On the other hand, the local RAS 
system might be disturbed by the systemic infusion of Ang II. 
It has been reported that the components of RAS, such as renin 
and angiotensin-converting enzyme, whose messenger RNA 
and protein were found both in the retinal pigmented epithelial 
cell and neural retina of the eye[36]. And some researchers 
found that the existence of local production of angiotensin 
peptides because ocular angiotensin concentrations were too 
high to be caused by blood-borne peptides[37]. Since we could 
not distinguish the source of Ang II, we hypothesized that the 
endogenous Ang II production might be slightly compromised 
by the exogenous Ang II. Further studies about the relationship 

Figure 7 The mean level of angiotensin II (Ang II) in control group 

(n=5) was lower than that in Ang II group (n=5) but the difference 

was not significant (P=0.086).
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between endogenous and exogenous Ang II were needed.
There were some limitations in this study. First, we focused on 
the effects of Ang II infusion on the retina, while we did not 
observe the changes in other organs at the same time. Since the 
model we used was mature in AAA formation, further studies 
could investigate whether there were potential associations 
between AAA and retinal changes. Second, the local changes 
of ocular Ang II might be better to explore its specific role than 
systemic infusion. Intravitreal or subretinal injection of Ang 
II could be considered as a tool to make local changes to RAS 
components. Third, a treatment group, like using an AT1R 
blocker, might be needed to further confirm the role of Ang II 
in aneurysm-like lesion formation. Besides, the differences of 
RAM formation between apoE-/- mice and wild type mice 
and investigating the role of hyperlipidemia are interesting 
points to study in the future. 
In conclusion, this study investigated the impacts of Ang 
II infusion on the retina in apoE-/- mice. We demonstrated 
that Ang II infusion induced the formation of retinal arterial 
aneurysm-like lesions and aggravated atherosclerotic lesion 
of retinal vessels in apoE-/- mice. Structures and function 
of cellular membrane might be disturbed and visual function 
might be impaired by Ang II. Further studies about how Ang II 
exerts its effects are needed.
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