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·Hypothesis·
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Abstract
● Sleep accounts for a third of one’s lifetime, partial or 
complete deprivation of sleep could elicit sever disorders 
of body function. Previous studies have reported the 
higher prevalence of sleep disorders in glaucoma 
patients, but the definite mechanism for this phenomenon 
is unknown. On the other hand, it is well known by us 
that the intrinsically photosensitive retinal ganglion 
cells (ipRGCs) serve additional ocular functions, called 
non-image-forming (NIF) functions, in the regulation of 
circadian rhythm, melatonin secretion, sleep, mood and 
others. Specifically, ipRGCs can directly or indirectly 
innervate the central areas such as suprachiasmatic 
nucleus (SCN), downstream pineal gland (the origin of 
melatonin), sleep and wake-inducing centers and mood 
regulation areas, making NIF functions of ipRGCs relate to 
sleep. The more interesting thing is that previous research 
showed glaucoma not only affected visual functions such 
as the degeneration of classical retinal ganglion cells 
(RGCs), but also affected ipRGCs. Therefore, we hypothesize 
that higher prevalence of sleep disorders in glaucoma 
patients maybe result from the underlying glaucomatous 
injuries of ipRGCs leading to the abnormalities of diverse 
NIF functions corresponding to sleep.
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INTRODUCTION

G laucoma, the leading cause of irreversible blindness 
in the world, is characterized by a degenerative and 

progressive optic neuropathy that leads to structural and 
functional changes in the optic nerve and retinal ganglion cells 
(RGCs)[1]. Previous studies have reported the incidence of 
sleep disorders, which was characterized by excessive daytime 
sleepiness, delayed onset of sleep, shortened sleep duration, 
and increased spontaneous arousals[2-3], was higher in glaucoma 
patients than that in the control subjects[4-5]. It is well known 
that many factors contribute to sleep disorders in glaucoma 
patients, including concerns about the disease, ophthalmic 
pain, the burden of treatment, and the effects of comorbidities 
such as depression and anxiety. However, the pathogenic 
mechanism of these problems has not been fully characterized.
Intrinsically photosensitive retinal ganglion cells (ipRGCs), 
are a distinct subpopulation of RGCs, functioning as a kind of 
novel photoreceptor which expresses melanopsin[6]. Studies 
recently show that ipRGCs can affect sleep through direct 
and indirect pathways. The direct pathway is to influence 
the onset and homeostasis of sleep by regulating the sleep 
and wake-inducing centers[7]. The indirect pathways, which 
contain the ipRGCs projection to suprachiasmatic nucleus 
(SCN) regulating melatonin secretion[8] and the projection to 
mood regulation areas[9], could impact many aspects of sleep. 
Some research suggested ipRGCs damage in glaucoma, along 
with diverse dysfunctions and a decrease in the number of 
ipRGCs[10-14]. These studies strongly indicate a connection 
between the ipRGCs and higher prevalence of sleep disorders 
in glaucoma patients.
INTRINSICALLY PHOTOSENSITIVE RETINAL 
GANGLION CELLS
The Characteristics of ipRGCs  More than a decade ago, 
it was reported that there were exclusively cone and rod 
light sensitive cells which transmit polysynaptic information 
via the optic nerve to the brain. Subsequently, scientists 
identified the third class of photoreceptor in rodent retina that 
was named melanopsin-containing RGCs or ipRGCs which 
exhibit intrinsic photosensitivity[6,15]. More than 95% ipRGCs 
are localized in the ganglion cell layer, with 5% found in 
the inner nuclear layer in rodent retina[6]. These distinct light 
transduction cells, which can detectirradiance of light, are 
sensitive to the wavelength of around 480 nm[15-16]. The ocular 
light detecting system is therefore comprised of pathways 
containing the classic image-forming system involving rods 
and cones, and the non-visual phototransduction system 
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involving the retinohypothalamic tract to the SCN, which is 
the central circadian pacemaker in the anterior hypothalamus. 
In addition to ipRGCs projection to the SCN, it also innervates 
other regions throughout the brain, such as the olivary pretectal 
nucleus[6], which is the relay system for the pupillary light 
reaction, the ventrolateral preoptic (VLPO) area and lateral 
hypothalamus (LH)[7], which are important for the regulation 
of sleep. Furthermore, the areas in relation to mood regulation, 
involving the medial amygdala and lateral habenula (LHb), as 
well as their downstream areas (i.e. the ventral tegmental area 
and raphe)[6,9,17-18], are also projected by ipRGCs. Recently, 
studies reported that the classic and non-classical visual system 
could influence each other as well[19], which deserves further 
study. However, the discoveries of more ipRGCs target areas 
and their related functions have suggested connections between 
ipRGCs and diseases.
The Relationship Between Sleep and ipRGCs  Although 
the intact physiological mechanism of sleep is unknown, it 
is thought that there are sleep and wake-inducing systems in 
the brain, which are mutually inhibiting in the maintenance 
of sleep homeostasis[20-21]. ipRGCs make direct projection to 
the VLPO and LH, the former of which expresses inhibitory 
neurotransmitters γ-aminobutyric acid (GABA) and galanin, 
and plays a key role in the promotion of sleep[7]. The LH 
expresses hypocretin, which has excitatory effects on almost 
every wake-promoting neuronal group of ascending reticular 
activating systems and enhances the wakeful state through 
activating wake-inducing systems[22-24]. Also, ipRGCs via 
SCN and downstream neurons indirectly project to the 
VLPO, LH, and the locus coeruleus (LC), which plays an 
important function in wake-inducing system[25-26]. ipRGCs 
perceive ambient light during daytime, and send projection 
to active the LH and the LC respectively through excitatory 
neurotransmitters glutamate and orexin[24,27-28]. ipRGCs also 
via interneurons output the GABA-ergic signals to VLPO to 
inhibit sleep[28]. The overall effect of light during daytime is to 
maintain wakeful state. And during nighttime, ipRGCs without 
light input may disinhibit the VLPO and can sustain sleep 
state[23,28]. These structural and functional connections between 
ipRGCs and sleep centers provide the basis for deciphering 
sleep disorders in glaucoma patients.
ipRGCs perceive the environmental zeitgebers and deliver 
signals via retinohypothalamic tract to the SCN, which 
oscillates with a periodicity that is slightly longer than a 
solar day[29-30]. The SCN integrates the ambient information 
perceived by ipRGCs and aligns with the environmental 
period of precisely 24h to adapt environment, then emits 
the corrected rhythmic signals to control the rhythm and 
concentrations of melantonin (MT)[8]. MT, a metabolite of 
tryptophan in the plasma, has periodic plasma concentrations 
with the peak concentration at approximately 2:00 a.m.[31-32]. 

Previous trials suggested short-wavelength light exposure of 
ipRGCs could elicit phase shift of MT’s rhythm[33]. ipRGCs 
are exposed to blue light with different intensity or duration, 
which can inordinately inhibit MT secretion[34-35]. Considering 
that MT has close interaction with sleep[36] and could affect 
sleep through many aspects: altering neurotransmitters in 
the cerebrum involving norepinephrine, acetylcholine, and 
5-hydroxytryptamine; regulating the rhythm of SCN by 
binding to MT receptors in the SCN; affecting slow-wave sleep 
corresponding to MT’s effect on body temperature[8,32,37-38]. We 
could conclude that ipRGCs relaying at SCN can influence 
sleep by regulating the synthesis and secretion of MT.
In addition to these functions, ipRGCs also innervate to 
MA, LHb and their downstream areas, which are critical 
in regulating mood. Accumulating evidence in humans 
and animals has linked mood disorders to abnormalities of 
ipRGCs input, and exposure to light at night may alter mood 
by disrupting circadian rhythm[39-42]. Previous studies have 
reported that mice exposed to aberrant light directly influenced 
mood regulation, without disrupting circadian rhythms[43], 
suggesting that unnatural light exposure can directly affect 
mood. It is generally accepted that there exists bidirectional 
relationship between sleep disorders and depression, and an 
increased incidence of abnormal sleep is associated with mood 
disorders[44]. So we suggest that mood disorders resulting from 
abnormalities of ipRGCs can elicit sleep disorders in glaucoma 
patients.
The ipRGCs Lesions in Glaucoma  Previous studies have 
reported that glaucoma, an ocular disorder characterized 
by loss of RGCs, could affect the numbers and functions of 
ipRGCs[10-12,14]. The initial studies using mutant DBA/2J mice 
reported that glaucomatous RGCs degeneration was not cell 
type specific, which indicated that ipRGCs might also be 
damaged in glaucoma[10]. Additional studies reported that 
melanopsin-containing RGCs were damaged in rats with 
chronic ocular hypertension[12], and decreased numbers of 
ipRGCs resulting from chronic ocular hypertension were 
observed[11,14]. 
Besides these animal studies, there have been clinical studies 
focusing on glaucoma and ipRGCs. With the discovery 
of melanopsin and the characterization of the non-image-
forming (NIF) functions system, studies showed that the 
post-illumination pupil response (PIPR) to blue light could 
be a specific measure for testing the intrinsic activity of 
ipRGCs[45-46]. Clinical researches showed that blue light 
PIPR significantly decreased in glaucomatous patients when 
compared with age-matched controls[13,47]. And there was a 
correlated decrease in the PIPR with the increasing severity 
of glaucomatous neuropathy[47]. The discovery of a positive 
correlation between blue light PIPR and retinal nerve fiber 
layer (RNFL) thickness showed that decreased numbers 
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of ipRGCs was potentially related to the reduced RNFL 
thickness[48-49]. Some works showed the abnormality of 
circadian rhythm or light-suppression of MT secretion, may 
also be caused by disrupted ipRGCs in glaucoma[50-51]. These 
results suggest that glaucoma could disrupt ipRGCs and leads 
to various dysfunctions of ipRGCs.
THE HYPOTHESIS
Previous studies have demonstrated the glaucomatous 
lesions of ipRGCs and the various relationships between 
ipRGCs and sleep. So we propose the following hypothesis 
about the mechanism of sleep disorders in glaucoma: the 
higher prevalence of sleep disorders in glaucoma patients 
may be caused by the underlying glaucomatous injuries of 
ipRGCs, leading to diverse NIF dysfunctions corresponding 
to sleep. Abnormal NIF functions related to sleep involve the 
disturbance of sleep centers, the abnormality of MT and mood 
disorders (Figure 1) [52]. Reproduced from reference[52].
DISCUSSION
Glaucoma, a progressive and to date incurable ocular disease, 
will affect 79.6 million people around the globe and 6 million 
in China by 2020[53], meanwhile the higher prevalence of 
sleep disorders in glaucoma worsens the life quality of 
glaucoma patients. Prior studies attributed the sleep disorders 
of glaucoma patients to the mental-psychological factors or 
ocular ache. Nevertheless, the discovery of ipRGCs and NIF 
functions submits us the implications that ipRGCs lesions 
in glaucoma leading to the disturbance of sleep centers, the 
abnormality of MT and mood disorders may be the possible 
causation accounting for sleep disorders in glaucoma patients. 
It should be mentioned that sleep disorders in the present 
article do not include (obstructive) sleep apnea syndrome, 
which is are search focus between sleep and glaucoma[54] and 
has it’s specific pathomechanism. 
Recent discoveries revealed that ipRGCs were not uniform 
population. Based on morphological and electrophysiological 
properties, the ipRGCs were identified as at least five subtypes, 
namely M1-M5[9,55]. Each subtype has specific cell size, 

melanopsin protein level and central projections[56-58]. Specific 
central projections provide specific functions for each ipRGCs 
subtype. So the specific biological properties of each ipRGCs 
subtype should be taken into account in future experiments 
as well as in clinical studies. When exploring the correlation 
between disrupted NIF functions and abnormal structural 
parameters, the contribution of ipRGCs subtypes also should 
be allowed for. 
In summary, there exists objective fact and data to support our 
hypothesis, which would be helpful for individual therapy of 
sleep disorders in glaucoma patients, thus increasing the life 
quality of glaucoma patients.
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