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Abstract
● AIM: To develop a deep learning-based model for 
automatic retinal vascular segmentation, analyzing and 
comparing parameters under diverse glucose metabolic 
status (normal, prediabetes, diabetes) and to assess the 
potential of artificial intelligence (AI) in image segmentation 
and retinal vascular parameters for predicting prediabetes 
and diabetes.
● METHODS: Retinal fundus photos from 200 normal 
individuals, 200 prediabetic patients, and 200 diabetic 
patients (600 eyes in total) were used. The U-Net network 
served as the foundational architecture for retinal artery-
vein segmentation. An automatic segmentation and 
evaluation system for retinal vascular parameters was 
trained, encompassing 26 parameters. 
● RESULTS: Significant differences were found in retinal 
vascular parameters across normal, prediabetes, and 
diabetes groups, including artery diameter (P=0.008), 

fractal dimension (P=0.000), vein curvature (P=0.003), 
C-zone artery branching vessel count (P=0.049), C-zone 
vein branching vessel count (P=0.041), artery branching 
angle (P=0.005), vein branching angle (P=0.001), artery 
angle asymmetry degree (P=0.003), vessel length density 
(P=0.000), and vessel area density (P=0.000), totaling 10 
parameters.
● CONCLUSION: The deep learning-based model facilitates 
retinal vascular parameter identification and quantification, 
revealing significant differences. These parameters exhibit 
potential as biomarkers for prediabetes and diabetes.
● KEYWORDS: deep learning; retinal vascular parameters; 
segmentation model; diabetes; prediabetes
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INTRODUCTION

D iabetes is a chronic metabolic disorder characterized 
by prolonged elevated blood glucose levels above the 

normal range, leading to damage to various organs and tissues 
throughout the body. Type 2 diabetes constitutes 90%-95% 
of the total population with diabetes. According to the World 
Health Organization standards, the diagnostic criteria for 
diabetes include fasting blood glucose levels ≥7.0 mmol/L, 
random blood glucose levels ≥11.1 mmol/L, or blood glucose 
levels ≥11.1 mmol/L two hours after an oral glucose tolerance 
test (OGTT). Alternatively, diabetes can be diagnosed if 
the glycated hemoglobin (HbA1c) level is ≥6.5% based 
on standardized Diabetes Control and Complications Trial 
(DCCT) analysis[1]. Prediabetes is a pathological condition 
characterized by blood glucose levels higher than normal but 
not reaching the diagnostic criteria for diabetes. It includes 
impaired fasting glucose (IFG) and impaired glucose tolerance 
(IGT). IFG is defined as fasting blood glucose levels in 
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the range of 6.1–6.9 mmol/L, while IGT is characterized by 
OGTT blood glucose levels in the range of 7.8–11.0 mmol/L. 
Although IFG and IGT themselves are not considered clinical 
entities, prediabetes can still lead to a range of health issues[2].
The global population with diabetes has doubled over the past 
30y. According to statistics, the estimated global prevalence 
of diabetes was 9.3% (463 million people) in 2019 and is 
projected to rise to 10.2% (578 million people) by 2030 and 
10.9% (700 million people) by 2045. Additionally, nearly 
400 million adults worldwide have prediabetes, with China 
reporting a prediabetes prevalence of up to 35.7% in the adult 
population[3-4]. Diabetes not only significantly impacts the 
overall health of patients but is also closely associated with 
complications affecting multiple organs and systems. Diabetic 
retinopathy (DR) is one of the most common complications 
of diabetes and a major cause of blindness in the working-
age population[5-6]. Research indicates that the prolonged 
hyperglycemic state in patients with diabetes can affect vascular 
structure and function through various pathways, including 
increased adhesiveness and permeability of endothelial cells, 
promotion of smooth muscle cell proliferation, and accelerated 
deposition of vascular wall matrix, leading to morphological 
changes such as vascular thickening and luminal narrowing[7-8]. 
Previous studies have extensively investigated DR, employing 
various imaging techniques such as fundus photography, 
scanning laser ophthalmoscope, optical coherence tomography 
and fluorescein fundus angiography. These studies primarily 
focus on pathological changes in patients with diabetes’ retinal 
vessels, microvascular lesions, hemorrhage, and edema[9].
The diagnosis and staging of DR in current clinical practice 
primarily rely on observable signs in fundus photographs, 
such as microaneurysms, hemorrhages, and hard exudates[2]. 
However, research suggests that subtle morphological changes 
in retinal vasculature may occur in patients with diabetes before 
macroscopically visible signs, such as bleeding and exudation, 
manifest in fundus images. Retinal vascular parameters 
involve the quantitative analysis of the retinal vascular 
network’s structure and morphological characteristics[10]. 
These parameters include retinal vascular equivalent, fractal 
dimension, curvatures tortuosity, vessel density, among others, 
and can provide a more accurate assessment of the functional 
status and pathological changes in retinal vessels[11-17]. Previous 
evidence indicates that retinal vascular dilation may be a risk 
factor for the early progression of DR[18]. A study by Sasongko 
et al[19] found that the retinal vascular system in patients with 
diabetes is more tortuous than in non-diabetes individuals. 
Additionally, the degree of arteriolar tortuosity in patients with 
diabetes is associated with mild and moderate DR, suggesting 
that the degree of retinal vascular tortuosity may serve as an 
early parameter of microvascular damage in diabetes.

However, there is currently insufficient research on the 
differential analysis of retinal vascular parameters specific 
to prediabetes and diabetes. Moreover, there are no clear 
observational parameters in clinical practice. Additionally, 
even experienced ophthalmologists may find it challenging 
to identify these subtle early changes with the naked eye. 
The rapid development of artificial intelligence (AI) theories 
and technologies, including deep learning, holds promise for 
addressing this issue.
In recent years, with the rapid advancement of AI in the 
medical field, ophthalmology stands out as one of the fastest-
developing and most promising areas for the widespread 
application of AI technology in medicine. AI demonstrates 
high precision and sensitivity in identifying medical imaging 
data, enabling the detection of early lesions that are difficult for 
the naked eye to discern[20-23].
The application of AI for the automatic segmentation of novel 
biomarkers in retinal images and the investigation of its impact 
on retinal vascular parameters in prediabetes and diabetes 
are crucial for a better understanding of the mechanisms 
underlying diabetic retinal changes. It also holds significant 
importance for enhancing eye health management in patients 
with diabetes.
Therefore, this study aims to utilize AI for the automatic 
segmentation of retinal vessels in individuals with normal 
glucose metabolism, prediabetes, and diabetes without DR. 
By comparing the differences in retinal vascular parameters 
between prediabetic individuals, patients with diabetes, and 
those with normal glucose metabolism, the research seeks to 
provide insights into the impact of prediabetes and diabetes 
on retinal vascular parameters. The results of this study 
are expected to provide new clues for early diagnosis and 
prevention of diabetes, and also provide valuable information 
for eye health management, early diagnosis and early warning 
for people with prediabetes and diabetes.
MATERIALS AND METHODS
Ethical Approval  The data for this study were obtained 
from participants at the Health Management Center of Peking 
University Shenzhen Hospital. The examination protocol 
included fundus photography and the collection of clinical 
data. The study protocol adhered to the ethical requirements of 
the Declaration of Helsinki, and the protocol was approved by 
the Research Ethics Committee of Peking University Shenzhen 
Hospital. 
Technical Workflow  The technical workflow of this study 
was illustrated in Figure 1.
Data Source and Detailed Sample Selection  A systematic 
sampling method was employed to select samples from the 
Health Management Center. The detailed description of sample 
selection is as follows. Inclusion criteria: 1) participants aged 
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between 20 and 60y; 2) complete clinical data, and ophthalmic 
imaging data of sufficient quality. Exclusion criteria: 1) 
Participants whose fundus color photographs have developed 
DR manifestations. 2) Participants with other severe eye 
diseases or a history of eye surgery. 3) Participants with other 
systemic diseases (such as hypertension, heart disease, kidney 
disease, etc.). 4) Female participants in pregnancy status.
All participants underwent measurements of fasting blood 
glucose, random blood glucose, OGTT, and HbA1c. Based 
on the glucose metabolism status, participants were divided 
into the following three groups: 1) Normal group: fasting 
blood glucose levels between 6.1–6.9 mmol/L or OGTT blood 
glucose levels between 7.8–11.0 mmol/L. 2) Prediabetes group: 
abnormal blood glucose levels not meeting the diagnostic 
criteria for diabetes. 3) Diabetes group: fasting blood glucose 
levels ≥7.0 mmol/L, or random blood glucose levels 
≥11.1 mmol/L, or OGTT blood glucose levels ≥11.1 mmol/L, or 
HbA1c levels ≥6.5%. The study ultimately included an equal 
number of participants in each group, with 200 participants in 
each group, totaling 600 participants.
Measurement Method and Definition of Retinal Vascular 
Parameters  The measurement of retinal vascular parameters 
involves two main steps: deep learning-based segmentation 
of retinal images into arteries and veins, and computation of 
the required retinal vascular parameters based on the obtained 
segmentation results.
Deep learning-based retinal artery and vein segmentation  
1) Deep learning model: In this study, we utilized the 
commonly used U-Net architecture for retinal artery and vein 
segmentation. To enhance the feature extraction capability of 
the network, we replaced the encoder part of U-Net with the 
popular Inception-V3 backbone. Additionally, considering 
that some vascular areas with less distinct features are 
challenging to differentiate as arteries or veins based solely on 
local features during segmentation, and it requires a broader 
perspective based on the connectivity and similarity between 
vessels, we added the Atrous Spatial Pyramid Pooling module 
to extract larger-range features[24]. Thereafter, we used the 

softmax function to distinguish arteries and veins in the 
segmented vascular regions. The model structure is depicted 
in Figure 2. 2) Data and training parameters: The data used to 
train the artery and vein segmentation model were obtained 
from five publicly available datasets with vessel segmentation 
annotations: DRIVE[25], HRF[26], LES-AV[27], STARE[28], and 
CHASEDB1[29]. These datasets collectively comprise 155 
fundus images. Except for the DRIVE dataset, which followed 
the official training and testing set divisions, the remaining 
data were divided on a patient basis, with a ratio of 7:1:2 for 
training, validation, and testing sets, respectively. The data 
distribution is summarized in Table 1.
During the network training process, the input size of fundus 
images was set to 1280×1280. Stochastic Gradient Descent 
was employed as the optimization method with an initial 
learning rate of 0.001, a batch size of 4, and momentum set to 
0.9. The training utilized the cosine learning rate adjustment 
strategy with a period of 200 and a maximum learning rate 
equal to the initial learning rate, and the minimum learning rate 
set to 1×10-6. Validation was conducted every 60 iterations, 
and if the validation results did not improve for 10 consecutive 
times, the training was stopped.
Based on artery and vein segmentation, calculation of 
vascular parameters  Localization and segmentation of the 
optic disc and macula were performed in fundus images. The 
distance between the center of the optic disc and the center 
of the macular fovea was estimated to be 4.76 mm, serving 
as a standard for converting length or distance parameters in 
the parameters. The regions were defined as follows: A-zone, 

Table 1 Vessel dataset statistics

Dataset Distinguish between 
artery and vein Training Validation Testing Total

CHASEDB1 No 20 2 6 28

STARE No 14 2 4 20

DRIVE No 17 3 20 40

HRF Yes 31 5 9 45

LES-AV Yes 16 2 4 22

Total 98 14 43 155

Figure 1 Workflow diagram of this study  OGTT: Oral glucose tolerance test.
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the area within 0 to 0.5 times the optic disc diameter from the 
optic disc edge; B-zone, the area within 0.5 to 1.0 times the 
optic disc diameter from the optic disc edge; C-zone, the area 
within 1.0 to 2.0 times the optic disc diameter from the optic 
disc edge (Figure 3)[12]. Based on the distance from the optic 
disc boundary, the retina was divided into zones, and relevant 
vascular parameters were calculated. Detailed retinal vascular 
parameters were shown in Table 2[12-15,17,30-32].
Through the measurement and analysis of the above 
parameters, we can compare the retinal vascular parameters of 
individuals with different metabolic states, thereby gaining a 
deeper understanding of the impact of prediabetes and diabetes 
on retinal vascular parameters.
Statistical Analysis  Before comparing the differences 
between groups in metric data, a test for homogeneity of 
variances is conducted. When the homogeneity of variances 
is not significantly different, analysis of variance (ANOVA) is 
directly used for comparison. If the homogeneity of variances 
test indicates a significant difference, Welch ANOVA is 
employed for comparison. Statistical analysis is performed 
using SPSS version 26.0, and a significance level of P<0.05 is 
considered statistically significant.
RESULTS
Basic Statistical Data  This study included a total of 600 
fundus color photographs, with 200 in the normal group, 200 
in the prediabetes group, and 200 in the diabetes group. The 
statistics encompassed 26 parameters, including artery caliber/
vein caliber, fractal dimension (FD), arteriovenous ratio 
(AVR), artery curvature/vein curvature, standard deviation 
of vessel widths (BSTD) of artery, vein BSTD, artery simple 
curvatures/vein simple curvatures, artery branching coefficient/
vein branching coefficient, artery number of first branching 
(Num1stBa)/vein Num1stBa, artery branching angle/
vein branching angle, artery angle asymmetry/vein angle 
asymmetry, artery Length-diameter ratio (LDR)/vein LDR, 
artery asymmetry ratio/vein asymmetry ratio, artery junctional 
exponent deviation (JED)/vein JED, vessel length density and 
vessel area density. The basic statistical descriptions of these 
parameters are presented in Table 3.
Homogeneity of Variance Test among Groups  A 
homogeneity of variance test was conducted to examine 
whether there were significant differences in the fluctuation 
(standard deviation) of data among different groups. The 
results indicated that for 15 parameters, including artery 
curvature, vein curvature, artery BSTD, artery branching 
coefficient, artery Num1stBa, vein Num1stBa, vein branching 
angle, vein angle asymmetry, artery LDR, vein LDR, artery 
JED, vein JED, vessel area density, no significant differences 
were observed (P>0.05). This suggests consistent data 
fluctuation among groups, indicating homogeneity of variance, 

making it suitable for further analysis using variance analysis 
to study differences.
Additionally, for 13 parameters, including artery caliber, vein 
caliber, FD, AVR, vein BSTD, artery simple curvatures, vein 
simple curvatures, vein branching coefficient, artery branching 
angle, artery angle asymmetry, artery asymmetry raito, vein 
asymmetry raito, vessel length density, significant differences 
were observed (P<0.05). This implies inconsistent data 
fluctuation among the aforementioned parameters, indicating 
heterogeneity of variance. Therefore, Welch ANOVA tests 
were conducted to investigate the relationship between these 
parameters.
Comparison of Retinal Vascular Parameters among 
Different Glycemic States  The results of the ANOVA 
demonstrated significant differences (P<0.05) among different 
groups for 10 parameters, including artery caliber, FD, vein 
curvature, artery Num1stBa, vein Num1stBa, artery branching 
angle, vein branching angle, artery angle asymmetry, vessel 

Figure 3 Vascular automatic recognition and segmentation mode 

image (B-zone defined as the area within 0.5 to 1.0 times the optic 

disc diameter from the optic disc edge; C-zone defined as the area 

within 1.0 to 2.0 times the optic disc diameter from the optic disc edge).

Figure 2 Illustration of the retinal segmentation model of the retinal 

artery and vein.

Retinal vascular parameters based on deep learning
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length density, and vessel area density. This suggests that there 
are distinct variations in the retinal vascular parameters among 
individuals with different glycemic states, as illustrated in 
Table 4 and Figure 4.
DISCUSSION
Numerous studies have previously indicated that retinal vascular 
parameters can serve as biomarkers for future cardiovascular 
diseases, neurodegenerative disorders, metabolic status, and 
ocular diseases[14,33-34]. However, there is still insufficient 
research on predictive studies regarding the progression of 
prediabetes and diabetes. Nevertheless, due to the challenges 
associated with the observation and quantification of retinal 
vascular parameters, traditional measurement methods are 
evidently inadequate, and AI-based image segmentation 
techniques hold promise in addressing this issue.
This study aimed to automatically identify and quantify 
retinal vascular parameters through AI image segmentation 
techniques. In the preliminary stages of the research, the 

U-Net network was chosen as the foundational architecture 
for arterial-venous segmentation. We replaced the encoder 
part of U-Net with the Inception-V3 backbone network and 
introduced the Atrous Spatial Pyramid Pooling (ASPP) module 
to extract a broader range of features. Thereafter, we used the 
softmax function to distinguish between arteries and veins 
in the segmented vascular areas. After thorough training, the 
model achieved automatic segmentation of retinal vessels and 
quantitative output of vascular parameters.
By collecting and comparing fundus photographs of normal 
individuals, patients with prediabetes, and patients with 
diabetes, and utilizing the retinal vascular parameters automatic 
segmentation model developed in this study, multiple potential 
parameter parameters were output. The results indicated 
significant differences in 10 retinal vascular morphological 
parameters, including artery caliber, fractal dimension, vein 
curvature, artery branching points, vein branching points, artery 
branching angle, vein branching angle, artery angle asymmetry, 

Table 2 Vascular parameters and descriptions

Retinal measure Abbreviation Description Zone

C e n t r a l  r e t i n a l  a r t e r y 
equivalent/central retinal 
vein equivalent

Artery caliber/vein caliber Summary measures of vascular equivalent caliber representing the equivalent 
single-vessel parent width for the six largest arterioles and venules. Based on the 
Knudston-Parr-Hubbard formula (1)[13].

B

Fractal dimension FD Global summary measure of branching complexity of the retinal vascular tree 
reflecting how thoroughly the branching pattern fills two-dimensional spaces. 
Larger values represent a more complex pattern. Calculated from the skeletonized 
line tracing using the box-counting method[14].

C

Arteriovenous ratio AVR The ratio between summarized arteriolar caliber measurements (CRAE) with 
respect to the summarized venular caliber (CRVE). Formula: AVR=CRAE/CRVE[13].

B

Curvatures tortuosity Artery curvature/vein 
curvature

Integral of the curvature squared along the vessel path, normalized by the total 
path length. Measurements are summarized to represent the average tortuosity of 
arterioles and venules separately with smaller values reflecting straighter vessels[30].

C

Standard deviation arteriole Artery BSTD The standard deviation of arteriolar widths[14]. B

Standard deviation venule Vein BSTD The standard deviation of venular widths[14]. B

Simple tortuosity Artery simple curvatures/
vein simple curvatures

Simple tortuosity is estimated as the actual path length of the vessel segment 
divided by the straight line length. Measurements are summarized to represent the 
average tortuosity of arterioles and venules separately[30].

C

Branching coefficient Artery branching coefficient/
vein branching coefficient

Calculated from average number of first branching vessels measurements. 
Branching coefficient reflects the relationship between parent vessels and 
branches. Defined as the summed square of the mean vessel widths of each branch 
or daughter vessel divided by the square of the mean width of the parent vessel[12].

C

Number of first branching Artery Num1stBa /vein 
Num1stBa

The number of arterioles and venules with a first bifurcation, branch, or daughter 
vessel in zone C[14].

C

Branching angle Artery branching angle/vein 
branching angle

The first angle subtended between 2 daughter vessels at each vascular 
bifurcation[12].

C

Angle asymmetry Artery angle asymmetry/vein 
angle asymmetry

The difference between 2 daughter (branching) vessel angles[12]. C

Length-diameter ratio Artery LDR/vein LDR Length to diameter ratio is the length of the vessel from the midpoint of one 
bifurcation to the midpoint of the next bifurcation. It is expressed as a ratio to the 
diameter of the parent vessel at the first bifurcation[15].

C

Asymmetry ratio Artery asymmetry raito/vein 
asymmetry raito

The cross-sectional area of the smaller branch divided by that of the larger[31]. C

Junctional exponent deviation Artery JED/vein JED Calculated from average number of first branching vessels measurements. Junctional 
exponent deviation reflects the deviation from the optimum ratio of vessel widths[31].

C

Vessel length density Vessel length density The vessel length density was defined as vessel length per unit area based on the 
skeletonized image[32].

C

Vessel area density Vessel area density The vessel density was defined as the proportion of vessel area with blood flow 
over the total area measured[17].

C
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vessel length density, and vessel area density (P<0.05) among 
the normal group, prediabetes group, and diabetes group. This 
implies that there are significant differences in retinal vascular 
parameters among individuals with different glycemic states. 
These parameters hold the potential to be used for the early 
detection of diabetic retinopathy and to assist in the diagnosis 
of prediabetes and diabetes.
Among these, the study found significant statistical differences 
in arterial diameter between different groups. As prediabetes 
and diabetes progress, the diameter of retinal arteries gradually 
decreases, and this difference is statistically significant. Retinal 
artery diameter quantifies the diameter of retinal arteries[35] and 
serves as an important parameter reflecting the morphology 
of systemic arteries. Changes in retinal vessel diameter 
reflect the slow accumulation of chronic pathophysiological 
changes related to aging, inflammation, nitric oxide-dependent 
endothelial dysfunction, and other conditions[36-37]. Previous 
research has shown that a decrease in retinal artery diameter 
can be used to predict diabetes, coronary heart disease, and 
metabolic syndrome[33,37-39]. This study corroborates previous 

findings but adds a comparison of fundus photographs of 
individuals with prediabetes and diabetes. The results indicate 
that with the gradual deterioration of patients’ glycemic 
function, the retinal artery diameter gradually decreases to the 
point of being visually indistinguishable. Although the specific 
mechanism of the impact of glycemic status on retinal artery 
diameter is not yet clear, this parameter holds promise as an 
important biomarker for predicting prediabetes and diabetes in 
the future.
As a parameter of vascular branching complexity, FD 
quantitatively summarizes the overall structure of the retinal 
circulation. Its primary advantage is that it is not affected by 
image magnification due to the refractive properties of the 
eye or retinal imaging. In the retina, a decrease in vascular 
FD suggests local hypoxia leading to vascular rarefaction 
and collapse[40]. Zekavat et al[34], using a convolutional neural 
network to segment retinal microvasculature from 54 813 
retinal fundus images of 97 895 UK Biobank participants, 
found that a decreased retinal vascular FD is significantly 
associated with higher mortality rates, hypertension, congestive 

Table 3 Basic statistical descriptions of retinal vascular parameters

Parameters Mean Standard deviation Median IQR Kurtosis Skewness
Artery caliber 155.254 29.535 156.872 30.658 3.575 -0.967
Vein caliber 225.883 39.981 227.681 43.245 4.498 -0.946
FD 1.522 0.071 1.537 0.055 64.852 -6.159
AVR 0.691 0.153 0.689 0.106 63.236 -2.749
Artery curvature 0.442 0.189 0.401 0.23 2.561 1.338
Vein curvature 0.556 0.188 0.53 0.231 1.908 0.969
Artery BSTD 16.126 7.3 15.206 9.955 1.17 0.542
Vein BSTD 28.642 9.906 28.295 12.858 0.212 0.253
Artery simple curvatures 1.074 0.079 1.076 0.017 174.519 -12.89
Vein simple curvatures 1.081 0.08 1.082 0.018 169.001 -12.537
Artery branching coefficient 1.378 1.396 1.26 0.458 176.868 11.838
Vein branching coefficient 1.195 1.321 1.057 0.256 269.799 14.473
Artery Num1stBa 2.863 1.654 3 2 -0.239 0.371
Vein Num1stBa 2.903 1.501 3 2 -0.092 0.322
Artery branching angle 88.488 38.491 85.641 32.189 2.898 0.408
Vein branching angle 89.58 32.947 86.098 33.665 2.259 0.147
Artery angle asymmetry 33.301 17.233 32.648 20.367 0.896 0.345
Vein angle asymmetry 35.927 16.816 36.242 18.936 1.097 0.257
Artery LDR 6.343 6.93 5.058 10.394 0.91 1.045
Vein LDR 6.528 6.483 5.943 10.951 0.145 0.813
Artery asymmetry raito 0.433 0.202 0.445 0.242 0.085 -0.226
Vein asymmetry raito 0.366 0.181 0.355 0.235 0.359 0.331
Artery JED -0.144 0.481 -0.115 0.574 1.338 -0.46
Vein JED 0.14 0.44 0.178 0.453 8.879 -1.879
Vessel length density 0.031 0.006 0.032 0.007 2.918 -1.057
Vessel area density 0.109 0.023 0.112 0.026 3.325 -1.088

FD: Fractal dimension; AVR: Arteriovenous ratio; BSTD: Standard deviation of vessel widths; Num1stBa: Number of first branching; LDR: Length-

diameter ratio; JED: Junctional exponent deviation; IQR: Interquartile range.

Retinal vascular parameters based on deep learning
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Figure 4 Statistically significant retinal vascular parameters with inter-group differences  A: Artery caliber, P=0.008; B: FD, P=0.000; C: vein 

curvature, P=0.003; D: Artery Num1stBa, P=0.049; E: Vein Num1stBa, P=0.041; F: Artery branching angle, P=0.005: G: Vein branching angle, 

P=0.001; H: Artery angle asymmetry, P=0.003; I: Vessel length density, P=0.000; J: Vessel area density, P=0.000. Num1stBa: Number of first 

branching; FD: Fractal dimension.

heart failure, renal failure, type 2 diabetes, sleep apnea, anemia, 
and various eye diseases. This study also found that genetically, 
these biologically significant retinal vascular parameters 
are associated with pathways related to angiogenesis and 
inflammation. Wu et al[41] found that the superficial retinal 
vascular FD linearly decreases with worsening kidney function 
and can serve as an effective non-invasive assessment for 
predicting and monitoring kidney function progression. 
Other studies indicate correlations between retinal FD and 
cerebral blood flow and cerebrovascular events in patients 
with diabetes[40,42]. The results of this study reveal that, with 
the gradual progression of impaired glycemic function in 
patients, retinal FD gradually decreases, and this difference 
is statistically significant. Therefore, it appears that subtle 
changes in retinal FD occur when there is damage to patients’ 
glycemic function.
This study found a significant statistical difference in retinal 
vein curvature among the three patient groups. Notably, 
compared to healthy individuals, the retinal vein curvature 
increased in patients with prediabetes, while it significantly 
decreased in patients with diabetes. Previous research suggests 
that an increase in vascular tortuosity is indicative of vascular 
wall dysfunction and damage to the blood-retinal barrier. 
Evaluating retinal vascular tortuosity may aid in the early 
detection of retinal vascular diseases[30,43]. In a quantitative 

analysis of retinal vascular features related to retinopathy of 
prematurity, images of “aggressive posterior retinopathy of 
prematurity” had higher vein curvature than those of “plus 
disease”, suggesting that retinal vein curvature may be a 
differentiating feature between aggressive posterior retinopathy 
of prematurity and plus disease[44]. In the diagnosis of systemic 
chronic diseases, retinal vascular tortuosity has been identified 
as an early predictive parameter for diabetes, cerebrovascular 
diseases, stroke, and ischemic heart disease[45]. However, 
research on this parameter’s predictive role in prediabetes is 
currently lacking. The results of this study suggest that, during 
the process of glycemic dysfunction, retinal vein curvature 
exhibits a trend of first increasing and then decreasing.
Additionally, this study found that four other vascular 
parameters (including artery Num1stBa, vein Num1stBa, 
artery branching angle, and vein branching angle) also 
exhibited a trend of first increasing and then decreasing 
during the progression of glycemic dysfunction. Similar to 
FD parameter parameters, these four parameters represent the 
complexity of retinal vascular branching. In a cross-sectional 
study evaluating the impact of myopia on retinal vascular 
branching, the results showed that the angle of retinal small 
artery branching, the angle of small artery branching in highly 
myopic patients, and the asymmetry of the vein angle were 
significantly lower than those in low to moderately myopic 
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and non-myopic groups. This study’s results trend similarly 
to those of our study[12]. This suggests that in prediabetes, the 
complexity of retinal vascular branching increases, possibly 
as a compensatory pathophysiological change in response to 
early vascular wall dysfunction. With further impairment of 
glycemic function, this compensatory mechanism fails, leading 
to a significant decrease in the complexity of retinal vascular 
branching. Therefore, further research is needed to explore 
the developmental mechanisms and diagnostic significance of 
these parameters in prediabetes and diabetes populations.
In Sun et al’s[12] study, a decrease in the asymmetry of the vein 
angle was related to high myopia, while the asymmetry of the 
artery angle was not associated with high myopia. In contrast 
to results associated with high myopia, this study found that 
the asymmetry of retinal arterial branching angles gradually 
decreased with the development of prediabetes and diabetes, 
with significant statistical differences. Although it is unknown 

how the asymmetry of these vascular angles affects the 
pressure in the vascular system and what impact these changes 
may have on the retina of patients with diabetes, past research 
suggests that an increased asymmetry of retinal vessel angles 
may be related to microvascular damage[46]. Therefore, changes 
in this parameter may indicate functional disturbances in the 
microvascular system of patients.
As prediabetes and diabetes progress in patients, vessel length 
density and vessel area density gradually decrease, and the 
differences have significant statistical significance. Vessel 
length density and vessel area density indicate the perfusion 
level of the inner layer tissue structure of the retina[17]. It 
suggests that before the onset of DR, there is already a 
decline in retinal perfusion, albeit these subtle changes being 
challenging to identify with the naked eye. The measurement 
of vascular parameters assisted by AI aids in the early detection 
of such changes.

Table 4 ANOVA results among different groups                                                                                                                                                              mean±SD

Parameter name Normal group (n=200) Prediabetes group (n=200) Diabetes group (n=200) F/Welch F P

Artery caliber 158.82±22.35 157.37±28.28 149.37±35.94 4.936 0.008

Vein caliber 229.70±31.70 227.67±34.71 220.07±50.87 2.518 0.082

FD 1.53±0.05 1.54±0.03 1.50±0.10 15.231 0.000

AVR 0.70±0.08 0.69±0.10 0.68±0.23 0.389 0.678

Artery curvature 0.42±0.17 0.45±0.20 0.45±0.19 1.308 0.271

Vein curvature 0.56±0.19 0.59±0.20 0.52±0.16 5.754 0.003

Artery BSTD 16.00±6.69 15.79±7.56 16.61±7.65 0.656 0.519

Vein BSTD 29.21±10.29 28.83±8.49 27.84±10.82 0.875 0.418

Artery simple curvatures 1.08±0.02 1.08±0.02 1.06±0.14 1.802 0.167

Vein simple curvatures 1.09±0.02 1.09±0.02 1.07±0.14 2.266 0.105

Artery branching coefficient 1.11±0.85 1.37±2.03 1.10±0.58 2.626 0.073

Vein branching coefficient 1.11±0.85 1.37±2.03 1.10±0.58 1.623 0.199

Artery Num1stBa 2.88±1.62 3.06±1.58 2.65±1.74 3.027 0.049

Vein Num1stBa 2.75±1.51 3.12±1.43 2.84±1.54 3.208 0.041

Artery branching angle 85.87±31.74 96.19±42.54 83.28±39.45 5.471 0.005

Vein branching angle 92.73±36.48 93.47±30.76 82.29±30.10 7.142 0.001

Artery angle asymmetry 35.42±17.91 34.56±16.08 29.79±17.21 5.982 0.003

Vein angle asymmetry 35.87±18.34 36.84±15.46 35.05±16.54 0.555 0.574

Artery LDR 6.32±7.37 7.01±6.87 5.68±6.47 1.793 0.167

Vein LDR 6.00±6.76 7.21±6.42 6.37±6.22 1.809 0.165

Artery asymmetry raito 0.42±0.19 0.46±0.18 0.42±0.23 2.969 0.053

Vein asymmetry raito 0.35±0.18 0.38±0.16 0.37±0.20 1.853 0.158

Artery JED -0.13±0.50 -0.13±0.49 -0.17±0.44 0.533 0.587

Vein JED 0.18±0.46 0.12±0.46 0.12±0.40 1.173 0.31

Vessel length density 0.0323±0.0055 0.0319±0.0055 0.0277±0.0073 28.031 0.000

Vessel area density 0.1130±0.0205 0.1134±0.0201 0.1002±0.0257 22.213 0.000

ANOVA: Analysis of variance; FD: Fractal dimension; AVR: Arteriovenous ratio; BSTD: Standard deviation of vessel widths; Num1stBa: Number 

of first branching; LDR: Length-diameter ratio; JED: Junctional exponent deviation.

Retinal vascular parameters based on deep learning
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However, this study has some limitations. First, it is a cross-
sectional study, and therefore, causal relationships cannot be 
determined. Second, the sample size of the study is relatively 
small, limiting its ability to represent populations from 
different regions and ethnicities. Finally, although the study 
identified differences in retinal vascular parameters under 
different glycemic states, the specific biological mechanisms 
underlying these parameters remain unclear. Future research 
could further validate the effectiveness of these parameters as 
predictive factors, potentially making them useful tools for 
early screening and monitoring of prediabetic and patients with 
diabetes.
In conclusion, while this study provides initial insights into 
the differences in retinal vascular parameters under different 
glycemic states, there are still many questions that need further 
exploration and resolution. By addressing these limitations 
and continuing in-depth exploration, we can better understand 
the role of these parameters in the development of prediabetes 
and diabetes, providing more valuable information for clinical 
practice.
This study developed and trained an automatic quantification 
model for retinal vascular parameters based on artificial 
intelligence image segmentation technology. The model was 
used to compare and analyze retinal vascular parameters under 
different glucose metabolism states. The final results revealed 
significant differences in multiple retinal vascular parameters 
among normal individuals, pre-patients with diabetes, and 
patients with diabetes. These differences encompassed 
10 specific parameters, including artery caliber, FD, vein 
curvature, artery Num1stBa, vein Num1stBa, artery branching 
angle, vein branching angle, artery angle asymmetry, vessel 
length density, and vessel area density. The identification of 
these parameters through artificial intelligence image segmentation 
technology holds promise as a useful tool for early screening 
and monitoring of pre-diabetes, diabetes, and DR. 
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