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Abstract
● AIM: To investigate the expression of succinate receptor 
GPR91 and its pathogenic roles in Mooren’s ulcer (MU).
● METHODS: Biopsy specimens were obtained from 7 
patients with MU and 6 healthy donors. The expression of 
GPR91 in MU tissues was evaluated using quantitative real-
time reverse transcription polymerase chain reaction (qRT-
PCR) and immunohistochemistry (IHC). Succinate was used 
to activate GPR91 signaling, and the effect of GPR91 on the
expression of interleukin-1β (IL-1β), NLRP3, vascular endothelial 
growth factor (VEGF) and matrix metalloproteinase-13 
(MMP-13) in human peripheral blood mononuclear cells 
(PBMCs) was determined. The influence of GPR91 on 
the nuclear factor-κB (NF-κB) signaling in PBMCs was 
investigated by detecting the phosphorylation of p65. 
Moreover, the expression of IL-1β, VEGF, MMP-13 and 
phosphorylated p65 (p-p65) in the tissues of MU was 
examined by qRT-PCR or IHC.
● RESULTS: GPR91 mRNA expression showed a higher 
level in the MU group than in the healthy control group. 
IHC analysis also revealed that the expression of GPR91 
was elevated in patients with MU compared with healthy 
controls. Moreover, ligation of GPR91 with succinate 
promoted the lipopolysaccharide-induced production 
of NLRP3, IL-1β, VEGF and MMP-13 in PBMCs through 
increased phosphorylation of p65. Pharmacological 
inhibition of the NF-κB signaling reversed GPR91 induced 
production of NLRP3, IL-1β, VEGF and MMP-13. These 
findings, coupled with the elevated amounts of IL-1β, 

VEGF, MMP-13 and p-p65 observed in the MU biopsies, 
constituted a rational basis for the involvement of GPR91 
in the pathogenesis of MU.
● CONCLUSION: This study indicates the increased 
succinate receptor GPR91 in conjunctival or corneal tissues 
is involved in the pathogenesis of MU through elevated NF-κB 
activity, which may provide a new therapeutic target for MU. 
● KEYWORDS: succinate receptor; Mooren’s ulcer; nuclear 
factor-κB; pathogenesis
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INTRODUCTION

M ooren’s ulcer (MU) is a chronic, progressive, and 
painful peripheral ulcerative keratitis, which occurs 

without any diagnosable systemic disorders or scleritis[1]. A 
typical MU lesion is characterized by the undermined ulcer 
edge, inflamed adjacent conjunctiva, and stromal melting. 
Although its underlying etiology remains largely unknown, 
it is widely accepted that MU is an idiopathic autoimmune 
disease[2]. Accumulative evidence suggests that both cell-
mediated immunity and humoral immunity are implicated 
in the pathogenesis of MU[3-4]. Histopathologically, aberrant 
inflammation was observed in the cornea and conjunctiva 
adjacent to MU, with more inflammatory infiltration and elevated 
pro-inflammatory cytokines[5-8]. Circulating autoantibodies 
were also detectable in the cornea and conjunctiva of patients 
with MU[4,9]. Moreover, steroid and/or immunosuppressive 
therapy was found to be effective for patients with MU[10-11]. 
Importantly, anti-tumor necrosis factor alpha (TNFα) or CD20 
monoclonal antibody was proven effective in the management 
of MU[12-14]. However, the pathogenesis of this disease in 
details needs to be investigated.
Succinate receptor GPR91 is a G protein coupled receptor that 
functions as a cell-surface receptor of extracellular succinate[15]. 
It is shown to be highly expressed in liver, spleen, intestine, and 
by dendritic cells[15]. As an intermediate of tricarboxylic acid 
cycle, succinate is released and accumulated under hypoxia and 
oxidative stress[16]. The raised succinate through its receptor 
GPR91 is involved in the pathogenesis of several physiological 
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and pathological conditions, including obesity[17-18], rheumatoid 
arthritis[19], renin-induced hypertension[20-21], ischemia/reperfusion 
injury[20] and inflammation[20,22-25], as well as diabetes-induced 
bone damage[26]. Furthermore, GPR91, which plays a key 
role in retinal angiogenesis, is also expressed in retinal 
ganglion cells (RGCs) and retinal pigment epithelial cells, 
and implicated in the pathogenesis of proliferative ischemic 
retinopathy and diabetic retinopathy[16]. 
However, the expression profile of GPR91 in corneal/conjunctival 
tissues is largely unknown, and whether GPR91 is involved 
in the pathogenesis of MU also remains unclear. Therefore, 
in the current study, we examined the expression profile of 
GPR91 in corneal/conjunctival tissues with MU, and further 
investigated the possible mechanisms of GPR91 signaling 
in the pathogenesis of MU using human peripheral blood 
mononuclear cells (PBMCs).
SUBJECTS AND METHODS
Subjects and Tissue Samples  Seven eyes of 7 patients (Table 1),
who were diagnosed with MU at Qingdao Eye Hospital, 
Shandong Eye Institute between October 2015 and September 
2017, were included. The diagnosis was based on the medical 
history, lesion morphology, and laboratory testing. Patients 
with collagen-vascular and infectious disease were excluded. 
Representative microscopic images of the ocular surface in 
these patients are shown in Figure 1. These patients were 
considered to be in need of surgical treatment. Samples from 
diseased tissue (cornea and/or conjunctiva) were collected 
after surgical excision. Necrotic corneal stroma and limbal 
conjunctival tissues adjacent to the ulcerative lesions were 
used in this study. The corneoscleral rings of healthy donor 
corneal grafts, of which the central parts had been used for 
penetrating keratoplasty, were used as controls. This study 
was approved by the Review Board of Shandong Eye Institute 
and strictly adhered to the guidelines of the Declaration of 
Helsinki. Informed consent was obtained from all subjects.
Immunohistochemistry  To obtain paraffin sections, the 
resected MU biopsy specimens were immersed in 4% 
paraformaldehyde at 4℃ before embedded in paraffin wax. Four-
micrometer-thick sections were deparaffinized, and antigen 
was retrieved using a steamer in an epitope retrieval solution 
(Maixin Co., Fuzhou, China). Anti-GPR91 (abs123380, Absin), 
anti-matrix metalloproteinase-13 (MMP-13; AP13706c, 
Abgent), anti-vascular endothelial growth factor A (VEGF-A; 
A5708, Abclonal), anti-phosphorylated p65 (p-p65; ab86299, 
Abcam) and anti-interleukin-1β (IL-1β; ab9722, Abcam) were 
used as primary antibodies and subsequently reacted with 
secondary antibodies for immunofluorescent staining.
Isolation of Human Peripheral Blood Mononuclear Cells 
and in vitro Stimulation  Human PBMCs were isolated 
from citrate-anticoagulated blood via the Ficoll-Paque Plus 
(Tianjin Haoyang Biological Manufacture Co., Tianjin, China) 

density gradient centrifugation method. The blood obtained 
from donors was layered with Ficoll-Hypaque according to 
the manufacturer’s instructions, and centrifuged at 500 g for 
30min at room temperature. After collected from the interphase 
and washed 3 times with phosphate-buffered saline, PBMCs 
(2.5×105 cells in 500 μL) were grown in the RPMI-1640 medium 
(HyClone) supplemented with 5% fetal bovine serum (Gibco), 
100 μg/mL penicillin (Sigma) and 100 μg/mL streptomycin 
(Sigma) in a 24-well plate (Corning) at 37℃ in a humidified 
atmosphere containing 5% CO2 overnight.
Isolated PBMCs were divided into 4 groups: control group, 
succinic acid-treated group (Succinate, 2000 μmol/L), 
lipopolysaccharide-stimulated group (LPS, 200 ng/mL) and 
succinate combined with LPS group (Succinate, 2000 μmol/L; 
LPS, 200 ng/mL). After stimulation, the cells and supernatants 
were respectively stored at -80℃ until used.
Quantitative Real-time Polymerase Chain Reaction  Total 
RNA was extracted from human biopsy specimens and PBMCs 
using the TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and 
was reverse-transcribed using the reverse transcriptase (Toyobo, 
Osaka, Japan). Quantitative real-time reverse transcription 
polymerase chain reaction (qRT-PCR) analysis was performed 
on a Rotor-GeneQ (Qiagen, Duesseldorf, Germany) using 

Table 1 Demographics of patients with MU

Subject No. Sex Age (y) Eyes
1 Female 48 OS
2 Female 69 OD
3 Male 50 OS
4 Female 40 OS
5 Female 59 OD
6 Male 50 OD
7 Female 42 OS

Figure 1 Ocular surface of patients with Mooren’s ulcer  A: The 
representative slit lamp photography; B: The representative RTvue 
OCT image.

GPR91 involved in Mooren’s ulcer
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SYBR G REEN mix (Toyobo). The results were assayed by 
the comparative threshold method (2-△△ Ct). The primers used are 
listed in Table 2.
Western Blot Analysis  The protein lysates were prepared 
from PBMCs using the Radio-Immunoprecipitation Assay buffer 
(P0013B, Beyotime) with a protease inhibitor cocktail (Millipore). 
The protein extracts were subjected to electrophoresis on 10% 
polyacrylamide gel and then transferred onto polyvinylidene 
fluoride membranes. The membranes were probed with the 
following primary antibodies: anti-glyceraldehyde 3 phosphate 
dehydrogenase (GAPDH; KC-5G5, Kangchen), anti-MMP-13 
(AP13706c, Abgent), anti-IL-1β (ab9722, Abcam), and anti-p65 
(ab16502, Abcam), anti-p-p65 (ab86299, Abcam), anti-
VEGF-A (A5708, ABclonal), and anti-NLRP3 (AG-20B-
0014-c100, AdipoGen). Horseradish peroxidase-conjugated 
specific antibodies were used as secondary antibodies (Pierce, 
1:2000). 
Enzyme-linked Immunosorbent Assay  The production of 
IL-1β in the cell-free supernatants of PBMCs was measured 
using the enzyme-linked immunosorbent assay (ELISA) kits 
(Proteintech, Rosemont, IL, USA) according to the manufacturer’s 
instructions.
Statistical Analysis  GraphPad Prism 5.0 (GraphPad Software) 
was used for statistical analysis. The Student’s t-test (comparison 
between two groups) and one-way analysis of variance 
(ANOVA, comparison among more than two groups) were 
performed to assess the difference in the data of PCR, 
Western blot and ELISA. P<0.05 was considered statistically 
significant. Data are presented as mean±standard deviation.
RESULTS
Increased Expression of GPR91 in MU Samples  Using 
immunohistochemistry (IHC), GPR91 protein levels were 
found to be much higher both in the cornea and conjunctiva of 

patients with MU than those in healthy control subjects (Figure 
2A). qRT-PCR displayed elevated GPR91 transcriptional 
levels in the MU samples compared with samples from 
healthy controls (Figure 2B). Moreover, the IHC staining also 
showed that the increased GPR91 was mainly expressed in 
infiltrated inflammatory cells (Figure 2A). These data clearly 
demonstrated the upregulated amounts of GPR91 in human 
eyes with MU.
Ligation of GPR91 with Succinate Augmented LPS-
induced Production of IL-1β, NLRP3, VEGF-A and 
MMP-13  Succinate is a pro-inflammatory metabolite that 
activates GPR91 signaling and favors the expression of pro-
inflammatory genes in macrophages and dendritic cells[19-20,22]. 
However, whether GPR91 signaling is involved in initiating 
or exacerbating inflammatory responses in MU remains 
unclear. We observed an increased expression of GPR91 
in the infiltrated inflammatory cells. Therefore, we used 
PBMCs as a model to examine the pro-inflammatory effect of 
GPR91 signaling on MU. As shown in Figure 3A, activation 
of PBMCs with LPS induced 7- to 8-fold increase of IL-1β 
mRNA, 3-fold increase of NLRP3 mRNA, 2-fold increase 
of MMP-13 mRNA, and 2-fold increase of VEGF-A mRNA, 
while succinate pronouncedly boosted the transcriptional 
expression of IL-1β, NLRP3, MMP-13 and VEGF-A induced 
by LPS, which indicated the pro-inflammatory role of 
GPR91 signaling. We also performed the immunoblotting, 
and found that ligation of GPR91 with succinate augmented 
the expression of IL-1β, NLRP3, MMP-13 and VEGF-A 
induced by LPS, which was consistent with the results from 
qRT-PCR (Figure 3B). Moreover, ligation GPR91 with 
succinate contributed to the elevated concentrations of IL-1β 
in supernatants of PBMCs stimulated with LPS, which further 
confirmed the pro-inflammatory effect of GPR91 signaling 

Table 2 Nucleotide sequences for RT-PCR

Gene Gen bank No. Primer sequence (5’-3’) Size (bp)
GAPDH NM_002046.6 F-AGGGCTGCTTTTAACTCTGGT 206

R-CCCCACTTGATTTTGGAGGGA
IL-1β NM_000576.2 F-CAGCTACGAATCTCCGACCAC 100

R-GGCAGGGAACCAGCATCTTC
NLRP3 NM_004895.4 F-CTTCCTTTCCAGTTTGCTGC 212

R-TCTCGCAGTCCACTTCCTTT
MMP-13 NM_002427.3 F-GGACCCTGGAGCACTCATGT 150

R-CATTTGTCTGGCGTTTTTGGA
VEGF-A NM_001025366.2 F-AGGAGTACCCTGATGAGATCGAGTA 151

R-TGGTGAGGTTTGATCCGCATA
GPR91 NM_033050.5 F-CTGCTCTGCCCCTTGAAAAG 150

R-TGACGACCTGAGTGCACTGATAC

RT-PCR: Reverse transcription polymerase chain reaction; GAPDH: Glyceraldehyde 3 phosphate dehydrogenase; IL-1β: 
Interleukin-1β; NLRP3: Nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family of protein 3; 
MMP-13: Matrix metalloproteinase-13; VEGF-A: Vascular endothelial growth factor A; GPR91: G protein coupled receptor 91.
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pathway (Figure 3C). Collectively, the GPR91 signaling 
pathway may be involved in the pathogenesis of MU through 
its pro-inflammatory effect.
GPR91 signaling, Depending on NF-κB Activity, Triggered 
the Production of IL-1β, NLRP3, MMP-13 and VEGF-A  
Nuclear factor-κB (NF-κB) is a master transcriptional factor 
to regulate the inflammatory responses[27]. Therefore, we 
subsequently investigated whether the pro-inflammatory 

effect of GPR91 signaling depended on NF-κB activity. 
We found that the transcriptional levels of IL-1β, NLRP3, 
MMP-13 and VEGF-A in PBMCs stimulated with LPS and 
succinate were significantly decreased after treatment with 
JSH-23 (an inhibitor of NF-κB; Figure 3A). The results from 
Western blot also indicated that co-treatment with JSH-23 
could pronouncedly downregulated the expression of IL-1β, 
NLRP3, MMP-13 and VEGF-A in PBMCs stimulated with 

Figure 2 Increased expression of succinate receptor GPR91 in the biopsies of MU patients  A: IHC staining showed the elevated expression 
of GPR91 in the cornea and conjunctiva (magnification ×400); B: Quantitative analysis of transcriptional expression of GPR91 showed 
significantly elevated expression in the MU samples (aP<0.05 vs control, n=3).

Figure 3 Succinate promoted the expression of inflammatory cytokines and MMP-13 through GPR91 in PBMCs  A: Quantitative analysis 
of mRNA expression of IL-1β, NLRP3, VEGF-A and MMP-13 in PBMCs treated with LPS, succinate and JSH-23 for 12h; B: Western blot 
analysis of IL-1β, NLRP3, VEGF-A and MMP-13 in lysates of PBMCs treated with LPS, succinate and JSH-23 for 12h; C: The concentrations 
of IL-1β in supernatants of PBMCs for 12h. aP<0.05; bP<0.01.

GPR91 involved in Mooren’s ulcer
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LPS and succinate (Figure 3B). Moreover, we also found the 
decreased concentrations of IL-1β in supernatants of PBMCs 
co-stimulated with LPS, succinate and JSH-23. These results 
revealed the important roles of NF-κB in GPR91-induced 
inflammatory responses.
Phosphorylation of p65 is a key biological event for NF-κB signaling, 
and elevated p-p65 indicates the increased NF-κB activity[27-28]. 
To evaluate NF-κB activity, we detected the level of p-p65 
through immunoblotting. The results showed that compared 
with the control group, ligation of GPR91 with succinate 
significantly augmented the level of p-p65, an indicative of 
increased NF-κB activity, while decreased p-p65 was observed 
after co-treatment with LPS, succinate and JSH-23 (Figure 4).
Overall, these data demonstrated that GPR91 signaling 
triggered the upregulation of IL-1β, NLRP3, MMP-13 and 
VEGF-A in an NF-κB dependent manner.
Increased Expression of IL-1β, MMP-13, VEGF-A and 
Phosphorylated p65 in the MU Biopsies  We examined 
whether human eyes with MU displayed an increased 
expression of IL-1β, VEGF-A, and MMP-13, as well as an 
elevated activity of NF-κB. IHC showed the protein levels of 
IL-1β, MMP-13 and VEGF-A in the cornea and conjunctiva 
of MU patients significantly increased compared with the 
healthy controls (Figure 5A-5C). We also found that IL-1β, 
MMP-13 and VEGF-A were mainly located in the infiltrated 
inflammatory cells (Figure 5A-5C). qRT-PCR revealed the 
increased expression of IL-1β and VEGF-A (Figure 5E), which 
was in correspondence with the results of IHC. Moreover, the 
elevated p-p65 in the MU samples was also observed by IHC 
(Figure 5D), which suggested the increased NF-κB activity. 
These findings provide evidence of the increased expression 
of GPR91, IL-1β, VEGF-A and MMP-13, as well as elevated 
NF-κB activity in situ in human eyes with MU, mirroring the 
functional data in PBMCs culture.
DISCUSSION
Immunosuppression and surgical intervention are two common 
approaches for MU management. However, resistance to such 
treatment and recurrence are major obstacles affecting the 
prognosis[5,29]. The autoimmune factor has been reported as one 
of the mechanisms of MU, but the exact pathogenesis remains 
unknown. 
Recently, the crucial role of succinate in autoimmune and 
auto-inflammatory diseases has been well documented[19,30-33]. 
Intracellular succinate regulates inflammatory response mainly 
through stabilizing hypoxia-inducible factor-1α and post-
translational modification of proteins by succinylation[34]. 
Unlike intracellular succinate, the function of extracellular 
succinate in inflammation is mediated by ligation with its 
receptor GPR91, which is also renamed succinate receptor 
1[15,22,34]. Immune-associated inflammation has been reported 

to play a key role in the pathological damage caused by MU. 
However, the exact mechanism of inflammation development 
in the MU is not clear. We speculated that succinate receptor 
GPR91 signaling may be involved in the MU pathogenesis. In 
this study, we found that the level of succinate receptor GPR91 
in the MU subjects was much higher than that in controls. 
IHC revealed that GPR91 was mainly located in the infiltrated 
inflammatory cells. These findings suggested the involvement 
of GPR91 in the pathogenesis of MU through sensing 
extracellular succinate. 
Regarding the possible roles of GPR91 in the pathomechanism 
of MU, we found that succinate promoted the expression of 
NLRP3 and IL-1β in LPS-stimulated PBMCs through its 
receptor GPR91, which may partially explain the increased 
expression of NLRP3 inflammasome components in the 
MU samples previously reported[7]. We also observed the 
pronounced expression of VEGF-A and MMP-13 in PBMCs 
after succinate stimulation. Mechanistically, we found that 
succinate enhanced LPS-induced NF-κB activity through 
GPR91, and pharmacologically blocked NF-κB activity 
reversed the effect of GPR91 signaling. Combined with our 
findings of the increased expression of NLRP3, IL-1β, VEGF-A 
and MMP-13 in the MU samples in situ, as well as increased 
p-p65, we addressed that GPR91 signaling could contribute to 
the pathogenesis of MU through increased NF-κB activity.
MMP-13 is one of the collagenases that degrade native 
collagen fibrils in vivo, which is essential for morphogenesis 

Figure 4 Ligation of GPR91 with succinate significantly 
augmented NF-κB activity in LPS-stimulated PBMCs  A: Western 
blot analysis of p-p65 and p65 in lysates of PBMCs after treatment 
with LPS, succinate and JSH-23 for 1h; B: Quantification of p-p65 in 
stimulated cells relative to that in unstimulated cells as in A. bP<0.01.
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and tissue remodeling[35-36]. The pathogenic roles of the 
overexpressed or activated MMP-13 have been reported in 
osteoarthritis[37], rheumatoid arthritis[38], and chronic cutaneous 
ulcers[39]. In the cornea, MMP-13 has been reported to play a 
role in corneal wound healing[40], corneal vascularization[41] 
and corneal ulceration caused by Pseudomonas aeruginosa 
infection[36]. In this study, we not only found the increased 
expression of MMP-13 in MU, but also showed that GPR91 
signaling upregulated the MMP-13 expression through 
increased NF-κB activity. These findings suggested the 
potential involvement of GPR91 signaling in the pathological 
process of corneal stromal melting in MU patients. Moreover, 
there are many MMP-13 specific inhibitors designed to treat 
osteoarthritis and rheumatoid arthritis[42]. These inhibitors may 
also have a potential to ameliorate corneal ulceration caused 
by MU.
Succinate receptor GPR91 was reported to promote retinal 
angiogenesis through upregulation of proangiogenic factors, 
including VEGF[16]. VEGF-A plays an important role in the 
corneal neovascularization[43]. In the current study, we showed 
the increased expression of VEGF-A in biopsy specimens with 
MU, and also found that ligation of GPR91 with succinate 
promoted the production of VEGF-A. Therefore, we proposed 
that corneal vascularization induced by GPR91 signaling could 
be another contributor to the pathogenesis of MU. 

The limitations of this study should also be acknowledged. 
Firstly, the pathogenic roles of GPR91 cannot be effectively 
verified in vivo because of shortage of MU animal models. 
Secondly, although we found the elevated expression of 
GPR91 in the MU samples and its ligation with succinate 
promoted inflammatory responses though NF-κB signaling 
using PBMCs, further investigations are needed to determine 
the extracellular concentration of succinate and elucidate the 
mechanisms of succinate in the pathogenesis of MU in details. 
Thirdly, we mainly used PBMCs to investigate the roles of 
GPR91 signaling pathway, but cells isolated from MU samples 
may be better for the functional examination.
To our knowledge, this is the first study to investigate the 
changes and roles of GPR91 in MU patients. The findings of 
increased succinate receptor GPR91 and its pro-inflammatory 
effect provide novel clues for the pathogenesis of MU, thereby 
broadening therapeutic targets for MU patients.
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Figure 5 Analyses of IL-1β, MMP-13, VEGF-A and p65 expressions in the MU samples  Analysis of IL-1β (A), MMP-13 (B), VEGF-A (C) 
and p65 (D) expressions in the cornea and conjunctiva by IHC (magnification ×400); E: Analyzing the transcriptional expression of IL-1β and 
VEGF-A in the samples of patients with MU (n=3). aP<0.05, bP<0.01.
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