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Abstract
● AIM: To invest igate the stabi l i ty  of  the seven 
housekeeping genes: beta-actin (ActB), glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), 18s ribosomal 
unit 5 (18s), cyclophilin A (CycA), hypoxanthine-guanine 
phosphoribosyl transferase (HPRT), ribosomal protein large 
P0 (36B4) and terminal uridylyl transferase 1 (U6) in the 
diabetic retinal tissue of rat model. 
● METHODS: The expression of these seven genes in rat 
retinal tissues was determined using real-time quantitative 
reverse transcription polymerase chain reaction (RT-qPCR) 
in two groups; normal control rats and streptozotocin-
induced diabetic rats. The stability analysis of gene 
expression was investigated using geNorm, NormFinder, 
BestKeeper, and comparative delta-Ct (ΔCt) algorithms.

● RESULTS: The 36B4 gene was stably expressed in the 
retinal tissues of normal control animals; however, it was 
less stable in diabetic retinas. The 18s gene was expressed 
consistently in both normal control and diabetic rats’ retinal 
tissue. That this gene was the best reference for data 
normalisation in RT-qPCR studies that used the retinal 
tissue of streptozotocin-induced diabetic rats. Furthermore, 
there was no ideal gene stably expressed for use in all 
experimental settings.
● CONCLUSION: Identifying relevant genes is a need 
for achieving RT-qPCR validity and reliability and must be 
appropriately achieved based on a specific experimental 
setting.
● KEYWORDS: housekeeping genes stability; real-time 
reverse transcription polymerase chain reaction; retinal 
tissue; streptozotocin-induced diabetic rats
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INTRODUCTION

R eal-time quantitative reverse transcription polymerase 
chain reaction (RT-qPCR) measurement of transcript 

abundance has become the method of choice for high-
throughput and accurate expression monitoring of chosen genes 
due to its high sensitivity, specificity, and broad quantification 
range[1-3]. This approach is most often employed for molecular 
diagnostics, verifying microarray data of a narrower collection 
of genes and is especially beneficial when just a limited 
number of cells or tissue samples are available[2,4]. The 
expression of the gene of interest (GOI) is compared to that of 
an internal control gene known as a housekeeping gene (HKG) 
to obtain quantification. The use of this HKG to normalise the 
mRNA fraction is the gold standard since it is not expected to 
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vary under the test conditions[2,5-6]. Before choosing a suitable 
HKG, a comprehensive evaluation is required to ensure the 
appropriateness and adequacy of choice[7-9]. Since expression 
of GOI is normalized to HKG[10-11], its improper selection may 
lead to an invalid interpretation[12]. Therefore, choosing the 
most relevant and more than one HKG in a weighted expression 
index is expected to address this problem[13].
Incorrect data normalisation and hence misinterpretation 
remain the most serious issues in RT-qPCR[14-15]. Various 
methods have been used to assure the validity and reliability 
of gene expression data[16-18] and one of the most important 
factors in RT-qPCR is the selection of the right normalisation 
approach[19]. The synchronised assessment of endogenous HKG 
is often regarded as the most helpful and relevant method for 
normalising target genes[20-22]. However, it is known that there 
is significant variation in gene expression of regularly used 
HKG and this introduces baseline noise to the corresponding 
data resulting in inaccurate measurement of the expression 
of GOI[23]. This also resulted in attempts to adjust for the 
instability by employing sets of control genes and statistical 
techniques to calculate normalisation factors[24]. The most 
widely employed HKGs utilized to measure the expression 
of various GOI in diabetic rat retinas are glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) and beta-actin (β-actin)[25]. 
Literature shows that many studies have used a single HKG for 
normalisation[26-27]. To some degree, the use of a single HKG is 
acceptable provided it has already been evaluated in identical 
experimental conditions and its expression has been accurately 
confirmed[28], yet, it has been recorded that this may result in a 
significant bias, as high as a 3- to 6-fold bias in 10%–25% of 
the examined data[29]. 
To support the usage of a single or multiple HKG, some 
algorithms were developed to recognise the difference 
in HKG stability. BestKeeper, NormFinder, geNorm and 
comparative delta-Ct (ΔCt) algorithms are among many 
that have been integrated and made publicly available in 
Excel-based applications[19,30-33]. Moreover, it also comes in 
recently built R-based software packages, which has resulted 
in an increase in HKG-related research globally[34]. These 
commonly used methods were combined into a single freely 
accessible web-based software, the RefFinder[35-38], allowing 
for a comprehensive review of the most stable HKG. So, 
the BestKeeper, GeNorm, NormFinder, and comparative 
ΔCt algorithms may be used to identify the most stable 
internal control genes, which use a measure of gene stability 
that is unaffected by gene abundance and does not need 
normalisation[39-41]. These software were developed and tested 
on a wide range of biological materials in order to discover the 
most stably expressed HKG that uses raw Cq values as input 
rather than the specific PCR efficiency of different assays[42]. 

Despite the growing importance of RT-qPCR technology in 
recent years, few studies have been conducted to validate 
the stability of HKG for use as endogenous controls in 
ocular disorders[43-45], none of them, however, is unique to 
retinal or diabetic retinal tissue. As a result, identifying a 
stable expressed HKG has become a significant problem for 
precise normalisation procedures, particularly in the case of 
precious biopsies such as retinal tissue from the samples[45]. 
In this regard, molecular genetic analysis of a particular gene 
or biochemical marker is critical for discovering innovative 
therapeutics in ocular disorders like diabetic retinopathy (DR). 
Hence, we performed real-time RT-qPCR on RNA extracted 
from the retina of control and diabetic Sprague Dawley rats to 
quantify the expression of β-actin, GAPDH, 18s ribosomal unit 
5 (18s), ribosomal protein large P0 (36B4), terminal uridylyl 
transferase 1 (U6), cyclophilin A (CycA), and hypoxanthine-
guanine phosphoribosyltransferase (HPRT). These genes have 
been used as an endogenous control previously in retinal and 
non-retinal tissue of animals with a wide range of metabolic 
disorders[25,46-47]. 
MATERIALS AND METHODS
Ethical Approval  The study was carried out in accordance with 
the Association for Research in Vision and Ophthalmology 
(ARVO) statement for the use of animals for ophthalmic and 
vision research and animal ethics guidelines of Universiti 
Teknologi MARA (UiTM). The institutional committee for 
animal research granted ethics permission for this work, with 
approval number UiTM CARE 3/2019/ (286/2019).
Animals  Male Sprague Dawley  rats aged 8–12wk 
(200–250 g)[48] were obtained from UiTM. The animals were 
individually caged and housed in Laboratory Animal Care Unit 
(LACU), UiTM under standard laboratory conditions of 12-
hour light-dark cycle. The food and water were available ad 
libitum. All animals were subjected to general and ophthalmic 
examination. Those found to have no abnormalities were 
included in the study.
Animals were divided into two groups: healthy (normal 
control) rats (n=8) and streptozotocin-induced diabetic 
retinopathy (SIDR) rats (n=10). The number of rats included 
in the SIDR group was higher due to mortality associated with 
this model[48-50]. Blood glucose level was monitored weekly 
during the experimental period. After 12wk, animals were 
sacrificed with an intraperitoneal (IP) injection of sodium 
pentobarbital (0.14 mg/kg body weight)[51]. Eyeballs were 
enucleated, and retinas were preserved for subsequent RT-qPCR 
analysis.
Induction of Diabetes  To induce diabetes, rats (n=10) were 
fasted overnight and then were administered with IP injection 
of 2-deoxy-2-(3-methyl-3-nitrosoureido)-D-glucopyranose 
(Santa Cruz Biotechnology Inc., Texas, USA) streptozotocin 
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(STZ), dissolved in ice-cold sodium citrate buffer (10 mmol/L, 
pH 4.5) at a single dose of 55 mg/kg body weight[52]. Blood 
was collected from the tail vein, 48-hour post-STZ injection 
for blood glucose estimation using an Accu Chek Performa 
glucometer (Roche Diagnostic, Basel, CH). Rats with a blood 
glucose level of more than 20 mmol/L were included for 
further study[53]. The control group similarly received an IP 
injection of sodium citrate buffer.
RNA Isolation  Two retinas from the same rat were pooled 
together as one sample. Collected retinas were rinsed with 
ice-cold phosphate-buffered saline (PBS; 0.01 mol/L, pH 7.4) 
prior to being immersed in RNA stabilisation solution 
(RNAlater®) to prevent cellular RNA degradation. The 
extraction and purification of RNA were performed using the 
commercially available spin-column nucleic acid purification 
kit. RNA concentration was quantified using a micro-volume 
ultraviolet (UV)-Vis spectrophotometer. Samples with RNA 
concentrations of more than 40 ng/μL were considered suitable 
for DNA conversion. The machine measured the absorbance 
ratio at 260 nm and 280 nm (A260/A280), which provides 
an estimate of the purity of RNA for contaminants absorbed 
by the UV spectrum, such as proteins, ethanol or phenol 
contamination. Good quality RNA has an A260/A280 ratio of 
1.8 to 2.2.
cDNA Synthesis  The cDNA synthesis was performed using 
OneScript® Plus cDNA Synthesis Kit. The 1 µL of 10 mmol/L 
dNTP mix and 1 µL of 10 µmol/L random primers were added 
to extracted RNA samples. Nuclease-free water was added to 
the dNTP-primer-RNA mixture to a total volume of 14.5 µL.
The mixture was incubated at 65°C for 5min, followed by 
incubation on ice for 1min. A master mix containing 5×RT 
buffer, RNaseOFF Ribonuclease Inhibitor and OneScript 
RTase were then added. The mixture was then incubated at 
25°C for 10min, followed by a second incubation at 42°C for 
15min. The reaction was stopped by incubating the mixture 

at 85°C for 5min. The cDNA was then stored at -20°C until 
further use.
Primer pair specificity was verified with the Nucleotide 
Basic Local Alignment Search Tool (BLASTN), an online 
software tool used by the National Centre for Biotechnology 
Information (NCBI, USA), against the genome of rats (Table 1). 
All primers were supplied by Macrogen Inc., Gangnam-gu, 
Seoul, Republic of Korea. Stock concentrations were diluted to 
10 μmol/L before use.
RT-qPCR  The RT-qPCR was performed according to the 
manufacturer’s protocol[54]. cDNA templates and all the 
reaction mixture were prepared on the ice at 10 μL volume 
according to the manufacturer’s instructions (Cat. No.G270, 
abm, Richmond, Canada). The PCR cycling condition used 
was enzyme activation at 95°C for 20s, denaturation at 95°C 
for 3s with 40 cycles of amplification and annealing at 60°C 
for 30s with 40 cycles and a dissociation curve. PCR products 
were analysed for melting curves to verify their sensitivity 
and amplification specificity. Three independent biological 
replicates and two technical replicates were used for each HKG 
and GOI. A standard curve was obtained with a 4-fold dilution 
series (1:9 to 1:6561) for each gene to calculate PCR energy 
efficiency ranging from 90% to 110%. The cycle threshold 
(Ct) values were measured using Quantstudio 12K Real-Time 
System.
Statistical Analysis  Blood glucose level of control and 
diabetic rats were expressed as mean±standard deviation (SD). 
The statistical significance of differences between means was 
determined by the unpaired t-test and the distribution of t 
in a two-tailed test. P values less than 0.05 were considered 
significant.
For the stability analysis of the seven HKGs, geNorm[22], 
NormFinder[55], and BestKeeper[13] software were utilized. 
The comparative ΔCt method was also used to assess the 
stability of each HKG candidate. In concise, the algorithm 

Table 1 Primer design

Primer source NCBI reference ID Primer length Sequence Temperature (°C)

18s ribosomal unit 5 (18s) 100861533 21
20

GCCATGCATGTCTAAGTACGC
CCGTCGGCATGTATTAGCTC

57.1

Beta-actin (ActB) 81822 21
22

ATTGGCAATGAGCGGTTCCGC
CTCCTGCTTGCTGATCCACATC

60.0

Cyclophilin A (CycA) 25518 20
18

GGATTTGGCTATAAGGGTTC
GTTGTCCACAGTCGGAGA

60.0

Glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH)

24383 18
20

CCATGGAGAAGGCTGGGG
CAAAGTTGTCATGGATGACC

59.4

Hypoxanthine-guanine phosphoribosyl 
transferase (HPRT)

24465 19
24

GACCGGTTCTGTCATGTCG
ACCTGGTTCATCATCACTAATCAC

60.0

Ribosomal protein, large, P0 (36B4) 11837 20
20

GATCATCCAGCAGGTGTTTG 
CCAGTGGGAAGGTGTAGTCA

60.3

Terminal uridylyl transferase 1 (U6) 499314 17
20

CTCGCTTCGGCAGCACA
AACGCTTCACGAATTTGCGT

60.0

NCBI: National Center for Biotechnology Information.
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system by geNorm gives its calculation according to pairwise 
deviation (V-value) among all the analysed HKG to assess the 
stability estimate (M-Value), and greater stability represented 
by smaller M-value[22]. Whereas the NormFinde uses the 
Excel-based platform that measure the stability of gene’s Cq 
values by assessing their inter- and intra-group difference in 
expression values[55]. The algorithm of BestKeeper appraises 
stability measures with reference to an index numeracy derived 
from the SD and coefficient of variance (CV) among the 
expression[13]. Conclusively, a comparative evaluation platform, 
the RefFinder (https://www.heartcure.com.au/reffinder/#) was 
applied to assimilate the findings of each distinct algorithm 
system by providing the rank of the HKG stability according 
to their geometric mean (GM)[34].
RESULTS
Blood Glucose Level  In general, diabetic rats seemed weaker 
and thinner than normal control rats. During the experiment, 
SIDR group has mortality rate of 20% where two rats died, 
whereas there was no mortality in the normal control group. 
Hence, at the end of the experiment, there were 8 rats in the 
control group and 8 rats in the SIDR group (each n=8). The 
blood glucose level in diabetic rats remained significantly 
higher compared to control rats starting from 48h post-STZ 
injection until the end of the experimental period (P<0.001; 
Figure 1).
Sample RNA Quantity and Quality  RNA concentration was 
quantified after RNA extraction. RNA was quantified using 
micro-volume UV-Vis. This step is to ensure sufficient RNA 
was obtained to proceed with RT-qPCR. All samples in the 
current experiment contained sufficient RNA (higher than 
40 ng/μL) to proceed with cDNA conversion[50]. 
RNA quality was also assessed to confirm the purity of RNA 
prior to cDNA conversion. The sample absorbance at 260 nm 
and 280 nm was assessed by a similar device. A 260/280 ratio 
of approximately 2.0 is generally accepted as good-quality 
RNA. All samples showed an acceptable range of 260/280 
ratio (Table 2).
Expression Profile of the Candidate Reference Genes  The 
stability of mRNA expression for each of the 7 candidate 
reference genes in STZ-induced rat retinal tissues was 
analyzed through Ct values. Regarding expression level, only 
18s and ACTB were highly abundant with average Ct values 
range 15.98–17.04 and 16.80–18.31, respectively (Figure 2).
Other candidate reference genes (U6, HPRT, and 36B4) 
were expressed at a medium level, with average Ct values 
ranging from 24.78–28.76, whilst GAPDH and CycA showed 
considerably low levels of expression (mean Ct range: 30.36–
32.23 and 29.27–32.33 respectively). 
BestKeeper  For each HKG, the following descriptive 
statistics were computed: GM, arithmetic mean (AM), minimal 

(Min) and maximal (Max) value, SD, and CV (Table 3). All 
crossing point (CP) data from both groups were compared. 
Seven genes, each with n=8, were studied. Individual samples’ 
x-fold over- or under-expression towards the GM CP is 
calculated, and the multiple factors of their minimal and 
maximal values are expressed as the x-fold ratio and its SD.
After calculating the descriptive statistics for each HKG 
expression level, the first estimation of HKG expression 

Figure 1 Blood glucose level in control and SIDR rats (mean±SD, 

n=8)  Cn: Control; SIDR: Streptozotocin-induced diabetic rats.

Figure 2 Expression of reference gene candidates determined by 

raw threshold cycle (Ct) values in retinal samples from control and 

SIDR rats  The bars indicate the maximum and minimum values 

of the Cts (n=8). Cn: Rats received vehicle intraperitoneally; SIDR: 

Streptozotocin-induced diabetic rats.

Table 2 Nucleic acid concentration and A260/A280 of each sample

Sample 
No.

Nucleic acid conc. (ng/μL) A260/A280
Cn SIDR Cn SIDR

1 120.5 111.3 2.1 2.1
2 193.9 227.6 2.1 2.1
3 172.4 164.7 2.1 2.1
4 215.9 174.0 2.0 2.1
5 62.4 151.8 2.0 2.1
6 185.8 199.6 2.1 2.1
7 102.6 315.2 2.1 2.1
8 168.6 289.5 2.1 2.1

Cn: Rats received vehicle intraperitoneally; SIDR: Streptozotocin-

induced diabetic rats.
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stability could be made based on the inspection of calculated 
variations (SD and CV values). The BestKeeper Index specific 
to the sample is calculated as the GM of its candidate HKGs 
CP values from the genes considered stably expressed. 
Multiple pair-wise correlation analyses are performed to 
estimate the inter-gene relationships of all possible HKG pairs. 
The Pearson correlation coefficient (r) and the probability 
P-value are calculated for each such correlation (Table 4).
All the highly correlated HKGs are aggregated into an index. 
The correlation between each candidate HKG and the index is 
then calculated, with the Pearson correlation coefficient (r) and 

P-value describing the relationship between the index and the 
contributing candidate HKG (Table 4).
HKGs were placed in order from the most stably expressed, 
with the lowest variation, to the least stable, with the highest 
variation, based on the variability observed. Any studied gene 
with an SD greater than one (=starting template variation by 
factor 2) can be considered inconsistent. In this evaluation by 
BestKeeper, 36B4 demonstrated the highest stability in normal 
control whereas 18s had the highest stability in SIDR among 
all seven candidate genes. All seven genes did not exceed 
SD threshold value across both experimental groups and thus 

Table 3 CP data of housekeeping genes by BestKeeper                                                                                                                                                            n=8

No.
18s CycA 36B4 GAPDH HPRT ActB U6

Cn SIDR Cn SIDR Cn SIDR Cn SIDR Cn SIDR Cn SIDR Cn SIDR

Geometric mean (CP) 16.65 16.63 29.98 30.25 27.45 27.50 31.04 31.36 26.41 26.30 16.83 17.42 25.15 25.82

Arithmetic mean (CP) 16.65 16.54 29.99 30.28 27.45 27.51 31.05 31.36 26.41 26.30 16.88 17.43 25.18 25.83

Min (CP) 15.80 16.00 29.30 28.50 27.10 26.40 29.30 30.40 26.00 24.60 15.50 16.80 23.40 24.80

Max (CP) 17.10 17.00 30.90 32.30 27.90 28.80 31.80 32.20 26.80 27.00 19.80 18.30 26.30 26.80

SD (±CP) 0.26 0.29 0.41 0.97 0.25 0.54 0.57 0.40 0.29 0.43 0.99 0.36 0.88 0.38

CV (% CP) 1.58 1.74 1.38 3.20 0.91 1.98 1.85 1.27 1.09 1.62 5.89 2.04 3.50 1.48

Min (x-fold) -1.80 -1.45 -1.61 -3.37 -1.27 -2.15 -3.34 -1.94 -1.33 -1.62 -2.51 -1.54 -3.37 -2.03

Max (x-fold) 1.37 1.38 1.89 4.14 1.37 2.46 1.69 1.79 1.31 1.63 7.85 1.84 2.21 1.97

SD (±x-fold) 1.20 1.22 1.33 1.96 1.19 1.46 1.49 1.32 1.22 1.34 1.99 1.28 1.84 1.30

Descriptive statistics of seven candidate housekeeping genes based on their CP scores. n: Number of samples; CP: Crossing point; SD (±CP): 

Standard deviation of the CP; CV (%CP): Coefficient of variance expressed as a percentage on the CP level; Min (x-fold) and Max (x-fold): 

Extreme values of expression levels expressed as an absolute x-fold over- or under-regulation coefficient; SD (±x-fold): Standard deviation of the 

absolute regulation coefficients; Cn: Control; SIDR: Streptozotocin-induced diabetic rats; 18s: 18s ribosomal unit 5; CycA: Cyclophilin A; 36B4: 

Ribosomal protein large P0; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; HPRT: Hypoxanthine-guanine phosphoribosyl transferase; 

ActB: Beta-actin; U6: Terminal uridylyl transferase 1.

Table 4 Pair-wise correlation 

Parameters
18s CycA 36B4 GAPDH HPRT ActB U6

Control SIDR Control SIDR Control SIDR Control SIDR Control SIDR Control SIDR Control SIDR

CycA -0.472 0.084 - - - - - - - - - - - -

P 0.238 0.844 - - - - - - - - - - - -

36B4 -0.074 -0.023 0.837 0.949 - - - - - - - - - -

P 0.862 0.956 0.010 0.001 - - - - - - - - - -

GAPDH 0.789 0.038 -0.651 0.409 -0.226 0.457 - - - - - - - -

P 0.020 0.929 0.081 0.314 0.590 0.255 - - - - - - - -

HPRT 0.176 0.656 0.330 0.114 0.335 -0.049 -0.195 0.533 - - - - - -

P 0.676 0.078 0.425 0.788 0.418 0.908 0.643 0.174 - - - - - -

ActB -0.071 0.434 -0.155 0.245 -0.334 0.268 -0.425 -0.161 0.414 -0.046 - - - -

P 0.867 0.283 0.715 0.558 0.419 0.521 0.294 0.703 0.309 0.914 - - - -

U6 0.518 0.122 -0.487 -0.707 -0.031 -0.655 0.781 0.161 -0.209 0.427 -0.315 -0.195 - -

P 0.188 0.774 0.221 0.050 0.943 0.078 0.022 0.704 0.620 0.291 0.447 0.644 - -

BestKeeper vs
ar 0.602 0.553 0.001 0.751 0.001 0.715 0.323 0.604 0.499 0.569 0.577 0.497 0.468 0.001

P 0.114 0.155 0.400 0.032 0.893 0.046 0.435 0.113 0.208 0.141 0.134 0.210 0.243 0.655

aPearson correlation coefficient (r) by BestKeeper. SIDR: Streptozotocin-induced diabetic rats; 18s: 18s ribosomal unit 5; CycA: Cyclophilin 

A; 36B4: Ribosomal protein large P0; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; HPRT: Hypoxanthine-guanine phosphoribosyl 

transferase; ActB: Beta-actin; U6: Terminal uridylyl transferase 1.
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they were regarded as suitable for subsequent gene expression 
normalization (Figure 3). ActB and CycA were the least stable 
candidates in the control and SIDR groups, respectively, 
however, none crossed the 1 SD threshold value. Overall, 
using this analytical approach, 18s, CycA, 36B4, GAPDH, 
HPRT, ActB, and U6 remained stable in all sample sets.
geNorm  The geNorm algorithm evaluated the stability of 
reference genes based on expression stability value (M), as 
shown in Figure 3. All evaluated HKG had an M value below 
1.5 which is the recommended geNorm cutoff value for stable 
gene selection through RT-qPCR analysis. This result confirms 
that the candidate HKG was stable across retinal tissues from 
both normal control and SIDR rats. With the lowest M values 
(both 0.320), CycA and 36B4 were the most stably expressed 
genes among the normal control samples whereas 18s and 
HPRT (both 0.381) were the most stable genes in SIDR 
rats. Although overall gene candidates showed stability for 
subsequent gene analysis, ActB and CycA were the least stable 
genes with the highest M value for normal control and SIDR 
groups, respectively.
NormFinder  Based on the evaluation by NormFinder, the 
top five ranking stable HKG for normal control rats were 
HPRT>18s>36B4>CycA>GAPDH. For SIDR rats, the order 
was 18s>GAPDH>HPRT>ActB>36B4. As shown in Figure 3, 
NormFinder evaluation suggested that ActB was the least stable 
for control and CycA for SIDR. Moreover, U6, the second 
least stable gene in normal control rats, was in line with the 
geNorm, BestKeeper, and ΔCt output. Interestingly, in all these 
four algorithm results, 18s remains the best candidate gene 
and could be considered a stable gene in SIDR rats. Whereas 
U6 and ActB were the candidate genes that crossed 1 stability 
value in the normal control group similar to CycA in the SIDR 
group and they could be considered the least stable gene in this 
analysis.
Comparative Delta-Ct  According to the comparative ΔCt 
method, again, 18s was found to be the most stable and 
HPRT was the second most stable gene in both experimental 
groups. These results were very similar to SIDR group 
analysis by GeNorm but contrasted with results generated 
by the NormFinder and BestKeeper algorithms (Figure 3). 
Nevertheless, CycA was the most unstable gene across all 
tested algorithms in this experimental DR model.
Comprehensive Ranking Values  The stably expressing genes 
were ranked differently by the four distinct systems. Previous 
research has also shown this variation. As shown in Table 5 
and Figure 3, comprehensive analyses utilising four algorithms 
rated the tested genes from the most stable (lowest value) to 
least stable (highest value) based on the derived HKG stability 
measure. All geNorm, BestKeeper, NormFinder and ΔCt 
stability values were summarized together. For normal control 

rats, CycA, HPRT, 18s and 36B4 are the four genes that were 
found to have average to most stable expressions. For SIDR 

Figure 3 Gene stability as shown by BestKeeper, Genorm, NormFinder, 

and Delta-Ct  18s: 18s ribosomal unit 5; CycA: Cyclophilin A; 36B4: 

Ribosomal protein large P0; GAPDH: Glyceraldehyde-3-phosphate 

dehydrogenase; HPRT: Hypoxanthine-guanine phosphoribosyl 

transferase; ActB: Beta-actin; U6: Terminal uridylyl transferase 1.



800

rats, ActB, GAPDH, HPRT, and 18s showed the most stable 
expression. Overall, 36B4 (control) and 18s (SIDR) were the 
most stable genes in all the samples by RefFinder because they 
expressed the lowest Geomean of the ranking values.
DISCUSSION
DR is a metabolic disorder associated with high blood 
glucose[56-57], thus it would be logical to expect that the 
expression of several genes would be altered in diabetic 
animals[58]. To determine the appropriateness of the selection 
of specific HKG while determining the expression of GOI 
particularly in the diabetic rat retinas, we examined the 
expression of seven HKG widely described in the literature: 
GAPDH, β-actin, HPRT, 18s, 36B4, ActB and U6. We showed 
that 36B4 and 18s were stably expressed in the rat retina 
of the normal control and SIDR groups, respectively and 
were considered suitable for selection as HKG. U6 and ActB 
expressions were less stable. Expression of CycA incorporates 
a substantial percentage of processed pseudogenes, and 
pseudogene amplification may remain even when all steps 
were taken to reduce genomic DNA contamination[59], as was 
evident in the current study. Although 18s and 28s ribosomal 
RNA are known to have considerable variance in terms of the 
expression ratios of rRNA and mRNA[14], this study proved that 
this gene could be used for subsequent RT-qPCR to determine 
the expression of GOI. Moreover, 18s was not expressed 
to a far greater extent than are most other genes, making it 
relevant as HKG for various applications. Hyperglycaemia 
has a profound influence on gene expression[60-63]. With the 
exception of a relatively small number of hyperglycaemia-
induced genes, transcription is greatly altered under conditions 
of hyperglycaemia. Interestingly, many studies examining the 
effects of diabetes on gene expression have utilized GAPDH as 
a reference gene, even though its expression is upregulated by 
hyperglycaemia-induced oxidative stress[64-66]. Our findings in 
the SIDR group align with other recent research that revealed 
that 18s is extensively utilised for the standardisation of RT-
qPCR responses in a rat diabetes experimental paradigm[67-68]. 
Recent studies in diabetic rats’ foot lesions and muscle tissue 

have used 18s as a reference gene without its validation as 
the appropriate HKG. However, the appropriateness of the 
selection of HKG for each experimental set-up should be 
independently confirmed. Ahmad et al[69] employed both 18s 
and GAPDH as the reporter genes for measuring the anti-
inflammatory effects of a natural product in an STZ-induced 
mice model of DR. There is also another study that used 18s as 
the HKG, especially in STZ-induced DR rats[70-72], mice[73-76], 
and cells[76-78]. 
In any application of RT-qPCR experimentation, it is 
recommended that data should be normalised with at least two 
HKG which should be verified before choosing them[79]. This 
is important to avoid any misinterpretation of the expression 
analysis, regardless of the application[29]. Constitutively 
expressed genes associated with housekeeping or structural 
activities are typically employed as HKG because they 
are expressed across numerous cell and tissue types and 
exhibit minimal variation among samples or experimental 
circumstances[80]. Previous studies have employed GAPDH 
for normalisation of responses in type 1 or type 2 diabetic 
mice without mentioning the previous validation methods, 
which may under- or overestimate target gene expression. 
Since DR pathology can results in hypoxia due to abnormal 
vascularization, HKG selected in this study can be related to its 
stability against a low oxygen tension environment. However, 
the stability expression of HKG among retinopathy or hypoxic 
experimental models is very limited. For the cardiac tissue of 
rats exposed to intermittent hypoxia, GAPDH was the most 
stable gene, followed by ActB. According to Moein et al[81], 
these genes can be stable when fibrotic lesions occur. This 
could be due to its ability to generate cross-reactions of the 
expression of the different actin isoforms, influencing its gene 
expression. Despite the fact that the ActB is also frequently 
employed as an HKG for RT-qPCR in rodent models, its 
stability varies[82]. Previously, Zhong and Kowluru[83] have used 
both ActB and 18s as HKG for metabolic memory research, 
whereas Elsherbiny et al[84] used GAPDH and 18s. However, 
as compared to the other HKGs, this ActB candidate was not 

Table 5 Ranking order of gene expression stability

Method
1st 2nd 3rd 4th 5th 6th 7th

Control SIDR Control SIDR Control SIDR Control SIDR Control SIDR Control SIDR Control SIDR

Delta-Ct 18s 18s HPRT HPRT 36B4 GAPDH CycA ActB GAPDH 36B4 U6 U6 ActB CycA

BestKeeper 36B4 18s 18s ActB HPRT U6 CycA GAPDH GAPDH HPRT U6 36B4 ActB CycA

NormFinder HPRT 18s 18s GAPDH 36B4 HPRT CycA ActB GAPDH 36B4 U6 U6 ActB CycA

geNorm CycA/36B4 18s/HPRT - - HPRT GAPDH 18s U6 GAPDH ActB U6 36B4 ActB CycA
Recommended comprehensive 
ranking 36B4 18s 18s HPRT HPRT GAPDH CycA ActB GAPDH U6 U6 36B4 ActB CycA

Ranking order (better-good-average). SIDR: Streptozotocin-induced diabetic rats; 18s: 18s ribosomal unit 5; CycA: Cyclophilin A; 36B4: 

Ribosomal protein large P0; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; HPRT: Hypoxanthine-guanine phosphoribosyl transferase; 

ActB: Beta-actin; U6: Terminal uridylyl transferase 1.
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found to be the most stable gene in the current study and its’ 
ranking varied depending on the algorithms utilised and the 
treatment to which the animal was subjected. 
Two HKG, HPRT and 36B4, were examined for RT-qPCR in 
a study of light-induced clock gene expression and dopamine 
levels in the DR mouse retina. The HPRT gene was utilised 
for internal standardisation of target gene expression since 
it demonstrates constitutively non-regulated expression in 
both groups regardless of physiologic state or experimental 
circumstances[85]. In contrast, when the steady-state transcript 
levels of four commonly used HKG, β-actin, GAPDH, 
CycA, and 36B4, were examined in various rat tissues, the 
36B4 gene appeared to be the most suitable as a standard for 
comparing gene expression levels across tissues. According to 
the findings of this study, the 36B4 gene has a moderate level 
of stability in the SIDR samples analysed. This relevancy of 
36B4 in diabetes research was also shown previously in STZ-
induced diabetic rats[86]. Based on previous literature authors 
found that the utilization of this candidate gene for RT-qPCR 
normalization is limited, and they used northern blotting for 
the control probe[87-89]. The stability values fluctuate depending 
on the method utilised, and the candidate gene reference 
differs depending on the tissue and experimental conditions 
imposed[90]. Given this knowledge, it is reasonable to predict 
discrepancies and substantial errors in the stability and degree 
of gene expression under different experimental settings[91], 
even if they are conducted on animals of the same species. 
The finding of HPRT in the current study was in line with 
previous research on STZ-induced DR rats[92], STZ-induced 
mice[93-95], and high glucose-induced cells[96-98]. However, Ly 
et al[99] used both HPRT and GAPDH for the detection of early 
inner retinal astrocyte dysfunction in STZ-induced DR rats. 
To compare with the U6 gene, Kovacs et al[71] identified that 
this candidate gene provided the best stability for investigating 
microRNAs in early DR in STZ-induced rats. When multiple 
HKG candidates are employed, it is critical to evaluate all 
of them together to create findings that are more reliable and 
accurate in assessing gene expression[100]. Normalization of, 
say, seven reference genes becomes impractical when just 
two GOI need to be investigated. An ideal HKG demonstrates 
continuous expression in that experimental environment[101], 
rather than throughout the animal’s life. 
In a systematic review by Dheda et al[102] where 1700 
publications were assessed, it was discovered that the majority 
of them used poorly standardised techniques or did not have 
them at all. Some published research currently does not 
even incorporate the process of gene validation for using a 
single HKG[103]. One probable explanation for this is a lack of 
awareness about the significance of validating HKG for each 
experimental set-up[104]. The optimum selection of genes for 

normalization reduces variability[105-106], ensuring improved 
repeatability of the results[107]. It has been discovered that 
reducing variability by including many reference genes does 
not compensate for some disadvantages, such as the time and 
additional cost associated with such inclusions. 
Given that genes participate in various cellular functions[108-110], 
there is no universal HKG that can be used with the greatest 
efficacy in any metabolic disorder especially in diabetic 
diseases[111]. Furthermore, experimental manipulation of the 
tissue alters the stability and validity of the same HKG[112-113]. 
The addition of more HKG does not reduce the variability of 
gene expression[114], but it increases the cost of research[115]. 
This emphasises the importance of determining the optimal 
number of HKG appropriate for a specific setting[116]. The 
current study indicates that the use of at least two validated 
stable HKG is the most appropriate. 
In summary, it is not possible to find an ideal HKG for a 
specific species. The experimental situation will have an 
impact on gene stability because it alters cellular metabolism. 
By using at least two most appropriate HKG, it is possible 
to maintain the accuracy and reliability of the research while 
saving the cost. As conclusion, this experiment demonstrated 
that the most stable HKG for RT-qPCR in retinal tissue of 
normal control and diabetic rats are 36B4 and 18s, respectively. 
However, 36B4 is the most stable gene for the control group, 
18s provides competitive stability and thus could be considered 
the most consistent across the retinal tissues of normal control 
and diabetic rats. It is recommended that a practice of using 
commonly used HKG in literature must be complemented with 
optimization for appropriateness for specified experimental 
settings.
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