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Abstract
● AIM: To investigate the effects of vialinin A on viability of 
human retinal endothelial cells (HRECs) under high glucose 
condition and its potential mechanism.
● METHODS: The HRECs were divided into four groups: 
normal glucose control group (NG, 5 mmol/L D-glucose), high 
glucose group (HG, 30 mmol/L D-glucose), HG+1 μmol/L
vialinin A group, and HG+5 μmol/L vialinin A group. The 
cell viabilities were measured with cell counting kit-8 (CCK-8) 
assay for proliferation, with scratch assay for migration, and 
tube formation, for evaluation of the impact of vialinin A 
on cellular behaviour. Real-time PCR and Western blotting 
were used to determine the expression level of vascular 
endothelial growth factor (VEGF).
● RESULTS: The proliferative capacity and migration of 
HRECs was reduced by 5 μmol/L vialinin A in high glucose 
environment (both P<0.05). Vialinin A also inhibited high-
glucose-induced tube formation of HRECs. The expression 
level of VEGF and PI3K in HRECs was also significantly 
decreased by vialinin A (P<0.05).
● CONCLUSION: Vialinin A inhibits the cell viability of 
HRECs. It may serve as a potential target for anti-angiogenic 
therapy.
● KEYWORDS: vialinin A; vascular endothelial growth 
factor; human retinal endothelial cells; cell viability
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INTRODUCTION

D iabetes retinopathy (DR) is a serious impact on quality 
of life, and a problem with significant global health 

impact[1]. According to the data of Visual Loss Expert Group, 
1.07% of blindness was associated with DR[2]. With the 
progress in early diagnosis and technology, the incidence 
of blinding eye diseases is gradually declining, but with the 
increase of the population base, rapid aging, and lifestyle 
changes, the number of diabetes patients will reach 700 
million by 2045[3]. The latest research indicates that the global 
prevalence of DR is 22.27%, while three-quarters of diabetes 
patients who have been more than 15y will be affected, of 
which 20% will develop into proliferative DR after 25y of 
diabetes[3-5]. As is well known, neovascularization is the most 
typical pathological feature of proliferative DR[6]. These 
new blood vessels are very fragile, and if not treated in time, 
ultimately lead to blindness. Therefore, finding effective 
measures to control neovascularization remains an important 
and urgent task.
Although the underlying mechanism of proliferative DR 
abnormal angiogenesis is not fully understood, a series of 
evidence suggested that chronic hyperglycemia and high 
glycated haemoglobin levels were the main risk factors for 
DR[7-8]. More and more evidence suggested that hyperglycemia 
secrete various angiogenic cytokines and chemokines, such 
as vascular endothelial growth factor (VEGF), tumor necrosis 
factor-α, and fibroblast growth factor[9-11]. Among them, 
VEGF was considered the most important stimulating factor. 
It is closely related to angiogenesis, promoting migration, 
proliferation, and tubular formation[12].
At present, anti-VEGF is the main therapeutic target for 
angiogenesis. Although anti-VEGF therapy can significantly 
improve retinal hemorrhage and edema, there is a potential 
for retinal ischemia and hypoxia. Over time, the efficacy of 
anti-VEGF drugs decreases, leading to increased secretion 
of growth factors and leakage of blood vessels, resulting 
in recurrent bleeding and macular edema[13-15]. In addition, 
although many clinical trials had shown that anti-VEGF 
treatment improve the severity scale score of non-proliferative 
DR, further research is needed to assess whether this will have 
a positive impact on long-term vision outcome, and whether 
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the benefits of routine use in the real world outweigh the 
risks[16]. Therefore, further research on new drug targets to 
control DR is still urgently needed.
Vialinin A is an antioxidant compound isolated from edible 
mushrooms[17]. There were research reported that vialinin A is 
an effective inhibitor of ubiquitin-specific protease 5, tumor 
necrosis factor-α, and Sentrin/sumo-specific protease 1[18-20]. 
Despite its anti-inflammatory and anti-cancer properties, its 
specific role in neovascularization in DR is still uninformed. 
Therefore, we try to explore the role and possible mechanisms 
of vialinin A in neovascularization, to provide new ideas for 
the treatment of DR.
MATERIALS AND METHODS
Cell Culture  Human retinal microvascular endothelial 
cell lines (HRECs) were purchased from Ya Ji Biological 
Technologies (Shanghai, China) and routine cultured in 5% 
CO2 at 37℃ in Dulbecco’s modified Eagle medium (Cyclone, 
Utah, USA) supplemented with 10% fetal bovine serum 
(Cölbe, Germany). Experiments on logarithmic growth phase 
of cells were conducted.
Cell Viability Assay  Cells were seeded in 96-well plates at 
a density of 1500 cells/well overnight. Each experimental 
group was treated with 1, 5, and 10 µmol/L vialinin A. After 
treated for 24, 48, and 72h, cell viability was determined 
by cell counting kit-8 (CCK-8) assay. CCK-8 solution 
(Kumamoto, Japan) 10 μL was added to each well for 4h. The 
absorbance was recorded at a wavelength of 450 nm. Because 
the concentration of 10 µmol/L vialinin A affects cell growth. 
Based on previous research methods[21-23], the concentrations 
of 1 and 5 µmol/L vialinin A were chosen in the subsequent 
experiments and cells were divided into 4 groups: normal 
glucose group (NG, 5 mmol/L glucose), high glucose group 
(HG, 30 mmol/L glucose), HG+1 µmol/L vialinin A group, and 
HG+5 µmol/L vialinin A.
Cell Proliferation Assay  The CCK-8 assay was used to 
observe the cell proliferation activity. First, cells were seeded 
into 96 well plates at a density of 1500 cells/well. Vialinin 
A needs to be dissolved with dimethyl sulfoxide (DMSO), 
so we added a DMSO control group. The cells were treated 
with 5 mmol/L glucose, DMSO, 30 mmol/L glucose, HG+1 
µmol/L vialinin A, and HG+5 µmol/L vialinin A for 24h. The 
absorbance value at a wavelength of 450 nm was detected.
Wound-healing Assay  The cells with logarithmic growth 
phase were selected, and inoculated into a 6-well plate with 
20 000 cells per well. When the cell fusion rate reaches 80% 
wounded cells by a plastic pipette tip (200 μL tip) and rinsed 
with sterile phosphate buffer saline (PBS) three times to 
remove detached cells and incubated with serum-free medium 
containing different concentrations of glucose with or without 
vialinin A. The migration monolayer was photographed at 0 

and 24h. Five fields were photographed for each well under 
the inverted microscope. The scratch repair rate was calculated 
as: Scratch repair rate=(0h scratch area−24h scratch area)/0h 
scratch area×100%.
Tube Formation Assay Capillary tube formation in vitro assay 
was performed as previously described with the manufacturer’s 
instructions. Briefly, 60 μL Matrigel (Bedford, MA, USA) 
was added to a pre-cooled 96-well plate immediately and 
polymerized. The cells were seeded on the solidify Matrigel 
immediately at a density of 1.5×104 cells per well and cultured 
for 8h. The pictures were photographed and the numbers 
of formed meshes were qualitatively assessed by using an 
Angiogenesis analyzer (Image J, National Institutes of Health 
Bethesda, MD, USA).
Real-time Polymerase Chain Reaction Cells were harvested 
and total RNA was isolated using the RNeasy Mini Kit 
according to the manufacture’s protocol. Reverse transcription 
(RT) of RNA was carried out in a 20 μL final volume using 
reverse transcription kit (Ominiscript RT Kit). The cDNA was 
stored at -20℃ before used in real-time polymerase chain 
reaction (PCR). RT-PCR was performed using a QuantiNova 
SYBR Green PCR kit (Qiagen) on an Applied Biosystems 
Stepone real-time PCR System to detect the expression of 
mRNA of VEGF. The primers sequences were summarized in 
Table 1. The relative abundances of VEGF were analyzed by 
2-ΔΔCt method and normalized with GAPDH, respectively.
Western Blotting  Cells were harvested and lysed in 
100 μL of lysis buffer with protease inhibitor cocktail for total 
protein extraction. The protein samples were separated by 
10% SDS-PAGE and then electrophoretically transferred to a 
polyvinylidene fluoride membrane. Nonfat dried milk (5%) in 
PBS-T was used to block the membranes and then incubated 
with the rabbit anti-VEGF (Santa Cruz, California, USA, 
1:500) and anti-phosphoinositide 3-kinase (PI3K; BioLegend, 
California, USA, 1:1000) antibodies at 4℃ overnight followed 
by the horseradish peroxidase-conjugated secondary antibodies 
(Beyotime Institute of Biotechnology, Shanghai, China) for 1h 
at 37℃. Immunoblots were visualized by chemiluminescence 
detection reagents (Cell Signing Technology, Danvers, MA, 
USA) and the picture was photographed by ChemiDocTM MP 
Imaging System (BIO-RAD, California, USA). The gray value 
of each protein band was determined by Image J software and 
β-actin (Beyotime Institute of Biotechnology, Shanghai, China) 
was served as an internal control.

Table 1 Specific set of primers of RT-PCR

Gene Forward (5՛-3՛) Reverse (5՛-3՛)

GAPDH ACCACAGTCCATGCCATCAC TCCACCACCCTGTTGCTGTA

VEGF-A TGGTCCCAGGCTGCACCCAT CGCATCGCATCAGGGGCACA

RT-PCR: Reverse transcription-polymerase chain reaction.

Vialinin A on HRECs’ viability
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Statistical Analysis  SPSS 21.0 software (SPSS, Armonk, 
NY, USA) and GraphPad Prism 8.0 (GraphPad Software, San 
Diego, CA, USA) program were used for statistical analyses 
and graphic drawings. ANOVA was performed to assess 
statistical differences. P<0.05 was considered statistically 
significant.
RESULTS
Effect of Vialinin A on HRECs  Effect of vialinin A on 
HRECs were analyzed by CCK-8. Vialinin A 5 μmol/L had 
no significant impact on the activity of HRECs in 24h 
(Figure 1). However, vialinin A 10 μmol/L reduced the 
growth ability of HRECs. Therefore, referring to previous 
study[24], 5 μmol/L vialinin A was used as an optimal level in 
the following studies.
Effect of Vialinin A on HRECs Proliferation Induced by 
High Glucose  Compared with the NG group, DMSO had 
little effect on cell proliferation ability, and the difference was 
not statistically significant (P>0.05). Compared to HG, the 
proliferation of high-glucose-induced HRECs was inhibited by 
5 μmol/L vialinin A (P<0.05; Figure 2). 
Effect of Vialinin A on HRECs Migration Induced by High 
Glucose  Compared to NG group, treatment with 30 mmol/L
glucose significantly accelerated wound closure, whereas 
treatment of 5 μmol/L vialinin A inhibited high-glucose-
induced cell migration (P<0.05; Figure 3). 
Effect of Vialinin A on Tube Formation of HRECs  As 
shown in Figure 4, capillary-like structures was significantly 
increased under HG conditions (P<0.05). However, high 
glucose-induced tube formation was significantly inhibited by 
5 μmol/L vialinin A. 
Effect of Vialinin A on VEGF Expression  As illustrated in 
Figure 5, high glucose significantly increased VEGF, which 
was markedly suppressed by 5 μmol/L vialinin A (P<0.05). 
Effect of Vialinin A on PI3K in High Glucose-induced 
HRECs  Due to the downstream PI3K of VEGF, it could 
regulate the proliferation, migration, and sprouting of vascular 
endothelium, as well as the sensitivity of endothelial cells 
to fluctuations in PI3K[25-26]. To elucidate the underlying 
mechanisms of Vialinin A on the angiogenic of HRECs, we 
detected the protein of PI3K in each group. The levels of PI3K 
were significantly up-regulated in high glucose-treated cells, 
while these changes were partly reversed by the treatment of 
vialinin A in a dose-dependent manner (P<0.05; Figure 6).
DISCUSSION
Angiogenesis is an important process of growth and 
development, but due to the imbalance of various positive and 
negative vascular regulation in the vascular microenvironment, 
it causes dysfunction of endothelial cells, leading to 
disease progression[27]. Retinal endothelial dysfunction is a 
primary pathological mechanism of DR. As one of the most 

metabolically active tissues, unstable blood glucose can lead 
to endothelial dysfunction in the retina[28]. Hyperglycemia 
can lead to a decrease in the transport rate of microvascular 
endothelial cells, resulting in an increase in intracellular polyol 
pathway flow and signaling pathways[29-30]. This makes retinal 
vascular endothelial cells the primary target of hyperglycemic 
injury, causing retinal endothelial cell damage and disruption 
of the blood-retinal barrier, leading to the accumulation of 
extracellular fluid within the macula, as well as thickening of 
the capillary basement membrane and resulting extracellular 
matrix deposition[31]. At present, inhibiting the expression of 
VEGF and its complex is still the hot-spot to treat diabetes 
retinopathy and cancer[32-33]. Therefore, it is significant to 

Figure 1 Influence of vialinin A on HRECs  Cells were intervened with 

different concentrations of vialinin A. The absorbance was recorded 

at a wavelength of 450 nm. HRECs: Human retinal microvascular 

endothelial cell lines; OD: Optical density.

Figure 2 Effect of vialinin A on high-glucose-induced proliferation  

CCK-8 was used to detect cell proliferation. The data are repeated 

three times. aP<0.05 vs HG group. NG: Normal glucose; HG: High 

glucose; DMSO: Dimethyl sulfoxide; OD: Optical density.
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explore the function of retinal vascular endothelial cells in high 
glucose for the treatment of DR.
This study simulates the pathological state of DR in vivo using 
high glucose stimulation of HRECs. Similar to other studies, 
our work also indicates that high glucose promotes the viability 
of retinal vascular endothelial cells[34]. Our current work and 
previous research findings[22] indicated that high glucose can 
enhance the angiogenic activity of vascular endothelial cells.
Vialinin A is a bioactive compound extracted from edible 
mushrooms[17]. Previous studies had found that vialinin A had 

effective anti-inflammatory and anti-cancer effects. Vialinin 
A exerted an anti-cancer role by inhibiting the production 
of reactive oxygen species[24]. Vialinin A reduced liver 
inflammation and fibrosis by inhibiting the Rheb/mTOR 
signaling pathway[35]. In addition, vialinin A also reduced the 
inflammatory response in the lungs by regulating T cells[36]. 
Vialinin A reduced neuronal apoptosis and protect against 
neurological dysfunction caused by cerebral ischemia-
reperfusion injury[37]. In our study, vialinin A prevents the 
high glucose-induced vascularization process of HRECs. As a 

Figure 3 Effect of vialinin A on high-glucose induced migration  A: Scratch experiments were used to analyze the migration ability of cells 

(×200); B: Statistical analysis of healing rates of each group. aP<0.05 vs NG group, cP<0.05 vs HG group. NG: Normal glucose; HG: High glucose; 

HRECs: Human retinal microvascular endothelial cell lines.

Figure 4 Effect of vialinin A on HG-induced tube formation  A: Matrigel experiments were used to analyze the tube formation of  HRECs (×200); 

B: Statistical analysis of vascular meshes of each group. aP<0.05 vs NG group, cP<0.05 vs HG group. NG: Normal glucose; HG: High glucose; 

HRECs: Human retinal microvascular endothelial cell lines.

Figure 5 Effect of vialinin A on VEGF expression in HRECs  A: VEGF expression by RT-PCR; B: VEGF protein expression by Western blotting; 

C: Ratios of VEGF to β-actin. aP<0.05 vs NG group, cP<0.05 vs HG group. NG: Normal glucose; HG: High glucose; HRECs: Human retinal 

microvascular endothelial cell lines; VEGF: Vascular endothelial growth factor; RT-PCR: Reverse transcription-polymerase chain reaction.

Vialinin A on HRECs’ viability
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consequence, we believe that vialinin A may be a useful target 
for intervention in ocular angiogenesis.
At present, anti-VEGF therapy had become an effective 
weapon for treating neovascularization. In non-proliferative 
and proliferative DR patients, the elevated stimulation of 
nuclear factor κB may be associated with increased VEGF 
expression[38]. In addition, VEGF, as a pro-inflammatory 
molecule, can also promote macrophage inflammatory 
protein-1. The expression of monocyte chemoattractant 
protein-1, interleukin-8, and other proinflammatory cytokines, 
specifically blocking VEGF can reduce tumor necrosis factor 
α, intercellular adhesion molecules 1, and nuclear factor κB 
level in diabetes mice[39]. The increase in VEGF level caused 
by diabetes is considered a biological marker of DR severity, 
and the increase of VEGF content in vitreous has a significant 
correlation with DR severity[28]. Furthermore, PI3K is involved 
in the formation of neovascularization by stimulating the 
expression of various factors[40-43]. Some studies suggested 
that PI3K participates in the pathological and physiological 
processes of DR[44]. The VEGF-mediated pro-angiogenic 
signal may stimulate the anti-tumor formation of endothelial 
cells through PI3K[44]. In addition, blocking PI3K is considered 
a beneficial therapeutic strategy for treating proliferative 
DR[45]. Our research results showed that under high glucose 
conditions, HRECs induce significant activation of PI3K and 
VEGF. In addition, in high glucose-induced HRECs, vialinin 
A can inhibit VEGF secretion and PI3K activation, indicating 

that vialinin A may exert its anti-angiogenic role through 
inhibit VEGF and PI3K expression. Therefore, vialinin A can 
serve as a new direction for DR treatment.
There were several limitations. First, this research used a 
high glucose environment to simulate DR, which has certain 
limitations. These results need further confirmation in vivo 
experiments. Second, whether vialinin A may become 
a target for treating proliferative DR requires additional 
pharmacological data.
In summary, vialinin A inhibits the cell viability of HRECs. It 
may serve as a potential target for anti-angiogenic therapy.
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