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Abstract
● AIM: To investigate the associations between urinary 
dialkyl phosphate (DAP) metabolites of organophosphorus 
pesticides (OPPs) exposure and age-related macular 
degeneration (AMD) risk.
● METHODS: Participants were drawn from the National 
Health and Nutrition Examination Survey (NHANES) 
between 2005 and 2008. Urinary DAP metabolites were 
used to construct a machine learning (ML) model for AMD 
prediction. Several interpretability pipelines, including 
permutation feature importance (PFI), partial dependence 
plot (PDP), and SHapley Additive exPlanations (SHAP) 
analyses were employed to analyze the influence from 
exposure features to prediction outcomes.
● RESULTS: A total of 1845 participants were included 
and 137 were diagnosed with AMD. Receiver operating 
characteristic curve (ROC) analysis evaluated Random 
Forests (RF) as the best ML model with its optimal predictive 
performance among eleven models. PFI and SHAP analyses 
illustrated that DAP metabolites were of significant 
contribution weights in AMD risk prediction, higher than 
most of the socio-demographic covariates. Shapley values 

and waterfall plots of randomly selected AMD individuals 
emphasized the predictive capacity of ML with high 
accuracy and sensitivity in each case. The relationships and 
interactions visualized by graphical plots and supported 
by statistical measures demonstrated the indispensable 
impacts from six DAP metabolites to the prediction of AMD 
risk.
● CONCLUSION: Urinary DAP metabolites of OPPs 
exposure are associated with AMD risk and ML algorithms 
show the excellent generalizability and differentiability in the 
course of AMD risk prediction.
● KEYWORDS: age-related macular degeneration; 
organophosphorus pesticide; National Health and Nutrition 
Examination Survey; interpretable machine learning; 
prediction
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INTRODUCTION

A ge-related macular degeneration (AMD) is the leading 
cause of severe vision impairment in the elderly and is 

anticipated to influence approximately 288 million individuals 
worldwide by 2040[1-2], placing a tremendous burden on both 
individuals and society. Currently, AMD is recognized as a 
multifactorial disease caused by number of risk factors such as 
aging, genetic susceptibility, lifestyle habits, and environmental 
exposures, which make the pathogenesis of AMD highly 
intractable to predict and interpretate. Intravitreal injection of 
anti-vascular endothelial growth factor (anti-VEGF) agents 
is the first-line therapy for exudative neovascular AMD[2], 
but responses of patients vary. However, the shortcomings of 
the prevailing delivery method, characterized by low patient 
compliance, substantial financial expenses, and complications, 
such as eye pain, endophthalmitis, and lens injury, have 
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become increasingly apparent over time[3]. Therefore, early 
prevention of AMD from exposure to numerous risk factors is 
the most effective and feasible measure. Among all the factors, 
the adverse effects from environmental chemical exposures on 
AMD have been heated discussed in the field of population-
based epidemiological studies. For example, several 
researches have emphasized the impacts of heavy metals[4], air 
pollutants[5], and radiation[6] exposure on the development of 
AMD.
Organophosphorus pesticides (OPPs), a group of organophosphate 
or phosphate sulphide esters, are prevalent insecticides 
commonly applied worldwide in agricultural, residential, 
and commercial settings with the advantages of their cost-
effectiveness and high efficacy in controlling pests and 
preventing insect-borne diseases[7]. Nevertheless, the 
persistent non-biodegradable nature and propensity of residues 
accumulation in soil and water bodies in conjunction with 
multiple routes of human exposure to OPPs, for instance, 
ingestion, inhalation, and skin contact have raised public 
attention to concern about their toxic effects on human health 
and ecosystems[8]. Part of OPPs can be swiftly absorbed, 
metabolized, and eliminated as urinary dialkyl phosphate 
(DAP) metabolites from the body, commonly used as 
biomarkers in cohort studies[9]. Currently, available research 
has found that exposure to OPPs is relevant to diverse 
diseases in general adults, including cancer[10], central nervous 
system disorders (Parkinson’s disease[11] and depression[12]), 
sleep problem[13], diabetes[14], hypertension[15], sex hormone 
function[16], and atopic diseases[17]. Limited evidence explored 
a potential link between exposure to pesticides and impaired 
retinal function. Several sporadic case series reported 
observations of macular disorders in patients with histories 
of pesticides exposure[18-21], suggesting the harmful macular 
sequelae of multifarious kinds of pesticides. Only a survey 
built upon the Agricultural Health Study preliminarily revealed 
the association between macular degeneration and usage 
history of OPPs within specific occupational groups, but 
ignoring the relationships between single pattern and combined 
DAP metabolites and the development of AMD[22]. Thus, 
advanced techniques are need to be introduced to gain a deeper 
insight into the under-researched relationships.
Machine learning (ML) models are featured with excellent 
generalizability and differentiability that can provide accurate 
predictions and analyze complex nonlinear relationships 
between exposure covariates and disease prognosis by 
training and validating models[23]. In recent years, with the 
gradual and widespread application of ML models, they are 
increasingly proposed for automated detection, screening, 
classification, monitoring, and prediction of AMD primarily 
in the context of imaging and clinical parameters, such as 

fundus autofluorescence images, color fundus photographs, 
optical coherence tomography, and visual acuity to improve 
the reliability and trustworthiness[24-26]. However, ML applied 
for prediction AMD by metabolites from serum[27] or urine[28] is 
still insufficient, as well as without utilization of interpretable 
ML (IML) models in identifying risk factors for AMD.
NHANES is a cross-sectional survey on U.S. population 
attempting to picture the nationwide health and nutritional 
status. We extracted urinary DAP metabolites from the two 
NHANES cycles between 2005 and 2008 to construct an ML 
model for AMD prediction, followed by application of several 
IML methods, including permutation feature importance (PFI) 
analysis, partial dependence plot (PDP) analysis, and SHapley 
Additive exPlanations (SHAP) analysis to the predictive 
model, in order to evaluate the contribution weight of each 
feature to the prediction outcome, to demonstrate relationships 
from local and global perspectives, and to investigate 
interactions among all variables included. As a result, the 
main objective of our study was to utilize ML approaches to 
make a description of the associations between urinary DAP 
metabolites and AMD risk, which could enable ML to serve as 
a risk indicator for AMD development.
PARTICIPANTS AND METHODS
Ethical Approval  The NHANES program was approved and 
authorized by the National Center for Health Statistics (NCHS) 
Research Ethics Review Board. All participants recruited 
had provided written informed consent. All methods and 
procedures were performed in accordance with the relevant 
guidelines and regulations.
Data Source and Study Population  NHANES, a cross-
sectional survey with a multi-stage and stratified sampling 
design, conducted by the NCHS and the Centers for Disease 
Control and Prevention (CDC), aims to understand nationwide 
health and nutritional status of the U.S. population and to 
identify disease risk factors. Participants were voluntary to 
provide socio-demographic information, complete standardized 
personal questionnaires, undergo physical examinations, and 
receive laboratory tests. This research was carried out by 
utilizing the publicly available datasets which can be accessed 
at the following website: https://www.cdc.gov/nchs/nhanes/
index.htm.
In this article, we presented data from the two consecutive 
NHANES cycles (2005–2006 and 2007–2008), because only 
these two cycles included both AMD and OPPs information. 
Initially, we enrolled a total of 36 721 study participants, and 
543 individuals were removed with missing sample weight. 
From these, we screened a subsample of 36 178 participants, 
and excluded records with missing data on AMD (n=30 574). 
Therefore, we further removed participants lack of data on 
urinary DAP metabolites and other covariate information 
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(n=3759) to obtain consistent and accurate results. Ultimately, 
1845 participants were retained for the final statistical analysis, 
of whom 137 had AMD. The selection process methodology is 
outlined in the flowchart presented in Figure 1.
Outcome Assessment  The main outcome of this study 
was diagnosis of AMD dependent on fundus examination 
performed by the retinal camera (CR6-45NM Non-Mydriatic 
Retinal Camera and EOS 10D digital camera; Canon USA, 
Inc, Lake Success, New York) for the NHANES survey. Each 
image was then graded by at least two experienced ophthalmic 
raters according to a rigorous procedure of the Wisconsin 
Age-Related Maculopathy Grading System. The classification 
of AMD was determined on the condition of the worse eye, 
if data were available for both eyes, and categorized into 3 
severity levels, no AMD, early AMD, or late AMD. Early 
AMD was defined by the presence or absence of drusen and/or 
pigmentary abnormalities, while late AMD by the signs of 
exudative AMD and/or geographic atrophy. In this research, 
patient with AMD was defined as the presence of early or late 
AMD in either eye. All 1845 participants were divided into 
AMD (n=137) and no AMD (n=1708) groups on the basis of 
this diagnostic criterion.
Measurement of  Urinary DAP Metabolites  The 
concentrations of DAPs in urine reflects the non-specific 
metabolites of OPPs and are commonly utilized as indicators 
that allow for the direct measurement of exposure to OPPs and 
evaluation of overall health status of individuals.
Six DAP metabolites covered almost the majority of 
OPPs registered in the U.S. Environmental Protection 
Agency,  consis t ing of  dimethylphosphate  (DMP), 
dimethylthiophosphate (DMTP), dimethyldithiophosphate 
(DMDTP), diethylphosphate (DEP), diethylthiophosphate 
(DETP), and diethyldithiophosphate (DEDT) reported in this 
study. Concisely, the concentrations of DAPs were examined 
by ultrahigh performance liquid chromatography-tandem 
mass spectrometry (UHPLC-MS) based on solid phase 
extraction (SPE) coupled with isotope dilution pre-treatment 
and corrected by urinary estimated glomerular filtration rate 
(eGFR). To ensure consistency and reliability for public health 
surveillance, NHANES employed a comprehensive quality 
control and quality assurance program. Details on laboratory 
measurement methods, as well as procedures for sample 
collection and processing are available in the NHANES 
Laboratory Procedure Manual on official website.
Demographic Covariates  Information on covariates was 
gathered through a combination of computer-assisted personal 
interview, physical examination, and laboratory assessment. 
Socio-demographic variables, including ethnicity (non-
Hispanic white, non-Hispanic black, Mexican American, or 
other), marital status (married or living with partner, unmarried 

or other), educational background (below high school, high 
school or above), poverty income ratio (PIR), smoking status 
(never, former, current smoking), alcohol consumption (never, 
former, mild, moderate, heavy drinking), body mass index 
(BMI), total energy intake (kcal/d), and healthy eating index 
(HEI) score were incorporated into our model and were 
classified in conformity with their respective criteria.
In light of the considerable influences that chronic diseases, 
including hypertension, diabetes mellitus, and chronic kidney 
disease (CKD) exerted on the risk of AMD, the inclusion of 
participants’ self-reported diagnoses of these ailments into 
the study enhanced the comprehensiveness of AMD risk 
prediction model. Within the above covariates, specifically, 
BMI was calculated as measured weight (kg) divided by 
the square of height (m2). PIR, an index of household’s total 
income to define the economic status, was set at a value of 
1.00 to correspond with the official federal poverty threshold 
level. The presence of CKD was defined by a decreased eGFR 
of lower than 60 mL/min●1.73 m2, according to the Chronic 
Kidney Disease Epidemiology Collaboration creatinine 
equation.
Construction of Machine Learning Models  The total dataset 
was randomly divided into two distinct subsets, in which 80% 
as the training set (n=1708) and 20% as the test set (n=137), 
via five-fold cross-validation resampling method to provide 
a more thorough assessment of the generalization ability of 
the model. Subsequently, eleven different ML algorithms, 
including Random Forest (RF), XGBoost (XGB), Gaussian 

Figure 1 Flow chart of participant selection for the final analysis  

NHANES: National Health and Nutrition Examination Survey; AMD: 

Age-related macular degeneration; DAP: Dialkyl phosphate.
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1217

Int J Ophthalmol,    Vol. 18,    No. 7,  Jul. 18,  2025         www.ijo.cn
Tel: 8629-82245172     8629-82210956      Email: ijopress@163.com

Process (GP), Naive Bayes (NB), K-Nearest Neighbour 
(KNN), C5.0 Decision Trees (C5.0), Neural Network (NN), 
Gradient Boosting Machine (GBM), Multi-Layer Perceptron 
(MLP), Logistic Regression (LR), and Supported Vector 
Machine (SVM) were constructed for AMD prediction with 
the training set. Each ML algorithm was trained and tuned on 
different permutations of the training data, and the effect was 
examined by the testing set.
Evaluation of Machine Learning Models  The performance 
of each ML algorithm model was estimated through various 
evaluation metrics, including the area under the curve (AUC) 
of receiver operating characteristic curve (ROC), apparent 
prevalence, true prevalence, sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), 
positive likelihood ratio (PLR) and negative likelihood ratio 
(NLR). These evaluation indicators were calculated based 
on the testing set via the following R packages: “caret”, 
“randomForest”, “pROC”, “stats”, “epiR”, “ggplot2”, “dplyr”.
Interpretation of Prediction Model  Interpretability methods 
were classified into two categories: global and local. The 
global model-agnostic methods comprised of PFI analysis, 
PDP analysis, accumulated local effects (ALE) plot, and 
feature interaction quantification. As for the local model-
agnostic methods, individual conditional expectation (ICE) 
plot, local interpretable model-agnostic explanations (LIME), 
Shapley values, and SHAP method were contained. All 
these approaches were integrated into the prediction model 
to systematically evaluate the contribution of urinary DAP 
metabolites and baseline characteristics to the prediction of 
AMD risk.
Briefly, global model-agnostic methods described the typical 
behavior of an ML model, proving invaluable in exploring the 
overarching patterns and underlying the inherent mechanisms 
in the data. PFI analysis determined the significance of a 
feature as an increase in the model’s prediction error loss 
after the variable was permuted, arousing a more intuitive 
quantification of the contribution of each DAP metabolite to the 
prediction of AMD risk. In parallel, SHAP importance analysis 
had similarities to a variance-based importance measure, 
contrasting with the loss-based definition as in the case of 
PFI[29]. PDP analysis furnished an explanation to observe the 
marginal effect of each individual covariate on the outcome 
and to average the corresponding of variables predicted by 
the model[30]. ALE plot focused on the accumulative effect, 
offering a more precise depiction when dealing with correlated 
features, which served as a faster and unbiased alternative to 
PDP[31]. Feature interaction quantification was performed when 
features interacted with each other in a prediction model, in 
order to measure the extent to which prediction was influenced 
by the joint effects[32].

With regard to local model-agnostic methods, they explained 
individual prediction of an ML model. ICE curve was 
integrated into the PDP analysis to take both the dependence 
of the prediction on each feature and the collective effect 
of changes into account, providing a detailed insight into 
the behavior of the model[33]. LIME was an algorithm for 
explaining the prediction outcome by building a simpler and 
interpretable model in the vicinity of the prediction of the 
black-box model[34]. Shapley value was an attribution method 
that fairly distributed the difference between the prediction and 
the average prediction of the model to individual covariate[35]. 
Through connecting LIME and Shapley value, SHAP analysis 
aimed to provide an extensive knowledge of the contribution 
made by each feature in an ML model towards the prediction 
result[34-35]. Both LIME and SHAP analysis were novel 
explainable methods adopted by researchers to solve black-
box problems associated with ML models. Interpretability 
pipelines were implemented through the following R packages: 
“shapviz”, “lime”, “DMwR2”, “iml”.
Statistical Analysis  Descriptive statistics in this study for 
continuous variables were reported as weighed means±standard 
deviation (SD) by the Student’s t-test or the Mann-Whitney U 
test, and for categorical variables were expressed as percentage 
(%) of participants in each group by the Wilcoxon two-sample 
test or the Chi-square test.
Logarithmic transformation was applied to normalize the 
skewed distributions of urinary DAP metabolites. Pearson 
correlation analyses were then conducted to investigate the 
relationships among continuous urinary DAPs and calculate 
Pearson correlation coefficients. Moreover, multicollinearity 
tests on covariates were performed to ensure the model 
stability by employing the variance inflation factor (VIF) in 
this research, where all VIF values below 10 indicated the 
absence of multicollinearity among all variables. Logistic 
regression analyses were applied to assess associations among 
binary categorical variables and provide regression coefficient 
and corresponding statistical significance.
Survey-weighted generalized linear regression models 
were performed to evaluate the associations between each 
continuous DAPs and AMD risk using adjusted odds ratios 
(ORs) and 95% confidence intervals (CIs). Three models were 
constructed. Model 1 included no adjustment for covariates. 
Model 2 was adjusted for age and sex. Model 3 included 
further adjustment for ethnicity, marital status, education, 
poverty ratio, smoking status, alcohol consumption, BMI, 
Kcal.Intake, HEI.score, hypertension, and CKD in addition to 
the covariates adjustment of model 2.
All calculations and analyses were performed in R software 
(R 4.3.0) with P less than 0.05 considered statistically 
significant.
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RESULTS
Demographic Characteristics of Participants  Table 1 
summarizes the demographics as well as other characteristics 
of the participants with and without AMD in this study. Of a 
total of 1845 included American adults, 137 were diagnosed 
with AMD and 1708 with no AMD. The prevalence of AMD 
was 6.34% (137/1845). The mean age of the total population 
was 56.26±0.47y, with 67.17±1.59 and 55.52±0.41y in 
each group, respectively. Women comprised 53.26% of the 
subject population, slightly more than men (46.74%), with no 
significant difference (P=0.22). Aged 40-49 (35.27%), non-
Hispanic White (75.57%), married or living with a partner 
(68.26%), with high school or above levels of education 
(83.18%), at or above poverty line (90.25%), never smoking 
(50.33%), mild alcohol drinking (39.03%), BMI ranging 
from 18.5 to 30.0 kg/m2 (60.91%), without hypertension 
(51.69%) and without diabetes (71.97%) accounted for the 
largest proportions of the total population. Furthermore, 
there were substantial variations between AMD and no AMD 
groups in terms of age, ethnics, marital status, smoking status, 
hypertension and CKD (P<0.05).
Statistical Analysis and Variables Selection  Pearson 
correlation results indicated that most of the DAP metabolites 
were correlated with each other in varying degrees, with 
moderately strong correlations between DMTP and DMDTP 
(r=0.62), DMP and DMTP (r=0.58), DETP and DEDT 
(r=0.56), DMP and DMDTP (r=0.54) and between DMDTP 
and DEDT (r=0.52) among 1845 subjects (Figure 2). Moreover, 
multicollinearity analysis using VIFs implied that there was no 
multicollinearity between the DAPs and covariates.
Associations Between DAP Metabolites and AMD Risk  
Survey-weighted generalized linear regression model results 
showed no significant correlations between any of six DAPs 
and AMD risk in both the crude model and models adjusted 
for related demographic or other covariates (Table 2). Because 
traditional generalized linear models have limitations (e.g., 
restrictive distributional assumptions and low sensitivity to 
weak effects), we attempted to adopt ML approaches to better 
characterize potential subtle yet complex associations.
Evaluation and Comparison of Eleven Machine Learning 
Models Predictive Capabilities  As depicted in Figure 3, 
ROC analysis curves of all selected ML models demonstrate 
the efficacy of identification of AMD risk from the testing set. 
The AUC value of the RF model was observed to be 0.688, 
XGBoost (0.665), GP (0.659), NB (0.652), KNN (0.642), C5.0 
(0.633), NN (0.629), GBM (0.625), MLP (0.617), LR (0.615), 
and SVM (0.602), based on the testing set. Eleven inclusive 
models achieved comparable predictive performances detailed 
in the discriminative features, including apparent prevalence, 
true prevalence, sensitivity, specificity, PPV, NPV, PLR and 

NLR (Table 3). Accordingly, these findings highlighted that the 
predictive ability of the RF model was superior among these 
learning models, hence, the RF-based prediction model was 
finally selected for subsequent assessment.

Figure 2 Pearson correlations of urinary DAP metabolites factors 

among 1845 subjects  Pearson correlations between six continuous 

DAP metabolites. DAP: Dialkyl phosphate; DMP: Dimethylphosphate; 

DEP: Diethylphosphate; DMTP: Dimethylthiophosphate; DETP: 

Diethylthiophosphate; DMDTP: Dimethyldithiophosphate; DEDT: 

Diethyldithiophosphate. 

Figure 3 ROC analysis curves of eleven ML models based on the 
testing set  ML model was utilized to fit the prediction between 
AMD risk and urinary DAP metabolites. ROC: Receiver operating 
characteristic curve; ML: Machine learning; AMD: Age-related 
macular degeneration; DAP: Dialkyl phosphate; AUC: Area under 
the curve; RF: Random Forest; GP: Gaussian Process;  NB: Naive 
Bayes; KNN: K-Nearest Neighbour; C5.0: C5.0 Decision Trees; NN: 
Neural Network; GBM: Gradient Boosting Machine; MLP: Multi-Layer 
Perceptron; LR: Logistic Regression; SVM: Supported Vector Machine.

OPPs exposure and AMD risk
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Table 1 Baseline characteristics of participants                                                                                                                                                n (%) or mean±SD
Variables Total, n=1845 No AMD, n=1708 (93.66) AMD, n=137 (6.34) P
Age (y) 56.26±0.47 55.52±0.41 67.17±1.59 <0.0001

40-49 494 (35.27) 483 (36.60) 11 (15.56)
50-59 449 (29.56) 436 (30.69) 13 (12.91)
60-69 444 (17.72) 417 (17.69) 27 (18.24)
≥70 458 (17.45) 372 (15.02) 86 (53.29)

Sex 0.22
Male 923 (46.74) 846 (46.38) 77 (51.99)
Female 922 (53.26) 862 (53.62) 60 (48.01)

Ethnicity 0.002
Non-Hispanic White 974 (75.57) 874 (74.72) 100 (88.10)
Non-Hispanic Black 371 (9.47) 360 (9.86) 11 (3.61)
Mexican American 299 (5.67) 284 (5.79) 15 (3.89)
Other 201 (9.30) 190 (9.63) 11 (4.41)

Marital status 0.01
Unmarried or other 677 (31.74) 618 (31.10) 59 (41.30)
Married or living with a partner 1168 (68.26) 1090 (68.90) 78 (58.70)

Educational background 0.75
Below high school 534 (16.82) 499 (16.75) 35 (17.81)
High school or above 1311 (83.18) 1209 (83.25) 102 (82.19)

Poverty ratio 0.54
Below poverty line (<1.00) 302 (9.75) 277 (9.67) 25 (10.83)
At or above poverty line (≥1.00) 1543 (90.25) 1431 (90.33) 112 (89.17)

Smoke 0.001
Never 876 (50.33) 815 (50.94) 61 (41.45)
Former 588 (29.34) 530 (28.16) 58 (46.69)
Current 381 (20.33) 363 (20.90) 18 (11.87)

Alcohol use 0.37
Never 258 (11.88) 234 (11.58) 24 (16.21)
Former 479 (22.60) 438 (22.27) 41 (27.45)
Mild 638 (39.03) 590 (39.24) 48 (35.93)
Moderate 242 (14.37) 230 (14.75) 12 (8.77)
Heavy 228 (12.13) 216 (12.16) 12 (11.64)

BMI (kg/m2) 29.03±0.18 29.08±0.19 28.26±0.52 0.16
BMI 0.07

18.5-30.0 1106 (60.91) 1006 (59.99) 100 (74.53)
<18.5 27 (1.40) 27 (1.50) 0 (0.00)
≥30.0 712 (37.69) 675 (38.51) 37 (25.47)

Kcal.Intake (kcal/d) 2091.29±28.05 2097.56±28.00 1998.55±109.92 0.38
HEI.score 51.06±0.42 51.04±0.45 51.30±1.63 0.89
Hypertension 0.02

No 840 (51.69) 794 (52.51) 46 (39.48)
Yes 1005 (48.31) 914 (47.49) 91 (60.52)

Diabetes 0.44
No 1224 (71.97) 1136 (72.22) 88 (68.28)
Yes 621 (28.03) 572 (27.78) 49 (31.72)

CKD 85.76±0.74 86.52±0.67 74.53±2.50 <0.0001
Exposures (μg/L)

DMP -4.28±0.06 -4.29±0.06 -4.13±0.18 0.41
DEP -4.87±0.05 -4.89±0.06 -4.66±0.15 0.17
DMTP -3.79±0.06 -3.80±0.06 -3.72±0.15 0.62
DETP -5.01±0.03 -5.01±0.03 -5.05±0.08 0.57
DMDTP -5.08±0.04 -5.08±0.04 -5.11±0.10 0.72
DEDT -5.75±0.03 -5.75±0.03 -5.78±0.07 0.71

BMI: Body mass index; Kcal: Kilocalorie; HEI: Healthy eating index; CKD: Chronic kidney disease; DMP: Dimethylphosphate; 

DEP: Diethylphosphate; DMTP: Dimethylthiophosphate; DETP: Diethylthiophosphate; DMDTP: Dimethyldithiophosphate; DEDT: 

Diethyldithiophosphate.
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Interpretable Pipelines
Predictor variable importance  Technique such as PFI 
analysis provided a comprehensive understanding of the 
contribution weight of each variable in the prediction model. 
LIME algorithm (Figure 4A) was employed to rank the 
significance of DAP metabolites (DMP, DEP, DMTP, DETP, 
DMDTP and DEDT) and individual baseline characteristics 
(age, sex, BMI, ethnicity, alcohol using, smoking status, 
education level, marital status, poverty ratio, etc.) in the RF 
model, in which their descending sequence indicated their 
magnitude of effect. According to the LIME method, the 
principal influencing factors lied on age, followed by DEDT, 
CKD, DMTP, DETP, DEP, DMP and BMI, suggesting that all 
six urinary DAP metabolites contributed considerable weights 
in predicting the risk of AMD.
Figure 4B-4D display the variables contributing to the 
predictive value of AMD risk as assessed by SHAP method. 
The SHAP feature importance bar chart (Figure 4B) exhibits 
the general effects of DAP metabolites and baseline variables 
on the risk of AMD. The absolute SHAP value was taken into 
account when ranking the features, regardless of the positive 
or negative effect to the model output. Covariates with higher 
mean absolute SHAP values were determined as being more 
influential to the prediction of AMD, ranked from top to 
bottom in accordance with the importance.
Furthermore, the SHAP summary plot (Figure 4C) validates a 
more detailed information of the DAPs compared with the bar 
chart. As depicted by Figure 4D, SHAP analysis identifies the 
contributions of six DAP metabolites in influencing the AMD 
risk, which categorizes DMTP as the most critical parameter, 
higher than any other metabolites.
The SHAP algorithm showed a similar pattern as the LIME 
algorithm for the status of DAP metabolites among all 
covariates. Concretely speaking, DAP metabolites ranked 
first among all variances, moreover, age, CKD, BMI and HEI 
score had certain impact on the prediction of AMD risk. It was 

worth noting that the contribution weights of demographic 
characteristics and lifestyle-related variables in the prediction 
of AMD risk in our results were lower compared to OPPs 
exposure, and all baseline characteristics variables except age 
and CKD status were weaker than DAP metabolites under two 
different investigation algorithms.
Predictive modeling visualization  The individual decision-
making process for the prediction of AMD risk was evaluated 
by Shapley value and visualized by SHAP waterfall plot to 
interpretate the degree of each feature contributing to the 
overall outcome. 
Defined as the average marginal contribution of a feature value 
across all possible coalitions, the Shapley value was employed 
to examine the prediction of AMD risk by RF model. We 
selected the first, 10th, 100th, and 1000th participants respectively 
to test the ability of model in disease prediction. For example, 
Figure 5A presents the Shapley values for the first individual 
in the AMD prediction dataset. With a prediction of -0.00, the 
AMD probability of this specific person was 0.08 below the 
average prediction of 0.08. The DMTP level exerted the most 
substantial negative impact, whereas the DEDT level showed a 
positive contribution notably distinct from the other covariates. 
The sum of Shapley values yielded the difference between 
actual and average prediction (-0.08).
In the waterfall plot, each horizontal level described how the 
positive (yellow) or negative (red) contribution of each feature 
shifted the anticipated model output Ef(x) toward the ultimate 
model prediction f(x), taking into account the evidence from 
all the features present. For instance, Figure 6A portrays an 
individual aged 64 with eGFR value of 61.3 whose virtually 
all metabolites (DEDT, DMTP, DMDTP, DEP and DETP) 
contributed negatively to AMD prediction, leading to an output 
of 1.07.
The SHAP person waterfall plots for a range of subjects 
revealed a clear depiction of susceptibility to DAP metabolites, 
thereby highlighting the predictive capacity of ML as a 

Table 2 Comparison between different models of the weighted relationship between organophosphorus pesticides and risk of AMD

Exposures (μg/L)
Model 1 Model 2 Model 3

OR (95%CI) P OR (95%CI) P OR (95%CI) P

DMP 1.03 (0.91, 1.16) 0.63 1.04 (0.91, 1.18) 0.60 1.02 (0.90, 1.16) 0.74
DEP 1.04 (0.92, 1.18) 0.50 1.03 (0.90, 1.18) 0.69 1.02 (0.89, 1.16) 0.75
DMTP 1.06 (0.90, 1.25) 0.48 0.96 (0.80, 1.15) 0.65 0.96 (0.80, 1.15) 0.65
DETP 0.86 (0.65, 1.11) 0.26 0.83 (0.62, 1.09) 0.20 0.85 (0.64, 1.11) 0.25
DMDTP 1.06 (0.86, 1.31) 0.58 1.08 (0.85, 1.35) 0.53 1.07 (0.85, 1.34) 0.53
DEDT 1.04 (0.77, 1.37) 0.80 1.02 (0.74, 1.38) 0.88 0.97 (0.70, 1.32) 0.86

Model 1: Not adjusted for any covariates; Model 2: Adjusted for age and sex; Model 3: Adjusted for ethnicity, marital status, education, 

poverty ratio, smoking status, alcohol consumption, BMI, Kcal.Intake, HEI.score, hypertension, and CKD in addition to adjustments given 

for model 2; DMP: Dimethylphosphate; DEP: Diethylphosphate; DMTP: Dimethylthiophosphate; DETP: Diethylthiophosphate; DMDTP: 

Dimethyldithiophosphate; DEDT: Diethyldithiophosphate; OR: Odds ratio; CI: Confidence interval.

OPPs exposure and AMD risk
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sensitive model algorithm in identifying different patients for 
disease risk forecasting. Within the subset of four randomly 
selected patients, DAP metabolites occupied prominent 
positions in the variety of influencing factors, thereby 
accentuating the indispensable role of DAP metabolites in 
predicting AMD risk. The results pointed to the likelihood that 
continuous monitoring and assessing the urinary metabolites 
levels for the purposes of early detection, warning, and 
intervention will enhance public health security and individual 
well-being.
Relationships between DAP metabolites and AMD  PDP 
combined with ICE (Figure 7) is implemented for an intuitive 
explanation on the relationship between a set of urinary DAP 
metabolites (DMP, DEP, DMTP, DETP, DMDTP and DEDT) 
and the average AMD prediction value in the RF model. The 
collective trajectory of the six DAP metabolites appeared as a 
relatively flat line from an overall perspective, implying a less 
pronounced impact of these features on the model’s predictive 
outcomes for AMD. This observation may indicate that the 
range of DAP metabolites concentrations within the dataset 
did not vary significantly, or that the model did not ascribe a 
substantial predictive weight to these metabolites relative to 
the other characteristics. Considering another aspect, features 
with shallow PDP were assigned a lower priority in terms of 
immediate impacts on the AMD risk, but exerted a profound 
influence on the outcomes of a study in an accumulation or an 
interaction sense which were obscured in PDP-based analysis.
Therefore, ALE plots (Figure 8) were subsequently introduced 
to estimate the difference of local predictions for small changes 
around each level of exposure, as an alternative to PDP 
analysis, providing a more accurate representation. We can 
infer several associations from the graphical representations 
presented. Despite essentially unchanged when DEP and 
DEDT were at low doses, the predicted risk of AMD escalated 
quickly when the ln-transformed levels of DEP and DEDT 
were elevated at relatively high concentration as a clear 
positive slope, indicating that there was a significant dose-
dependent relationship between the variable and outcome. 
This evidence led us to speculate that higher values of DEP 
and DEDT had an increasingly positive effect on the average 
predicted AMD. In comparison, the graphs displayed similar 
U-shaped patterns across the remaining features investigated 
(DMP, DMTP, DMDTP and DETP), suggesting that these 
variables did not have a crucial impact on the incidence of AMD.
In summary, although the PDP analysis indicated that the 
overall impact of DAP metabolites on the predictive risk for 
AMD was relatively weak, given the accumulative effects 
of most environmental exposures, the ALE plots further 
elucidated the association between exposures and outcome, 
indicating that certain metabolites contributed notably to the Ta
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prediction of AMD risk. Consequently, the influence of DAP 
metabolites on the predictive risk for AMD ought not to be 
underestimated.
Interaction effects of DAP metabolites on AMD  As the urine 
metabolic products of the organism, DAP metabolites interact 
with each other, thus the prediction outcome cannot only be 
expressed as the sum of the feature effects. Additionally, we 
performed the exploration of interaction properties between the 
corresponding variables in a RF trained model to predict AMD, 
given some risk factors (Figure 9A). Features were observed 
to be prioritized in accordance with their respective overall 
interaction strengths, where age, BMI, DEDT, CKD, DMTP, 

DEP, DETP, DMDTP, and DMP exceeded the threshold of 0.2. 
Notably, DEDT exhibited the most pronounced interaction 
effect among six DAP metabolites.
Upon evaluating the interactions among all the variables, 
we selected DEDT distinguished by the most considerable 
interaction effect (Figure 9B). Consequently, we proceeded 
with a detailed investigation into the two-way interactions of 
DEDT alongside other covariates. Several relationships can 
be derived from the graphs that DETP and DEDT presented 
the highest magnitude above 0.6, whereas the other DAPs 
generated critical influence on the prediction of AMD risk by 
DEDT, with all values surpassing 0.2.

Figure 4 Feature importance analysis for RF model in predicting the risk of AMD  A: LIME feature importance forest map. The map displayed 

the contribution weight of each variable comprising DAP metabolites and individual baseline characteristics to the prediction of AMD using 

the feature importance analysis for RF model; B: SHAP feature importance bar chart. The impact of each feature on the model output was 

weighed by the mean absolute SHAP value for the entire dataset, in which their decreasing order indicated their utmost importance; C: SHAP 

feature importance summary plot; D: SHAP summary plot of six DAP metabolites and AMD risk. Each dot corresponded to the SHAP value for 

an individual, extending linearly along the x-axis. The orientation on the x-axis indicated the probability of developing AMD, with the movement 

towarded the right suggesting an increased risk and towarded the left indicating a reduced risk. A higher SHAP value on the x-axis represented 

a stronger contribution to the prediction of AMD risk. The color of each dot manifested the prediction feature value of each individual, encoded 

in a gradient from the yellow (high) to purple (low). The distribution of SHAP values for each feature can be visually illustrated by the y-axis 

deviation of the overlapping points. RF: Random Forest; AMD: Age-related macular degeneration; DEDT: Diethyldithiophosphate; CKD: Chronic 

kidney disease; DMTP: Dimethylthiophosphate; DETP: Diethylthiophosphate; DMDTP: Dimethyldithiophosphate; DEP: Diethylphosphate; DMP: 

Dimethylphosphate; BMI: Body mass index; HEI: Healthy eating index; Kcal: Kilocalorie; SHAP: SHapley Additive exPlanations.

OPPs exposure and AMD risk
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Apart from the global model method already discussed, 
we also utilized local model method to further substantiate 
the interacting relationships among the metabolites in the 
course of AMD prediction. The SHAP dependence plots 
(Figure 10) were applied to reveal how the Shapley values 
for the levels of DAP metabolites affected the model output. 
Corresponding with the previous results from PDP analysis, 
roughly speaking, the consequences hinted that the model did 
not solely dependent on the abundance of DAP metabolites 
with respect to the data distribution. In case of interactions, 
the SHAP dependence plots were automatically colored with 
the strongest interaction feature. In addition to the interactions 
observed among DAP metabolites, age emerged as the most 
potent element of interaction influencing the majority of DAPs 
and another critical factor was identified as CKD.
Taking all these factors into account, the interaction 
performances of the baseline variables for predicting AMD 
risk remained inferior to that of urinary DAP metabolites, 
in conformity with the findings from several analytical 

approaches, which emphasized the indispensable role of DAP 
metabolites in the course of AMD risk prediction. The results 
pointed that detection of DAP metabolites levels may be 
potentially vital for managing the progression of AMD.
DISCUSSION
Our research is the first large-scale cross-sectional population-
based epidemiology investigation to demonstrate the 
relationships between OPPs exposure and AMD risk among 
U.S. population. We utilized eleven ML algorithms to screen 
the urinary DAP metabolites data available between 2005 
and 2008 from the two NHANES cycles, with the help of 
evaluation indicators, finally selected the best-performing RF 
model capable of predicting the risk of AMD. Furthermore, 
a series of effective parameters including PFI analysis, 
PDP analysis, and SHAP analysis were applied to gain a 
better understanding of the relationships and interactions 
between DAP metabolites and AMD. Our results suggested 
indispensable contributions from six DAP metabolites to AMD 
risk prediction, highlighting the capability of ML as a sensitive 

Figure 5 Shapley value-based interpretation for individual observations of participants, to demonstrate patient profiles for predicting 

outcomes  A: First; B: 10th; C: 100th; D: 1000th. DMTP: Dimethylthiophosphate; DMP: Dimethylphosphate; DEP: Diethylphosphate; Kcal: 

Kilocalorie; DETP: Diethylthiophosphate; HEI: Healthy eating index; DMDTP: Dimethyldithiophosphate; BMI: Body mass index; CKD: Chronic 

kidney disease; DEDT: Diethyldithiophosphate.
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and reliable model algorithm in predicting the risk of diseases.
We screened the RF model as the outstanding learning model 
with its superior ability of predicting AMD based on urinary 
DAP metabolites exposure data through ROC analysis and 
corresponding AUC values. RF is a classical ML algorithm 
that has been frequently utilized in the course of diagnosis, 
monitoring and prediction of AMD, while exhibiting 

the superiority of high accuracy, robustness to noise and 
scalability. When it comes to application ML to analyzing 
OPPs exposure data, only a single survey has been reported 
so far with the utilization of three ML approaches, namely, 
random forest regression, GBM and NN analysis. As a 
consequence, all the model performances were poor according 
to the ten-fold cross-validation, indicating that the information 

Figure 6 The SHAP person waterfall plots of participants, to demonstrate patient profiles for predicting outcomes  A: 1st; B: 10th; C: 100th; 

D: 1000th. SHAP: SHapley Additive exPlanations; CKD: Chronic kidney disease; DEDT: Diethyldithiophosphate; DMTP: Dimethylthiophosphate; 

DMP: Dimethylphosphate; DMDTP: Dimethyldithiophosphate; DEP: Diethylphosphate; DETP: Diethylthiophosphate; Kcal: Kilocalorie; BMI: Body 

mass index; HEI: Healthy eating index.

Figure 7 PDP analysis for the relationship between ln-transformed concentrations of DAP metabolites and the average predictive AMD 

risk  A: DMP; B: DEP; C: DMTP; D: DETP; E: DMDTP; F: DEDT. PDP: Partial dependence plot; DAP: Dialkyl phosphate; AMD: Age-related macular 

degeneration; DMP: Dimethylphosphate; DEP: Diethylphosphate; DMTP: Dimethylthiophosphate; DETP: Diethylthiophosphate; DMDTP: 

Dimethyldithiophosphate; DEDT: Diethyldithiophosphate.

OPPs exposure and AMD risk
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collected was insufficient to investigate predictors of urinary 
DAP concentrations[36].
The combination of ML models and various interpretable 
methods may open the black-box of ML in the field of 
environmental sciences, particularly well-suited to complex 
and nonlinear relationships in chemical mixture exposures 
(e.g., multiple heavy metals[28], air pollutants[29], and DAP 
metabolites[36]). To provide a comprehensive understanding of 
the results generated by ML algorithms, we introduced global 
and local model-agnostic methods to the prediction model. 
Through evaluating the predictive value of each variable, 
PFI analysis revealed that all six urinary DAP metabolites 

contributed considerable weights in the prediction of AMD 
risk, ranking ahead of most of the demographic characteristics 
and lifestyle-related variables. In an attempt to demonstrate 
the broad-spectrum applicability of this model, we conducted 
SHAP waterfall plots of randomly selected AMD individuals, 
underlining the predictive ability of ML as an algorithm 
with high accuracy and sensitivity in each case. In addition, 
graphical plots (PDP, ICE, and ALE) enabled visualization 
and accurate reflection of outcomes from RF. Methodological 
analyses on the properties of interactions evidently revealed 
the relationships and interactions between DAP metabolites 
and AMD risk supported by analytical statistical measures. 

Figure 8 ALE plots of the accumulated effects on AMD predictions for DAP metabolites  A: DMP; B: DEP; C: DMTP; D: DETP; E: DMDTP; 

F: DEDT. ALE: Accumulated Local Effects; AMD: Age-related macular degeneration; DAP: Dialkyl phosphate; DMP: Dimethylphosphate; 

DEP: Diethylphosphate; DMTP: Dimethylthiophosphate; DETP: Diethylthiophosphate; DMDTP: Dimethyldithiophosphate; DEDT: 

Diethyldithiophosphate.

Figure 9 The interaction effects between features on AMD risk prediction  A: The interaction effects for each feature with the others on 

AMD risk prediction; B: The interaction effects between DEDT and the other features on AMD risk prediction. AMD: Age-related macular 

degeneration; BMI: Body mass index; DEDT: Diethyldithiophosphate; CKD: Chronic kidney disease; DMTP: Dimethylthiophosphate; DEP: 

Diethylphosphate; DETP: Diethylthiophosphate; DMDTP: Dimethyldithiophosphate; DMP: Dimethylphosphate; Kcal: Kilocalorie; HEI: Healthy 

eating index.
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AMD is a chronic retinal disease involving complicated 
etiologic factors and has aroused public health concern and 
put tremendous burden on socio-economic costs worldwide[37]. 
However, the precise mechanisms underlying the associations 
between OPPs exposure and AMD remain unclear.
Of note, genetic susceptibility is a pivotal mechanism involved 
in the AMD pathogenesis. It has been claimed that AMD 
is of relevance to polymorphisms in genes participating 
in complement pathways, inflammation and immune 
regulation, lipid metabolism and transport, maintenance 
of the extracellular matrix, and angiogenesis[38]. At the 
same time, certain populations are more vulnerable to the 
toxic effects of environmental exposure to OPPs due to the 
influence of genetic polymorphisms[39]. The susceptibility to 
exposure can be evaluated by the common polymorphisms of 
cytochrome P450, glutathione transferases, acetyltransferases 
and paraoxonases, which are implicated in the metabolism 
of OPPs[40-42]. Paraoxonase 1 (PON1) has been the most 
studied gene for discovering its role in the development of 
organophosphorus-induced disorders. PON1, located on 
chromosome 7, is a gene encoding a protein with arylesterase 
and paraoxonase activity to protect against xenobiotic toxicity. 
Low PON1 activity increased the predisposition of the 
population to the OPPs poisoning[43]. Genetic polymorphisms 

in PON1 affected the efficacy of the response to DNA damage 
in individuals exposed to OPPs[42,44]. On the other hand, 
PON1 genotypes have been explored in association with 
AMD disorders. Single nucleotide polymorphisms in the 
coding region of PON1, Q192R and L55M variants have been 
identified in the AMD patients and determined their relation to 
paraoxonase activity[45]. Paraoxonase activities in serum were 
significantly decreased in AMD patients[46]. Current studies 
have revealed that PON1 can be a potential risk factor for 
AMD but the mechanism driving AMD development has not 
yet been clarified. Thus, future research should concentrate on 
the toxicological effects in individuals susceptible to OPPs.
Oxidative stress is thought to be one of the primary drivers 
of the AMD development[47]. The oxidant-antioxidant 
imbalance is strongly implicated in the pathophysiology of 
AMD. Superoxide dismutase, the key enzyme required for 
the removal of the superoxide radical, has been reported to 
be significantly elevated in patients with early and late stage 
of AMD[48]. High levels of oxidative stress biomarkers are 
commonly observed in AMD patients[49] and can be further 
increased by aging or environmental factors, while dietary 
antioxidants may reduce them[50]. Exposure to chronic OPPs 
can produce reactive oxygen species in the retina[51] and 
impair the antioxidant defense system of cells[52]. Noting that 

Figure 10 SHAP dependence plots with visualized interaction to illustrate the strongest interaction factor for the level of DAP metabolites  A: 

DMP; B: DEP; C: DMTP; D: DETP; E: DMDTP; F: DEDT. SHAP: SHapley Additive exPlanations; DAP: Dialkyl phosphate; DMP: Dimethylphosphate; 

DEP: Diethylphosphate; DMTP: Dimethylthiophosphate; DEDT: Diethyldithiophosphate; DMDTP: Dimethyldithiophosphate; DETP: 

Diethylthiophosphate.

OPPs exposure and AMD risk
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a survey conducted on the adult retinal pigment epithelial-19 
cells simulating AMD in vitro preliminarily revealed the fact 
that chlorpyrifos (CPF), one of the most broadly used and 
hazardous OPPs, caused macular degeneration by triggering 
oxidation overload and established the cell model for 
understanding the effects of CPF exposure to ocular system[53]. 
Animal studies also showed that exposure to CPF brought 
oxidative pressure on organ tissues throughout the body[54] 
including ocular system[55] and interfered with the recovery of 
visual sensitivity in rats in vivo[56]. Besides, oxidative related 
pathway has been reported to mediate some other toxic 
reactions, such as genetic and epigenetic damages attributed to 
pesticides and organophosphorus compounds[57], and provoke 
the innate immune system and exacerbate inflammation[58].
At the same time, it merits attention that inflammatory 
dysregulation also participates in the progression of AMD[47,59]. 
Considering that pro-inflammatory cytokines, key mediators of 
the retinal pigment epithelium pathophysiological disorders[60], 
are engaged in the control of retinal degeneration, especially 
macula, it is reasonable to hypothesize that OPPs-mediated 
secretion of inflammatory mediators may be crucial for the 
development of AMD[61]. On the foundation of in vitro, in vivo 
experiments and clinical evidences, OPPs, such as CPF and 
malathion, upregulated pro-inflammatory cytokine markers 
[e.g., interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α 
and interferon (IFN)-γ] both in the serum concentrations[62-64] 
and in target tissue expressions, including the liver[65], 
kidney[65], heart[63], lung[66], nerves[43,62], testis[54], and ocular 
tissues[55,64]. These effects mediated immunomodulatory 
activity, compromised immunocompetence, and ultimately 
heightened susceptibility to diseases[61]. Therefore, these 
findings discussed above suggest that inflammation may play 
a mediating role in the pathogenesis of AMD induced by OPPs 
exposure.
Nevertheless, there are several limitations to this analysis. 
First, although this study was based on the large and nationally 
representative samples from NHANES, the nature of cross-
sectional design and observational research did not allow 
us to determine the temporal sequence of AMD occurrence 
and OPPs exposure and to establish the causal relationships 
between urinary DAP metabolites and AMD. Hence, there 
is a need for longitudinal data to confirm causality between 
exposure to OPPs and AMD risk. Second, despite urinary DAP 
metabolites as common biomarkers of OPPs exposure, they are 
non-specific and reflect exposure to the mixture of OPPs with 
similar structures, it is impossible to distinguish the specific 
pesticide need to be restricted for daily use. In addition, urinary 
DAP metabolites were measured only at the single-time point, 
meanwhile, taking into account rapid transformation into 
DAP metabolites and the complexity of body’s metabolism, 

the findings were insufficient to fully capture the long-term 
effects of cumulative OPPs exposure in humans. Thus, the 
misclassification of the measurement approach may discount 
the power of the associations. Subsequent explorations are 
warranted to focus on developing measurements of specific 
biomarkers with the aim to a more profound assessment. 
Third, while the extensive range of demographic and clinical 
confounders collected from the NHANES database enabled 
us to account for main covariates in this investigation, the 
lack of direct measurements of some known environmental 
risk factors for AMD (gene-related factors, chronic light 
exposure, or dietary components, et al.) may arise potential 
biases in this survey. Secondary analyses could integrate 
biobank metadata to make cross-database convergence by 
incorporating quantifiable indicators of additional potential 
risk factors—outdoor occupational patterns, leisure-time sun 
exposure, and geographic UV index—into the model. This 
approach will enhance the model’s explanatory power and 
strengthen its clinical validity[67]. Furthermore, the majority of 
participants included were non-Hispanic whites, indicating the 
presence of possible biological and environmental differences 
across racial and ethnic contexts. Caution is therefore advised 
when generalizing our findings to a wider population. Future 
studies should consider more diverse samples and in-depth 
experiments to increase the persuasiveness and elucidate 
underlying biological mechanisms of toxicity of OPPs 
exposure on ocular system. Lastly, although the performance 
of the RF model was satisfactory characterized with excellent 
noise immunity and data stability, the variety of ML models 
applied was still limited, as well as the category imbalance of 
the proportion of patients, which resulted in the general bias 
toward predicting the majority of the categories and a poor 
predictor of a minority. In early-stage environmental exposure-
disease association studies, sensitivity-driven models are 
essential for risk signal detection. Before extending this model 
to real-world applications, confirmatory testing is required 
due to its high false positive rate. To address the imbalanced 
data set, Synthetic Minority Oversampling Technique may 
be applied during model training to generate synthetic AMD 
cases, thereby improving minority class representation. 
Therefore, further validation analyses through external cohorts 
are necessary to improve the generalizability and better correct 
for bias mentioned above.
To the best of our knowledge, this is the first attempt to 
conduct a large-scale epidemiologic investigation on general 
population to examine the relationship between OPPs 
exposure and AMD risk, yielding a novel insight into the link 
between environmental factors and health outcomes. Since the 
utilization of OPPs as a substantial number of crop-specific 
agricultural pesticides[68], the influence on AMD is worth 
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to continuously biomonitoring with the help of advanced 
techniques to accurately predict disease risk. Despite the good 
predictive results presented through ML model and various 
interpretable methods, this is an exploratory study and further 
well-designed prospective cohort researches on diverse 
populations are warranted to validate the clinical applicability.
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