
陨灶贼 允 韵责澡贼澡葬造皂燥造熏 灾燥造援 9熏 晕燥援 8熏 Aug.18, 圆园16 www. ijo. cn
栽藻造押8629原愿圆圆源缘员苑圆 8629-82210956 耘皂葬蚤造押ijopress岳员远猿援糟燥皂

1Department of Endocrinology, the Second Xiangya Hospital,
Central South University, Changsha 410011, Hunan
Province, China
2Winship Cancer Institute, School of Medicine, Emory
University, Atlanta, Georgia 30322, USA
3Department of Ophthalmology, the Second Xiangya
Hospital, Central South University, Changsha 410011,
Hunan Province, China
4Department of Ophthalmology, School of Medicine, Emory
University, Atlanta, Georgia 30322, USA
5Department of Pathology, School of Medicine, Emory
University, Atlanta, Georgia 30322, USA
6State Key Laboratory of Biotherapy, Sichuan University,
Chengdu 610041, Sichuan Province, China
Correspondence to: Qing Zhang. Department of
Ophthalmology, the Second Xiangya Hospital, Central South
University, Changsha 410011, Hunan Province, China.
annydaughter@gmail.com
Received: 2015-10-28 Accepted: 2016-02-16

Abstract
· Rapid advances in nanomedicine have significantly
changed many aspects of nanoparticle application to the
eye including areas of diagnosis, imaging and more
importantly drug delivery. The nanoparticle -based drug
delivery systems has provided a solution to various drug
solubility -related problems in ophthalmology treatment.
Nanostructured compounds could be used to achieve
local ocular delivery with minimal unwanted systematic
side effects produced by taking advantage of the
phagocyte system. In addition, the control release
by nanomaterials encapsulated drugs provides prolong
exposure of the compound in the body. Furthermore,
certain nanoparticles can overcome important body
barriers including the blood-retinal barrier as well as the
corneal-retinal barrier of the eye for effective delivery of
the drug. In summary, the nanotechnology based drug
delivery system may serve as an important tool for uveal
melanoma treatment.
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INTRODUCTION OF UVEAL MELANOMA

U veal melanoma is the most common adult primary
tumor of the eye. The pace of incidence increase of

melanoma as a whole group in the USA has surpassed all
other types of tumors within the last 20y [1]. The liver is the
sole or initial site of tumor spread in more than 80% patients
with uveal melanoma; once liver metastases have been
diagnosed, the mean survival time drops to only 6-9mo, with
a 5-year survival rate <40%[2-3].
Although traditionally, eye removal and plaque radiotherapy
have been standard approaches to control the primary uveal
melanoma, these procedures lead to cosmetic defects and
eventual loss of vision. Chemotherapeutic agents have been
widely studied for treating the liver metastases of uveal
melanoma, yet they are ineffective and does not prolong the
survival rate. Overall, the mortality rate of uveal melanoma
remains unchanged over the past decades in request of
improving therapeutic outcome for patients[4-9].
The ineffectiveness of therapeutic agents may be associated
with the incapability of delivering a large enough
concentration of the compound into the local tumor area in
the eye. Studies have found that most systemically
administered drugs are consumed by other organs/tissues
prior to accumulation in cancer tissues [10]. Such deficiency
cannot be resolved by dramatically increasing the amounts of
drug administered, as it would likely cause severe systemic
side-effects [11]. Instead, local delivery and specifically
targeting the tumor cells at the ocular site may achieve
improved efficacy along with reduced systemic toxicity.
However, effective drug delivery remains to be a big
obstacle of treating uveal melanoma and other intraocular
diseases [12-15]. The blood-retinal barrier along with aqueous
and corneal barriers can restrict the access of drug in the
eyes. Due to the structural peculiarities of the posterior
segment, it remains as one of the most challenging barrier to
overcome by drug delivery [14]. Interestingly, recent progress
in nanotechnology provided novel inspirations to the drug
delivery in uveal melanoma and other ophthalmological
diseases.
THERAPEUTIC NANOPARTICLES
Nanoparticle delivery of drugs can achieve the following
objectives [16]: 1) enhances drug permeability; 2) controls the
drug stability and release rate; and 3) target delivery of drug
into specific tissues [17-19]. The main nanoparticles used for
therapeutic drug delivery includes: lipid-based
nanopartic1les, polymer-based nanoparticles, inorganic
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nanoparticles, polyion complex micelles, hybrid nanoparticles,
poly lactic-co-glycolic acid (PLGA) based nanoparticles [20],
as well as peptide based nanoparticles. Lipid-based
nanoparticles are comprised of cationic lipid nanoparticles,
cationic liposomes, and cationic emulsions. Polymer-based
nanoparticles can be made up from poly-L-lysine,
polyethylenimine (PEI), chitosan, dendrimers, or cyclodextrin.
Hybrid nanoparticles include multilayered nanoparticles and
also liposome-polycation-DNA nanoparticles while quantum
dots and magnetic nanoparticles are in the category of
Inorganic nanoparticles. Several studies have applied
nanomaterials for uveal melanoma chemotherapy, gene
therapy, radiotherapy, and photodynamic therapy (PDT). The
outcomes of these works are summarized below.
Nanoparticalized Chemotherapeutic Agents Researchers
have developed and are in the process of developing a
variety of nanoparticles which can be structurally customized
to deliver chemotherapeutic agents to treat a variety of
cancers [18-19,21-26]. Compared to conventional delivery of
chemotherapy, nanoparticles can transport larger amounts of
a payload as they contain high surface area compared to their
volume. Solid tumors show much higher uptake and
prolonged retention of nanoparticles in contrast to normal
tissues, known as the enhanced permeation and retention
effect (EPR) [27]. This is due to the cancerous lesions have
leaky and deficient vasculatures with large pores which
result in higher uptake of the drug [28-31]. In addition, the
reduced blood flow through the neoplasm and an impaired
lymphatic system within the tumor leads to very little
clearance of the nanoparticles accumulated in the tumor [32-34].
In the last ten years, favorable ocular distribution of
nanoparticle packaged drugs led to encouraging progress
been made in the field of ocular drug delivery. In particular,
dendrimers and cyclodextrins have been used for anterior
chamber drug-delivery [35-38]. Dendrimers can easily get in or
go out from a cell as they are 2 to 20 nm in size with
characteristics of narrow polydispersity. It has an advantage
of a higher drug payload when comparing to linear polymers
as their highly tailorable surface functional groups allows
multiple attachment of the compounds [39]. Enhanced ocular
bioavailability was observed when polymer nanoparticles
were applied [40]. Intravitreal injection of Polylactic acid
(PLA) and PLGA nanoparticles can leak to the retinal
pigment epithelium [41-42] as the particles can go through the
retinal layers [43]. A strategy of using PLGA nanoparticles to
encapsulate dexamethasone acetate was effective for treating
choroidal neovascularization (CNV) [44-46]. Albumin
nanoparticles can be used to carry both positive and negative
charge drugs such as ganciclovir or oligonucleotides due to
their abundance of charged amino acids [47]. This
characteristic make albumin nanoparticles ideal for
delivering drugs to the posterior part of the eye, sutable for

treating diseasing such as cytomegalovirus retinitis. Elbialy
[48] have found an important factors to improve the

efficiency of ocular drug delivery for prednisolone acetate is
to induce the positive charge. With good affinity to the
conjunctival surface and corneal, chitosan along with other
natural polymer nanoparticles are also efficient to penetrate
into the eye [49]. The electrostatic interactions between the
positive amine groups of chitosan and negative sialic acid
groups of mucins present in the tear film, which is intact
with the corneal epithelium, enabled an increase in corneal
residence time, and increased penetration of drug- loaded
nanoparticles into the intact corneal epithelium [50-51].
Adhesion properties of the nanoparticles can be improved
with the help of coating various polymers. When we further
coat chitosan on the poly epsilon-caprolactone (PECL)
encapsulated indomethacin nanoparticle, we observe a
significant increase in bioavailability [52-53]. If we further coat
polyethylene glycol (PEG) onto PECL particles, we could
also increase the compound's ability to penetrate the corneal[54].
Recently, hydrogel nanoparticles have been investigated
local delivery of chemotherapy compounds to treat uveal
melanoma [55]. High concentration of poly
N-isopropylacrylamide (PNIPAM) was detected in the uveal
tissue after systemic injection of fluorescein-isothiocyanate
(FITC) labeled PNIPAM nanoparticle. These findings
demonstrated that nanoparticles as a novel carrier has strong
potentials to be utilized in the treatment of uveal melanoma.
Furthermore, it is possible to deliver more than one
chemotherapy drugs at the same time using advanced
nanoparticle delivery system to simultaneously target several
important tumor signaling pathways. This would result in
better treatment efficacy while lowering the drug cytotoxicity
in cancer patients [56-58]. Currently, several combo drug
formulations using such technology are under clinical trials
testing. Acute leukemia patients whom received a
formulation called CPX-351 which is a cytarabine and
daunorubicin molar mixture of 5 to 1 formulated in liposome
responded well as the formulation produced a nice
synergistic effect[59-61]. Another combo nanoparticle drug CPX-1
which is a mixture of irinotecan HCl and floxuridine
formulated in loposome also demonstrated synergistic
anti-tumor effect againsted late stage solid tumors in a Phase
1 clinical trail [62]. Dendrimers, polymer-drug conjugates, iron
oxide particles, nanoemulsions as well as silica particles
have all been tested as an attempt to formulate and carry out
combination drug delivery to improve therapeutic efficacy[63-68].
These particles are promising to be decorated with multiple
chemotherapeutic drugs, and may be applied in ocular
melanoma to achieve better cytotoxic effects.
Gene Delivery with Nanoparticles Nanomedicine has also
been recognized by the National Institutes of Health (NIH)
as it released a roadmap for it. Nanoparticles are ideal tools
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for gene therapy into a single delivery system as it is possible
to engineer the desired characteristics to be not susceptible to
degradation, not mount an immune response, gain prolonged
circulation time, exhibit increased specificity to target tissue,
and ultimately deliver the genetic material into the target
cells. A variety of cancers has been treated with experiments
of nanoparticle gene delivery. Major focuses are in using
gold, magnetic nanoparticles, liposome and carbon
nanotubes for delivery [69-77]. Cationic polymer has already
found to be a promising reduction-responsive gene carrier
with low cytotoxicity and high transfection ability in
melanoma cells [78]. Magnetofection, a method without using
virus for transfection has shown to be effective for
treating the B16F1 melanoma cells [79]. The eyes are special
sites where foreign antigens are tolerated instead of rejected,
making it a great place for taking advantage of gene therapy.
The other advantage for gene therapy for the eye is that the
eye is a closed organ with limited space. This would limit
the local delivered drug diffusing into the body blood
circulation because of the physical barrier structures.
Therefore, more and more experiments with nanoparticle gene
therapy focusing on treating eye diseases are conducted [80-82].
As an example, Farjo [83] performed subretinal or
intravitreal injections delivering CMV-EGFP DNA
nanoparticles into the mice eye. Farjo [83] showed that
the transfection efficiency of the nanoparticles was very high
along with nice target gene expression. Vectosome
formulation of antisense oligonucleotides were used to study
melanoma using a light induced system. In rat experiments,
intravitreal injection of vectosomes resulted in a fast
transetinal migration followed by uptake from the melanoma
cells [84]. The vectosome treatment potently inhibited the cell
growth of OCM-1 melanoma cells by 60% compared to the
control group. More recently, Wang [85] has reported
that after transfection with recombinant DNA plasmids such
as pEgr1-TNF琢, and pEgr1-TNF琢-TK with dendrimer
nanoparticles as vectors, and then combined with iodine-125
(125I) radiation, the gene expression and protein level of
TNF琢 and HSV1-TK in OCM-1 melanoma cells was
increased, cell proliferation was significantly decreased, and
the cellular morphology altering, apoptosis and necrosis was
observed. The current study suggests that combining gene
therapy with nanoparticles may provide a new way of
treating uveal melanoma.
Nanoparticles for Brachytherapy Brachytherapy, where
localized radiotherapy is delivered directly to the tumor, is
currently a commonly used treatment method for uveal
melanoma therapy. However, as the energy absorption dose
of normal and tumor tissue are quite similar, the maximum
radiation dose is limited to the normal tissue which
surrounds the tumor. The use of radiosensitizing agents may
address this problem and overcome hypoxia mediated

heterogeneity response of the tumor [86]. Fullerene and lipid
nanoparticles have been explored as strategies to deliver
effective brachytherapy and longitudinal imaging in brain
tumors [87-89]. More commonly, gold nanoparticles
(GNanoparticles, AuNanoparticles) have been applied as
radiosensitizing agents due to their high atomic number and
strong photoelectric absorption coefficient [90-96]. Studies have
shown by combining brachytherapy with gold nanoparticles,
it could induce apoptosis of melanoma and

[86,97-99]. Chang [97] revealed that gold nanoparticles
can sensitize melanoma B16F10 cells to radiation and
showed that the nanoparticles can accumulate within the
tumor cells. The radiation and nanoparticle combo treatment
strategy has also significantly prolonged mice survival while
potently inhibiting tumor growth in a B16F10 mice model.
Further evidence of apoptosis induction was found in the
combination group control[97]. Also, gold nanoparticles has
additional vasculature disruption properties with combined
with brachytherapy [100-103]. Berbeco [101] found that even
low concentrations of AuNanoparticle has vasculature
disruption effects to the tumor endothelial cells. As the
nanoparticles can target both induce apoptosis of the tumor
cells and disrupt its supporting vasculature when combined
with radiation, it could potentially be used to support
brachytherapy for treating uveal melanoma.
Nanoparticles for Phototherapy Photodynamic therapy,
also known as phototherapy is a treatment method of using
special light which are called photosensitizers to activate the
drug for cancer therapy. The compound to be delivered is
active only after light activation. In tumors, photosensitizers
may have multiple effects including direct killing of tumor
cells, suppressing tumor vasculature and also activating the
body's immune system [104]. As visible light is the most
common activator of conventional photosensitizers, it could
not infiltrate through very thick tissues. As a result, tissue
depth remains one of the major limiting factor for effective
photodynamic therapy. In the case of uveal melanoma, the
quantity of melanin in the tumor could also affect light
absorption and treatment efficacy [105-108]. Nanoparticles has
unique advantages for phototherapy as it can act as a
transducer for converting light with deep penetration ability
into light within visible wavelength. It can also be used to
carry photosensitizers for treating tumors [73,109-112]. It has been
reported that the use photosensitizer loaded-magnetic
nanoparticles (MNPs) and/or polyethyleneimine (PEI) are novel
attempts to improve phototherapy to treat melanoma [113-116].
As single excitation wavelength has multicolor-emission
capability, multifunctional nanoplatform as potential dual
carrier system has been developed [109,117]. Makky [118]

have developed prophyrin-based glycodendrimers with the
mannose-specific ligand protein concanavalin A conjugated
on to their surface, to specifically target the tumor cells in

1217



Figure 1 Steps of making an antibody labeled quantum dots (QD) PEG is used to decrease nonspecific binding and decrease the
clearance rate while attaching the IgG fragments can lead to increase in affinity[129].

the retina. These hybrid dendrimers are designed as
photosensitizers for preferential accumulation in malignant
ocular tissue, for enhancing the effectiveness of PDT. The
mannosylated dendrimers demonstrated specific interactions
with the receptors in the lipid bilayer inducing protein
channel rearrangement favoring the entry of the dendrimers
into the cell. Wang [119] synthesized 琢-mannosyl
dendrimeric porphyrins, which exhibited good photo
efficiency, superior cellular uptake, and significant photo
toxicity in retinoblastoma cells.
NANOPARTICLES FOR IMAGING OF UVEAL
MELANOMA
Nanoparticles and nanotechnology has great potential in the
field of eye disease and uveal melanoma imaging for early
detection and diagnosis [120]. They can be developed into
non-invasive biomarkers for detection of the disease [14,121].
Tari [122] invented a nanoparticle which can distinguish
early and late stage of retinal vascular diseases. Their
proposal is based on a simple matter of particle size. Bigger
particles would stay in the blood circulation while smaller
particles may manage to get out of the circulation in the
early stages of the disease. By labeling the small and big size
particles with two separate color dye, we gain the ability to
track and monitor the diseases status. Currently, a variety of
imaging modalities can reach the eye vasculature. So
developing nanoparticle contrast agent to identify different
tissues are possible. By the help of nanoparticles as contrast
agents, the imaging sensitivity and quality can be improved[123].
For ocular vascular imaging, nanotechnology is mainly used
in ophthalmoscopy as well as optical coherence tomography.
Both of the application takes advantage of the optical
contrast property of the light based imaging modalities.
Interestingly, progress has also been made in developing
contrast agents in the application of ultrasound, MRI to
better monitor the structure of the retinal vasculature. The
use of highly specific and highly sensitive quantum dots
label is one of promising approaches. Anti-GFAP
functionalized quantum dots (QDs) have been optimized for

specific labeling and robust imaging of intermediate
filaments in astrocyte and M俟ller glial cells in rat neural
sensory retina [124]. Yamamoto [125] used a new quantum
dot based method to detect vitreous lesions and even
demonstrated that this nanotechnology method to stain the
vitreous can guild surgeons to do vitrectomy surgeries.
Another study conducted by Takeda [ 126] showed that

quantum dot imaging can be used to detect
spontaneous CNV of age-related macular degeneration
(AMD) before it invades the retina. As CNV can lead to
vision loss in AMD patients, the significance of this study is
that it brings hope to early detect and diagnose AMD and
save the patient's vision. QDs can also be applied into the
ocular lymphatic pathway for imaging and may be useful in
glaucoma to monitor eye pressure [127]. Recently,
antibody-conjugated QDs have also found to be a
high-throughput screening system and effective strategy for
detection of melanoma [128]. In a melanoma-melanocyte
co-culture model, QDs were constructed and
conjugated with antibodies that could recognize melanoma
cells. Data shown that these QDs can specifically detect
melanoma cells only. Furthermore, PEG can be used to
decrease nonspecific binding and decrease the clearance rate
of the QDs product (Figure 1) [129]. Chemotherapeutic agents
formulated with QDs and liposomes are also used for
treating melanoma. Up until now, QDs have been used
extensively to detect tumor vasculature [130-132]. Gold
nanocages and nanoshells have been used in optical
coherence tomography and other imaging approaches [133-139].
Iron oxide nanoparticles can be used to target certain cell
surface receptors as well as macrophages [56-58]. Iron oxide
particles with some modifications in size can also be used to
detect the integrity of the retinal vessel structure. Manganese
oxide particles were developed into the first T1

nanoparticulate contrast agent which is biocompatible [140].
Also, iron oxide particles are developed into novel MRI
contrast agent for detecting uveal melanoma in rabbit
models [141]. The nanoparticle contrast agent increased the
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Figure 2 Diagram of the eye with uveal melanoma and routes of drug delivery to the eye (systemic, periocular, suprachoroidal,
intravitreal and topical).

ratio of the T1 to T2 signal intensity in all of the ocular tissue.
These findings indicate that nanoparticles are promising to
provide noninvasive technique for the diagnosis of ocular
melanoma and evaluation of tumor viability following
treatments.
TOXICITY AND BIOCOMPATIBILITY
Toxicology analysis of nanoparticles are similar to the
pharmacokinetics concept in pharmacology. Four key
components for toxicity analysis of nanoparticles are looking
at their adsorption, distribution, metabolism, and excretion
inside the body. The toxicity of nanoparticles can be affected
by many factors. The particle shape, charge, solubility,
dosing frequency as well as particle size, route of injection
and patient individual variation can all play a role in
formation of the particle toxicity [142-150]. For nanoparticles to
be used in human eyes, the toxicity of particles particularly
need to be tested because if the particles damage the ocular
barriers it would likely affect patient vision [43,151-152].
Unfortunately, the journey of using nanoparticles to treat eye
diseases has just began. Therefore we currently lack the
important local and systematic toxicity data for the particles
used for eye imaging, diagnosis and also drug delivery. A
few recent studies of toxicity and biocompatibility of
nanoparticles in ophthalmology are briefly discussed below.
Allergic or hypersensitivity reactions have been reported
from the use of titanium dioxide, dendrimers and polystyrene
nanoparticles in certain animal models and even in
humans [153-155]. Carbon nanotubes have the potential of
disruping and altering cell membrane [156-157]. Made out of the
natural lipid, liposome nanoparticles are considered nontoxic
and biodegradable. Intravitreal injection of liposome-loaded
tacrolimus for suppressing experimental autoimmune
uveoretinitis (EAU) caused no side effects on retinal
function or systemic cellular immunity[158]. There is also data

showing intravenously administered gold nanoparticles can
penetrate the blood-retinal barrier without damaging the
retina tissue [159]. The potential toxicity of cationic lipids, PEI
and polyamidoamine dendrimers was also evaluated by
experiments [160]. The results showed that PEI were the least
toxic compared to the other two. Silicon QD by intravitreal
injection was shown to be well tolerated by rats. No toxicity
was observed in the experiment yet the therapeutic effect
was obvious for treating retinal degeneration [161]. No toxicity
to the retina was observed in another CCR3-targeting QD
imaging mice experiment [126]. A detailed review paper
summarizing approximately 30 types of nanoparticles was
published by Dr. Prow[162].
EYE DRUG DELIVERY ROUTES
There are five main routes to deliver drugs into the eye,
including systemic, periocular, suprachoroidal, intravitreal
and topical injection. Figure 2 summarizes the above
delivery methods which can also be applied to inject
nanoparticles. Topical application is useful for treating
disorders affecting the anterior segment of the eye. However,
it has a big disadvantage of reaching a high ocular
bioavailability as a large portion of the compound applied
would be lost due to dilution of tears and lacrimation.
Usually, the amount of drug that reaches aqueous humor is
<5% . Systemic injection also has disadvantages as the
amount of drug that would get to the vitreous cavity is quite
low [163-166]. Lipophilic drugs are more in favor of going
through the blood-retinal barrier and reaching the posterior
part of the eye. If the compound is less lipophilic, then more
frequent systemic injection is needed to reach and maintain
an effective dose. This would very likely lead to higher
incidence of systemic side effects to the body. The periocular
injection route could have multiple meanings. It may refer to
posterior juxtascleral, subconjunctival, retrobulbar, peribulbar
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or subtenon injection. There are associated risks for
periocular injections as well. Common complications include
hyphema, increase in intraocular pressure, corneal
decompensation and even strabismus [167-169]. Intravitreal
injections are becoming more popular choice for ocular drug
delivery. By micro-needle injection of the compound directly
into the vitreous, intravitreal injection could offer a higher
drug load in the retina and vitreous compared to other
delivery methods. The drug molecular weight is the major
factor to affecting drug elimination for intravitreal injection.
Disadvantages of intravitreal injection includes development
of certain complications such as intravitreal hemorrhages,
endophthalmitis and retinal detachment [170-177]. Also, patients
with the diseases affecting posterior segment usually need
multiple intravitreal injections and following careful monitor.
MAJOR CHALLENGES AND FUTURE DIRECTIONS
Although significant progress has been made in the
application of nanotechnology-based diagnostics and therapy
for ocular tumors, formal approved particles for clinical
application remains low in numbers. Currently, a solo
nanoparticle delivery method cannot provide a conclusion to
all the challenges we face in ocular drug delivery. In order to
overcome such challenges, we need to invent and discover
novel routes for delivering the drug and also creating novel
delivery systems. Our aim is to create an efficient and
non-invasive way to better delivery drugs to the patients to
improve therapeutic efficacy. Recent discovery of the
possibility of injecting drugs into the suprachoroidal space
provides a new way of treating posterior eye diseases [16,178-182].
By using micro-needle injection into the space between the
choroid and the sclera, suprachoroidal space injection can
bypass the optical pathway while effectively delivery drugs
into the choroid and ciliary body. Therefore, this injection
technique may provide new possibilities to ocular melanoma
treatment. Another major challenge in the treatment of uveal
melanoma is that primary ocular tumor may be radiated or
surgically removed, but the liver metastases is hard to treat.
Nanoparticles may be useful to early detect and diagnosis
ocular melanoma before the liver metastasis develops.
Nanoparticles can be also applied for detection of circulating
tumor cells, which play vital roles in the uveal melanoma
metastasis to the liver.
CONCLUSION
The recent advance in nanotechnology has provided new
opportunities in uveal melanoma and other ocular diseases
treatment and diagnosis. By utilizing nanotechnology drug
delivery systems, we can achieve higher efficacy, less
toxicity, prolonged activity and less invasive administration
of the drug for treating uveal melanoma. Challenges remains
warranting further scientific research.
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